• Aucun résultat trouvé

PARTICLE EMISSION BUT ALSO FISSION IN THE DECAY OF VERY EXCITED NUCLEI

N/A
N/A
Protected

Academic year: 2021

Partager "PARTICLE EMISSION BUT ALSO FISSION IN THE DECAY OF VERY EXCITED NUCLEI"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: jpa-00225800

https://hal.archives-ouvertes.fr/jpa-00225800

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

PARTICLE EMISSION BUT ALSO FISSION IN THE

DECAY OF VERY EXCITED NUCLEI

H. Delagrange, C. Gregoire, Y. Abe, N. Carjan

To cite this version:

H. Delagrange, C. Gregoire, Y. Abe, N. Carjan. PARTICLE EMISSION BUT ALSO FISSION

IN THE DECAY OF VERY EXCITED NUCLEI. International Conference on Heavy Ion

Nu-clear Collisions in the Fermi Energy Domain Hicofed 86, 1986, Caen, France. pp.C4-305-C4-315,

�10.1051/jphyscol:1986434�. �jpa-00225800�

(2)

JOURNAL DE PHYSIQUE

C o l l o g u e C4, s u p p l e m e n t au n° 8 , Tome 4 7 , a o u t 1986 CJ-305

PARTICLE EMISSION BUT ALSO F I S S I O N IN THE DECRY OF VERY EXCITED NUCLEI

H . DELAGRANGE, C . GREGOIRE, Y . ABE* a n d N . CARJAN**

GRNIL, BP 5027, F-14021 Caen C e d e x , France *RIFP, Kyoto University, Kyoto 606, Japan

"CENBG, Le Haut Vigneau, F-33170 Gradignan, France

Résumé - Afin d'analyser le comportement des noyaux très excités, nous présentons une extension du modèle statistique avec une dépendance explicite du temps. Les dépendances de la barrière de fission en fonction de la température et du moment angulaire sont obtenues dans le cadre de la goutte liquide. Ce cadre permet de définir les paysages de potentiel associés aux quelques variables collectives qui évoluent, pendant la décroissance, de la manière décrite par une équation de transport généralisée. Nous calculons Tévaporation de particules légères durant le processus de fission rapide et également en compétition avec la fission suivant la formation d'un noyau composé. Ces calculs sont comparés avec quelques résultats expérimentaux, notamment ceux de 4 0Ar + 23 8U à 27 MeV/u. Le refroidissement s'êtablissant

pendant le transfert d'énergie, par Tévaporation de particules, empêche la répartition dans le système composite de toute l'énergie disponible. Ces noyaux doivent être plutôt qualifiés de tièdes que de vraiment chauds.

Abstract - An extension of the s t a t i s t i c a l model for the study of very excited nuclei is presented. The temperature and angular momentum

dependences of the fission barriers are obtained i n a l i q u i d drop p i c t u r e . I t provides us with the relevant potential landscapes for some collective variables which evolve during the decay according to a generalized transport equation. The l i g h t p a r t i c l e evaporation during the fast fission process and the fission after compound nucleus formation is calculated and compared with some available experimental results, e.g. for '•"Ar + 238U at 27 MeV/u. The competing process of particle emission (cooling) during the thermal equilibrium prevents a complete transfer of excitation energy along the whole evolution of the system. Such nuclei should be called warm instead of hot.

I - INTRODUCTION

The heavy ion reactions in the intermediate energy open a new f i e l d of investigation for the physical properties of nuclei at high temperature (or high excitation energy). Several regimes can be expected for the decay of an highly excited nucleus :

i ) For a temperature domain below 2 MeV, the standard s t a t i s t i c a l model applies, since the equilibration time xe for the internal degrees of freedom i s much smaller than the typical time for fission decay (Tf) and for particle evaporation

(Xp>tf) III.

i i l For a temperature range between 2 and 5 MeV, a dynamical competition between

(3)

C4-306 JOURNAL

DE

PHYSIQUE

f i s s i o n and p a r t i c l e decay i s expected t o be c r u c i a l , s i n c e zp becomes much s m a l l e r than the t r a n s i e n t time f o r f i s s i o n (which i s a f r a c t i o n of zf). I n t h i s s i t u a t i o n , the temperature and t h e angular momentum dependence o f the f i s s i o n b a r r i e r p l a y s an i m p o r t a n t r61e i n t h e dynamical e v o l u t i o n and c o u l d be seen i n the p a r t i c l e

mu1 t i p 1 ic i t y associated t o f i s s i o n /2/.

i i i ) A t e x c i t a t i o n energies above 5-6 MeV per nucleon, a c r a c k i n g o r

mu1 t i fragmentation i s p r e d i c t e d d u r i n g t h e expansion o f t h e system, a t the freeze- o u t d e n s i t y and f o r a thermodynamical e q u i l i b r i u m /3/. I n dynamical estimates, a t an h i g h e r e x c i t a t i o n energy w i t h an associated temperature c l o s e t o t h e c r i t i c a l temperature, a v a p o r i z a t i o n i s very 1 i k e l y above a f l a s h temperature

/4/.

I n nucleus-nucleus c o l l i s i o n s w i t h a bombarding energy between 20 and 100 MeV/rr, an entrance channel l i m i t a t i o n t o t h e d e p o s i t i o n of energy c o u l d h i n d e r t o reach t h e t h i r d regime. Furthermore, d e t a i l e d balance c a l c u l a t i o n /1/ and h o t Hartree-Fock c a l c u l a t i o n /5/ i n d i c a t e t h a t r i s as s h o r t as 10-22s f o r a temperature o f T = 5 MeV ( i n the case o f the 288pb nucleus). Consequently, d u r i n g the damping o f t h e r e l a t i v e motion which converts t h e a v a i l a b l e k i n e t i c energy i n t o e x c i t a t i o n energy, one c o u l d imagine t h a t t h e c o o l i n g of t h e system s t a r t s b e f o r e t h e t o t a l energy deposition.

A p a r t i c u l a r decay channel i s t h e f i s s i o n a f t e r compound nucleus f o r n a t i o n or, i n absence o f f i s s i o n b a r r i e r f o r t h e composite system, t h e f a s t f i s s i o n process

/6/.

The c o l l e c t i v e dynamical paths o f b o t h channels are s u r e l y m o d i f i e d by t h e p a r t i c l e evaporation. S i m i l a r l y , t h e associated p a r t i c l e evaporation i s c e r t a i n l y determined by t h e c o l l e c t i v e path and t h e v a r i a t i o n of the c o l l e c t i v e p o t e n t i a l landscape and the angular momentum. I n t h i s work, these c o n t r i b u t i o n s t o t h e symmetric

fragmentation component o f t h e mass d i s t r i b u t i o n s have been considered i n t h e case where re < z p < ~ f , i.e. i n the second regime of d e e x c i t a t i o n . A g e n e r a l i z e d t r a n s p o r t equation i s described i n t h e s e c t i o n 11, completed by

a

few s t a t i c c o n s i d e r a t i o n s about the v a r i a t i o n o f t h e l i q u i d drop energies and o f the f i s s i o n b a r r i e r w i t h t h e temperature and/or t h e angular momentum. The p a r t i a l wave sharing between t h e f i s s i o n , f a s t f i s s i o n and evaporation residues cross s e c t i o n s i s i n d i c a t e d by r e f e r r i n g t o a f r i c t i o n model f o r d i n u c l e a r systems. I n t h e s e c t i o n 111, r e a l i s t i c c a l c u l a t i o n s concerning the s t a t i s t i c a l decay o f h o t heavy n u c l e i a r e r e p o r t e d f o r an example where a pure f d s t f i s s i o n . i s expected. These c a l c u l a t i o n s have been a l s o performed f o r nedium systems where t h e f i s s i o n a f t e r compound nucleus f o r m a t i o n can occur f o r the lowest p a r t i a l waves. The r e s u l t s a r e g i v e n i n t h e s e c t i o n I V , w i t h a comparison t o some a v a i l a b l e experimental data.

I 1

-

THEORETICAL OUTLINE

I n t h e r e c e n t years, t r a n s p o r t equations have been w i d e l y used t o describe t h e e v o l u t i o n towards e q u i l i b r a t i o n o f systems formed i n heavy i o n induced reactions. The p a t h towards e q u i l i b r a t i o n i s f o l l o w e d through d i s s i p a t i o n o f c o l l e c t i v e notiorl. An overview o f these approaches can be found i n

/7/.

Although the t r a n s p o r t

treatment has been mainly appl i e d t o the d e e p - i n e l a s t i c r e a c t i o n s , r e c e n t

i n v e s t i g a t i o n s have focused a l s o on r e a c t i o n s w i t h o u t f i s s i o n b a r r i e r ( f a s t - f i s s i o n mechanism) /6/ and even on t h e e v o l u t i o n o f compound n u c l e i towards f i s s i o n /2,8-11/ extending t h e pionneer work o f Kramers /12/. We w i l l p r e s e n t i n t h i s paragraph t h e i n t r o d u c t i o n o f t h e p a r t i c l e emission i n the d i f f e r e n t t r a n s p o r t equations governing on one hand the f a s t - f i s s i o n mechanism and on t h e o t h e r hand t h e e v o l u t i o n o f compound n u c l e i .

11.1- Dynamical c o m p e t i t i o n between p a r t i c l e emission and f i s s i o n decay a f t e r compounci nuc I eus t o r m a t i on

A g e n e r a l i z a t i o n o f t h e Fokker-Planck equation governing t h e p a t h t o f i s s i o n has been proposed i n

/2/

i n order t o take i n t o account the p a r t i c l e emission. The d i s t r i b u t i o n d (Q,p,t;{si}) f u l f i l l s t h e f o l l o w i n g equation :

(4)

w i t h Q t h e e l o n g a t i o n c o o r d i n a t e ; P, i t s conjugate momentum ; 8 and y t h e i n e r t i a and t h e v i s c o s i t y associated t o the dynamical motion along t h e Q c o o r d i n a t e ; U, t h e p o t e n t i a l , T t h e temperature ; Isi} the c o o r d i n a t e corresponding t o p a r t i c l e

emission ( i .e. ,n,p,a) and

ri

t h e decay w i d t h f o r p a r t i c l e o f t y p e i. The v a r i a b l e s B and y w i l l be described i n more d e t a i l s i n t h e paragraph (11.3). The decay w i d t h s a r e c a l c u l a t e d w i t h the h e l p o f the d e t a i l e d balance p r i n c i p l e /2/.

The g e n e r a l i z e d t r a n s p o r t equation Eq.1 i s solved n u m e r i c a l l y w i t h t h e h e l p of t h e technique o f propagation w i t h gaussian bundles /13,14/. The i n i t a l c o n d i t i o n f o r t h e d i s t r i b u t i o n f u n c t i o n d(Q,P,t=O ; { s i l l reads.:

P 2

d ( ~ , ~ , t = o ; [ s ~ j ) = ~(Q-Q,~,).

1

exp ( -

-1

6 ( { s i j )

J2xBTi 2BTi ( 2

where Q i s t h e e l o n g a t i o n c o o r d i n a t e a t ground-state deformation and T t h e

mi n is

i n i t i a l temperature o f t h e compound nucleus. The e x c i t a t i o n energies d e a l t w i t h i n t h e heavy-ion induced r e a c t i o n s we w i l l i n v e s t i g a t e a r e r a t h e r l a r g e and t h e r e f o r e a gaussian d i s t r i b u t i o n i n momentum corresponds t o a r a t i o n a l choice since t h e thermal f l u c t u a t i o n s a r e prominent. I n t h i s t h e o r e t i c a l approach, t h e o v e r a l l f i s s i o n p r o b a b i l i t y i s given f o r a given angular monentum by

-

:

Pf =

J;

Pf ( t )

.

P

( t ; s p ( t ) ) d t (3a) where

f

(t;s.) i s the p r o b a b i l i t y t o o f i n d an e x c i t e d nucleus w i t h a charge and a mass number

!z,A)

f o r mean numbers si o f e m i t t e d p a r t i c l e s . It i s equal t o t h e i n t e g r a l o f t h e d e n s i t y f u n c t i o n d; performed over P from

--

t o

+-

and over Q from

--

t o Q s ( l o c a t i o n of t h e saddle p o i n t ) . The o v e r a l l probabi1it.y PER o f evaporation residues i s then deduced from Pf :

The average p a r t i c l e m u l t i p l i c i t i e s deduced from these c a l c u l a t i o n s a r e o f t h r e e types :

i ) p a r t i c l e n ~ u l t i p l i c i t y associated t o t h e f i s s i o n fragments

where P i s t h e f i s s i o n p r o b a b i l i t y and T the t o t a l decay time.

f

The nu1 t i p 1 i c i ty associated t o f i s s i o n fragments b e f o r e s c i s s i o n i s given by : <V~,FS

=

PF (t,sp ( t ) ) [ s p

( t )

C ( t ) ] d t

I;

Pf ( t , s g c t t , d t ( 5 ) where tit) i s t h e p r o b a b i l i t y t o e m i t t h e considered p a r t i c l e b e f o r e reaching t h e

s c i s s i o n p o i n t . It i s equal t o 1 up t o t h e average t i m e spent t o go from t h e saddle t o t h e s c i s s i o n p o i n t ; i t i s equal t o zero otherwise.

(5)

C4-308 JOURNAL

DE

PHYSIQUE

f i s s i o n fragments as w e l l ) before reaching the saddle p o i n t :

The m u l t i p l i c i t y associated t o the evaporation residues i s also given by eq. 6 when f ( t ; s p ( t ) ) i s replaced by fER ( t ; s f ( t ) ) . This l a s t q u a n t i t y i s the p r o b a b i l i t y t o f i n d an e x c i t e d nucleus w i t h a charge

(Z)

and a mass number (A) not decaying subsequently by f i s s i o n .

iii The " s t a t i s t i c a l model" mu1 t i p 1 i c i t y associated t o f i s s i o n fragments :

where pframers i s the "Kramers" f i s s i o n p r o b a b i l i t y . It i s s t a t i s t i c a l , i n the sense t h a t plframers i s n o t depending on time e x p l i c i t e l y but i t i s s l i g h t l y d i f f e r e n t from the common usage i n s t a t i s t i c a l decay codes because the f i s s i o n b a r r i e r i s

temperature dependent.

The s t a t i s t i c a l model m u l t i p l i c i t y o f p a r t i c l e s emitted before scission i s obtained following the procedure presented f o r the case i ) , i .e. weighting s t ( t ) by ~ ( t )

in

the Eq. 7.

11.2

-

Fast f i s s i o n and p a r t i c l e emission

The t r a n s p o r t equations dealing w i t h f a s t - f i s s i o n incorporate d i s s i p a t i o n along the c o l l e c t i v e coordinates (R,e,x,y, {si

1).

The v a r i a b l e R i s the r a d i a l distance,between the two partners. The angle defined by the axe going through t h e i r centers o f mass and the beam axis i s Q. The coordinates x and y are the mean asymmetry o f the system i.e. x = (A2-Al)/(A2+Al) and the neutron excess y = N1-Zi. The atomic mass number and neutron number are denoted by A, N and Z respectively ; the subscripts 1 and 2 are the corresponding indexes f o r the l i g h t and the heavy fragments. The ensemble of the emitted p a r t i c l e s ( i = n,p,a) i s { s - } . To the equations o f motion describing the e v o l u t i o n o f the system i n the (~,e,x,yj space /6/, we add a depletion term due t o p a r t i c l e emission defined as :

where

AE*

i s the thermal e x c i t a t i o n energy gained from d i s s i p a t i o n i n the other c o l l e c t i v e degrees o f freedom. The s e t o f the coupled d i f f e r e n t i a l equations i n c l u d i n g Eq. 7 i s solved w i t h the help of a corrector-predictor method. 11.3

-

P o t e n t i a l landscape

The p o t e n t i a l landscape as functions o f the various c o l l e c t i v e variables governing the dynamical behaviour o f the r e a c t i o n i s determined as a time-dependent l i n e a r combination o f a sudden and a l i q u i d drop p o t e n t i a l /6/ w i t h a c e n t r i f u g a l

(6)

a temperature dependence d e f i n e d from the t h e o r e t i c a l i n v e s t i g a t i o n o f /15,16/. The p a r a m e t r i z a t i o n o f /17/ w i t h an e f f e c t i v e i n t e r a c t i o n of t h e Bruckner type provides a r a t h e r good a n a l y t i c a l formula f o r t h e symmetrical f i s s i o n b a r r i e r .

For v a r i o u s couples o f temperature and angular momentum, t h e symmetrical f i s s i o n b a r r i e r vanishes as d i s p l a y e d i n Fig. 1 f o r t h e le51r. I n t h i s figure, t h e p o t e n t i a l was c a l c u l a t e d f o r t h e p a r a m e t r i z a t i o n of

/la/

and t h e temperature v a r i a t i o n o f t h e l i q u i d drop expressions from

/15/.

The c e n t r i f u g a l term i s o b t a i n e d w i t h moment o f i n e r t i a f o r d i f f u s e surfaces ( f u l l l i n e ) o r f o r r i g i d body ( d o t t e d l i n e ) . I n t h e f i r s t case, t h e d i f f u s e n e s s f o l l o w s the same temperature e v o l u t i o n as f o r t h e Coulomb p o t e n t i a l .

ANGULAR MOMENTUM 1 l

F i g u r e 1 : E v o l u t i o n o f t h e temperature corresponding t o t h e vanishing o f t h e f i s s i o n b a r r i e r ' * s i r as a f u n c t i o n o f angular morg1entum. The dashed c u r v e i s obtained w i t h a c e n t r i f u g a l c o n t r i b u t i o n c o n s i d e r i n g a r i g i d body moment o f i n e r t i a . The s o l i d curve concerned c a l c u l a t i o n s i n c l u d i n g a c o r r e c t i o n t o t h e r i g i d moment of i n e r t i a due t o a temperature dependent surface diffuseness.

The l i m i t temperature a t which t h e symmetrical f i s s i o n , b a r r i e r vanishes i s a key parameter t o p r e c i s e t h e dynamics o f t h e reaction. I n the case o f 40Ar

+

238U /19/, t h e f i s s i o n b a r r i e r i s almost completely n o n e x i s t e n t and f a s t - f i s s i o n i s c a l l e d for. I n t h e case of systems l e a d i n g t o 1 8 5 I r /20/ a t an e x c i t a t i o n energy o f 164 MeV corresponding t o a temperature o f 2.75 MeV ( i f a l l t h e a v a i l a b l e energy were d i s s i p a t e d i n thermal energy), over 1 = 55-63 (see f i g . 11, t h e r e i s no f i s s i o n b a r r i e r . We face then a m i x t u r e o f e q u i l i b r a t e d f i s s i o n ( f i s s i o n a f t e r compound nucleus formation) and f a s t - f i s s i o n . I n such a s i t u a t i o n where the. b a r r i e r i s temperature dependent and c o o l i n g o f t h e system by p a r t i c l e evaporation, i s present, a compound nucleus f o r m a t i o n can r e s u l t f o r a r e a c t i o n s t a r t i n g w i t h an i n i t i a l f a s t - f i s s i o n e v o l u t i o n . This i n t e r p l a y between these two components i s o f prime i n t e r e s t i n order t o analyse t h e experimental data f o r a wide range o f heavy i o n induced r e a c t i o n s , and deduce t h e c o n d i t i o n s o f c o l l e c t i v e d i s s l p a t i o n .

111- STATISTICAL DEEXCITATION OF HOT HEAVY SYSTEMS

We s h a l l consider i n t h i s s e c t i o n t h e d e e x c i t a t i o n o f systems mainly d u r i n g t h e entrance channel of

a

heavy-ion c o l l is i o n . A way t o analyse t h i s d e e x c i t a t i o n process as a f u n c t i o n o f t h e entrance channel i s t o s e l e c t a r e a c t i o n mechanism where t h e compound nucleus f o r m a t i o n i s very u n l i k e l y . The f a s t f i s s i o n phenomenon provides a fragment d i s t r i b u t i o n c l o s e t o the f i s s i o n fragment d i s t r i b u t i o n observed a f t e r cogpound nucleus formation. I n fact, t h e angular momentum 1 and t h e e x c i t a t i o n energy E cancel b o t h the f i s s i o n b a r r i e r , i f any. F o r very heavy systems / 6 / , a small amount o f (1,E

1

i s s u f f i c i e n t i n order t o make t h e f i s s i o n b a r r i e r

(7)

C4-310

JOURNAL DE PHYSIQUE

v a n i s h i n g l y small ; consequently, pure' f a s t f i s s i o n j s expected f o r these systems. Since t h e l i g h t p a r t i c l e evaporation reduces 1 and E

,

i t i s o f p a r t i c u l a r relevance t o study i t d u r i n g t h e dynanical path.

I n t h e i n t e r m e d i a t e energy domain, t h e momentum t r a n s f e r d i s t r i b u t i o n i n c e n t r a l c o l l i s i o n s ranges from very incomplete t r a n s f e r t o the complete t r a n s f e r , w i t h a smaller p r o b a b i l i t y i n t h i s l a t e r case /21,22/. We s h a l l r e p o r t on numerical c a l c u l a t i o n s performed according t o the t h e o r e t i c a l treatment described i n the s e c t i o n 11. F i r s t , a complete l i n e a r momentum t r a n s f e r i s simulated by a f r i c t i o n model f o r t h e 40Ar (27 MeV/u)

+

2 3 8 U system. Secondly, t h e (27 MeV/u)

+

2 3 8 U system i s considered i n o r d e r t o mock up an incomplete momentum t r a n s f e r

corresponding t o t h e experimental mean value f o r the momentum t r a n s f e r d i s t r i b u t i o n i n t h e '+oAr (27 MeV/u) + 238U r e a c t i o n . A r a t h e r c e n t r a l c o l l i s i o n i s chosen i n b o t h cases w i t h a p a r t i a l wave 1 = 5. The f r i c t i o n model w i t h associated f r i c t i o n and i n e r t i a l c o e f f i c i e n t s t o t h e c o l l e c t i v e coordinates can be found i n /6/.

111.1

-

Complete l i n e a r momentum t r a n s f e r

I n t h e case o f the 40Ar (27 MeV/u) + 238U (1=5) system, a t y p i c a l f a s t f i s s i o n t r a j e c t o r y i s found, because no f i s s i o n b a r r i e r can c o n t a i n t h e system i n a compact c o n f i g u r a t i o n . The mass asymmetry r e l a x e s p a r t l y before the reseparation, which occurs a f t e r a r e a c t i o n time o f 6 10-21s. During the f i r s t stage o f t h e c o l l i s i o n , t h e f r i c t i o n f o r c e s c o n v e r t t h e main p a r t o f t h e a v a i l a b l e k i n e t i c energy i n t o e x c i t a t i o n energy, as i t can be seen i n the f i g u r e 2. The temperature reaches

-

21 TIME / 10 s

I

F i g u r e 2 : Time v a r i a t i o n o f e x c i t a t i o n energy, temperature T, and p a r t i c l e mu1 t i p 1 i c i ti e s f o r t h e f a s t - f i s s i o n o f '+OAr (27MeV/u)

+

2 3 % a t 1 = 5.

4.6 MeV. From the p r e v i o u s considerations, l i g h t p a r t i c l e emission i s expected t o occur very quickly. This p a r t i c l e emission i s c a l c u l a t e d w i t h i t s c o u p l i n g t o t h e dynamical e v o l u t i o n o f t h e c o l l e c t i v e variables, according t o equation 8. It produces a s u b s t a n t i a l c o o l i n g o f t h e system, d u r i n g i t s s t a y i n t h e entrance channel p o t e n t i a l pocket and b e f o r e t h e decay i n s i d e t h e f i s s i o n v a l l e y . T h i s epoch i s l o n g enough f o r a decrease by 350 MeV o f e x c i t a t i o n energy. A t t h e r e s e p a r a t i o n

(8)

t h e mean numbers o f neutron, p r o t o n and alpha e m i t t e d p a r t i c l e s a r e 25.6, 5.32, 1.43, r e s p e c t i v e l y . I n experimental a n a l y s i s these e m i t t e d p a r t i c l e s a r e associated t o t h e f i s s i o n - 1 i k e products a r i s i n g from t h e f a s t f i s s i o n process.

111.2

-

Incomplete l i n e a r momentum t r a n s f e r

The dynamical e v o l u t i o n o f t h e 28Si (27 MeV/u)

+

238U system a t 1 = 5 i n t h e r a d i a l distance-mass asymmetry two dimensional d i s p l a y i s given i n f i g u r e 3. The mean numbers o f neutron, p r o t o n and alpha e m i t t e d p a r t i c l e s along t h e c o l l e c t i v e dynamical p a t h a r e given f o r each 10-21s. One can observe t h e r e l a x a t i o n i n mass a s y m e t r y up t o x = .15. The system l i e s i n a compact c o n f i g u r a t i o n f o r almost 10-2Os w i t h a r a d i a l d i s t a n c e between t h e emerging fragments between 10 fm and 12 fm. The absence of f i s s i o n b a r r i e r f o r the t o t a l system a l l o w s t h e r e s e p a r a t i o n and t h e s o - c a l l e d f a s t f i s s i o n . The l a r g e amount o f e m i t t e d p a r t i c l e s b e f o r e s c i s s i o n i s due t o the l a r g e time scale, as compared t o the mean emission time a t t h e i n v o l v e d e x c i t a t i o n energy ( t h e naximurn value i s 504 MeV i n t h i s example). From t h i s c a l c u l a t i o n , one expects consequently an entrance channel e f f e c t on the p a r t i c l e m u l t i p l i c i t y , because t h e f a s t f i s s i o n r e a c t i o n time depends s u b s t a n t i a l l y on t h e considered i n i t i a l system. I

I

F i g u r e 3 : F a s t - f i s s i o n t r a j e c t o r y i n a r a d i a l d i stance-mass asymmetry map f o r t h e Z8Si

(27MeV/u)

+

238U system a t 1 = 5. A t each 10-21s, t h e mean numbers o f evaporated neutron, p r o t o n and alpha p a r t i c l e s a r e i n d i c a t e d , up t o t h e reseparation. O l l l l l l l l l t l l t l l l 10 15 20

RADIAL DIS TANCE l f m )

111.3

-

Temperature dependence o f t h e f i s s i o n b a r r i e r i n pure f a s t f i s s i o n cases I n t h e two previous c a l c u l a t i o n s , no temperature dependence o f t h e f i s s i o n b a r r i e r was taken i n t o account. Since i t c o u l d modify t h e associated p a r t i c l e mu1 t i p 1 ic i t y , i t i s worthwhile t o compare c a l c u l a t i o n s w i t h and w i t h o u t i n t r o d u c t i o n o f t h e temperature dependence o f t h e b a r r i e r /15/. The comparison i s done i n t h e t a b l e 1

f o r various p a r t i a l waves. I n both cases, t h e c a l c u l a t e d values f o r charged p a r t i c l e s a r e c l o s e t o t h e data /19,21/.

(9)

C4-312 JOURNAL

DE

PHYSIQUE

The p a r t i c l e m u l t i p l i c i t i e s decrease when t h e temperature c o r r e c t i o n f o r the f i s s i o n p o t e n t i a l landscape i s done. As a m a t t e r o f f a c t , t h i s c o r r e c t i o n f l a t t e n s t h e p o t e n t i a l and washes o u t t h e shoulder along t h e r a d i a l d i s t a n c e c o o r d i n a t e found a t zero temperature. The r e s e p a r a t i o n i s consequently f a s t e r i n those cases and t h e evaporation b e f o r e s c i s s i o n i s c u t short. I f t h e temperature dependence o f t h e p o t e n t i a l c o u l d modify t h e d u r a t i o n o f t h e c o l l i s i o n s w i t h v a r i a t i o n up t o 20% o f the p a r t i c l e m u l t i p l i c i t y , i t c o u l d a l s o i n f l u e n c e t h e p r e c i s e l o c a t i o n o f t h e f r o n t i e r between t h e f a s t f i s s i o n and the compound nucleus formation. It i s one o f t h e t o p i c s o f t h e n e x t section.

1 l o s s l o s s

(6

u n i t s ) E2 < W 2 <P>l <P>2 (MeV) (MeV)

TABLE 1 I n f l u e n c e o f t h e temperature c o r r e c t i o n o f t h e f i s s i o n v a l l e y on t h e p a r t i c l e m u l t i p l i c i t i e s , f o r a pure f a s t f i s s i o n process i n the 28Si (756 !lev)

+

238U system. 1. Without temperature dependence.

-

2. With temperature dependence.

I V

-

DYNAMICAL DECAY OF EXCITED NUCLEI FORMED DIRECTLY THROUGH COMPOUND NUCLEUS OR Recently, Zank e t a l . /20/ measured neutron evaporation c o r r e l a t e d e i t h e r t o evaporation residues (ER) o r f i s s i o n fragmgnts (FF). They s t u d i e d t h e t h r e e

f o l l o w i n g r e a c t i o n s : 40Ar

+

141Pr

+

1 8 1 I r

,

2ONe

+

1 6 5 ~ o

+

ls5Ir and 1%

+

1 ' 5 ~ ~ + lfj71r w i t h a p p r o p r i a t e bombarding energies t o reach t h e same e x c i t a t i o n energy E = 164 MeV. Apart from neutron emission m u l t i p l i c i t i e s , they determined ER and FF cross-sections ; from them they deduced t h e f u s i o n cross-sections (and t h e

associated lCr c r i t i c a l angular momenta f o r f u s i o n ) f o r t h e t h r e e considered systems. Even, i f t h e cross-sections f o r ER and FF p r o d u c t i o n a r e w e l l reproduced w i t h t h e h e l p o f t h e s t a t i s t i c a l model, t h e mu1 t i p 1 i c i ti e s o f neutron emission b e f o r e f i s s i o n a r e incompatible w i t h such an approach. T h i s p h y s i c a l s i t u a t i o n seems q u i t e a p p r o p r i a t e t o be d e a l t w i t h i n our dynamical decay analysis.

I n o r d e r t o examine the c o n t r i b u t i o n s t o t h e symmetric fragmentation component ( f a s t f i s s i o n

+

f i s s i o n a f t e r compound nucleus f o r m a t i on) and the evaporation residue cross sections, a few l i m i t i n g angular momentum values have t o be defined, w i t h t h e example o f 4oAr

+

141pr. Below 1 (- 114), t h e c r i t i c a l angular momentum, f u s i o n i s expected. Between lBf = (T = 0 hg~)-80, t h e maximum value above which t h e f i s s i o n b a r r i e r vanishes a t zero temperature and lcr

,

f a s t f i s s i o n might occur. Between lBt=O(T=Tm

)-55

and lgf=p!T= OMeV), dynamics w i l l decide between a compound nucleus f o r m a t i o n ? ~ N F ) and f a s ~ s s i o n . Between 0 and lBf, (T=T, CNF i s expected. The low p a r t i a l wave range w i l l be considered f i r s t l y an8 t h e f a s t f i s s i o n component secondly.

IV.1

-

Aspects due t o compound nucleus d e e x c i t a t i o n

The compound nucleus f o r m a t i o n i s o n l y p o s s i b l e i f t h e i n i t i a l composite nucleus ( p r o j e c t i l e

+

t a r g e t ) i s h o l d t o g e t h e r by a f i s s i o n b a r r i e r . As presented i n

(10)

section 11, such a system a t an i n i t i a l a v a i l a b l e e x c i t a t i o n energy o f 164 MeV (T = 2.75 MeV, following the relationship, E = aT2 w i t h a

,

the l e v e l density parameter taken from /23/), has a f i s s i o n b a r r i e r vanishing f o r 1 between 50 and 60. Although the three composite systems are s l i g h t l y d i f f e r e n t (1811r, 1 8 5 I r , 187Ir),

1 8 5 I r has been considered i n our c a l c u l a t i o n s as representative o f the three cases. The c a l c u l a t i o n s o f the dynamical p a r t i c l e decay o f the compound nucleus on i t s way t o f i s s i o n y i e l d the f i s s i o n p r o b a b i l i t y displayed i n Fig.4. For value o f 1 l a r g e r than 60 up t o the various measured the f i s s i o n p r o b a b i l i t y i s s e t equal t o 1 even if f i s s i o n does n o t occur there a e r complete e q u i l i b r a t i o n o f a1 1 degrees o f freedom. The calculated cross-sections (ER and FF) deduced from t h i s f i s s i o n p r o b a b i l i t y are i n good agreement w i t h the experimental data (see Table 2).

System

1-

El ab oEJmb) - -

(MeV) exp calc. exp. c a l c

.

Table 2 : Theoretical and experimental cross-sections f o r production o f evaporation residues (ER) and f i s s i o n fragments (FF). Experimental data are taken from /20/. These calculated r e s u l t s r e f e r only t o t r u e compound nucleus decay.

I f only dynamical compound nucleus c a l c u l a t i o n s are considered, the average neutron m u l t i p l i c i t y associated t o ERs reaches 10.5 neutrons f o r a l l three systems (see t a b l e 3). This value i s closed t o the experimental data. The calculated mean neutron m u l t i p l i c i t y f o r p r e f i s s i o n emission o f 2.8 neutrons stands s l i g h t l y below the measured r e s u l t s (See t a b l e 3). Nevertheless, such a calculated mu1 t i p l i c i ty i s

l a r g e r than the s i m i l a r quantity computed i n the standard s t a t i s t i c a l model /20/ a t l e a s t f o r both systems 4OAr

+

141Pr (<n> = 1.1) and Z0Ne + l G 5 HO (svn> = 1.9).

Sy

s

tem <VkR,

ref

i ssion cviF>

exp. calc. exp. calc. calc.

compound Nucleus w i t h FF c o n t r i b u t i o n

Table 3 : Experimental /20/ and c a l c u l a t e d neutron mu1 t i p l i c i ti e s associated w i t h evaporation residues and f i s s i o n before scission.

E x i s t i n g discrepancies could be

1

inked e i t h e r t o c o n t r i b u t i o n s a r i s i n g from neutron emission taken place a t angular momenta f o r which no f i s s i o n b a r r i e r e x i s t s o r because

a

proper consideration o f incomplete fusion i s c a l l e d f o r (notably i n the case o f 1%

+

175Lu). The l a t t e r cause o f d i f f e r e n c e i s y e t n o t investigated i n t h i s study. The former cause w i l l be d e a l t w i t h i n the next paragraph.

(11)

JOURNAL

DE

PHYSIQUE

F i g u r e 4 : O v e r a l l f i s s i o n

p r o b a b i l i t y i n t h e decay o f l 8 s I r as a f u n c t i o n of angular momentum. The i n i t i a l temperature i s 2.75 MeV. This p r o b a b i l i t y r e s u l t s from c a l c u l a t i o n s i n the c o n t e x t of compound nucleus d e e x c i t a t i o n .

ANGULAR MOMENTUM (.hl

IV.2

-

Aspects due t o f a s t - f i s s i o n

A t l e a s t f o r t h e 40Ar

+

lklPr case, i n the 1 r e g i o n between l g O(T=O) and 1 t h e system evolves i n i t s p o t e n t i a l landscape on f a s t - f i s s i o n f T a j e c t o r i e s . % i s e v o l u t i o n i s s i m i l a r t o t h e case 40Ar + *38U already presented i n s e c t i o n 111. S t a r t i n g from the c r i t i c a l c o n t a c t between t h e p r o j e c t i l e and t h e t a r g e t , t h e system w i l l g e t e x c i t e d and t h e r e f o r e e n i t l i g h t p a r t i c l e s . Depending on e x c i t a t i o n energy and angular momentum, two regimes stand up. On one hand, f o r t h e h i g h e s t p a r t i a l waves (85<1t114), t h e system w i l l e m i t a c e r t a i n amount o f p a r t i c l e s ( f o r 1 = 100, vn = 2.8) b e f o r e s e p a r a t i n g i n a pure f a s t - f i s s i o n mode. On t h e o t h e r hand, f o r t h e lower 1 range (lBI=p!T=2.75) ~ 1 ~ 8 5 1 , t h e system w i l l spend more time along t h e corresponding f a s i s s i o n t r a j e c t o r y and e m i t more p a r t i c l e s ( f o r 1 = 70

,

vn = 4.3). I n t h i s s i t u a t i o n , t h e p a r t i c l e emission c o o l s down t h e system w i t h regard t o e x c i t a t i o n energy and spin, t o such an e x t e n t t h a t a f i s s i o n b a r r i e r b u i l d s up. Consequently, the system reaches t h e compound nucleus formation, b u t w i t h a small e x c i t a t i o n energy i n h i b i t i n g t h e p a r t i c l e emission from t h e saddle t o t h e s c i s s i o n p o i n t . The subsequent compound nucleus decay i s then f o l l o w e d w i t h t h e a p p r o p r i a t e dynanical treatment f o r evaporation r e s i d u e p r o d u c t i o n (see s e c t i o n IV-A)

.

The c r o s s - s e c t i o n U E R reaches 406 mb, i.e. a t w o - f o l d enhancement compared t o t r u e compound nucleus decay. T h i s enhancement d e s t r o y s t h e agreement w i t h experimental data b u t c l e a r l y c a l c u l a t i o n s c o n s i d e r i n g 1811r and n o t o n l y 1 8 5 I r have t o be performed and w i l l be pursued. For example, f o r 1811r a t T = 2.75 MeV and 1 = 50, Pf= 0.14 compared t o Pf = 0.09 f o r l s 5 1 r . Adding t h e neutron emission due t o t h e f a s t - f i s s i o n e v o l u t i o n t o t h e compound nucleus c o n t r i b u t i o n ( a f t e r proper w e i g h t i n g w i t h t h e 1 d i s t r i b u t i o n ) the neutron m u l t i p l i c i t i y associated w i t h f i s s i o n b e f o r e s c i s s i o n a t t a i n s 3.3 compared t o 3.6 ? 0.6 e x p e r i m e n t a l l y (see Table 3) /20/.

A t present, t h e asymmetric systems 2oNe

+

165H0 and 12C

+

LU ( f o r 1>1 a t T = 2.75 MeV) have an e v o l u t i o n w i t h i n the f a s t - f i s s i o n approach difficul!fT! analyse. Immediately ( o r almost) i n t h e i r t i m e dependent behaviour, they reach an asymnetry beyond t h e Businaro-Gallone p o i n t and end up i n f u s i o n b u t s t i l l w i t h o u t f i s s i o n b a r r i e r . Our model does n o t t a k e i n t o account, a t present, t h e dynamical t r a n s i t i o n from l a r g e asymmetry c o n f i g u r a t i o n s t o t h e symmetric c o n f i g u r a t i o n ( i n

(12)

V

-

CONCLUDING REMARKS

The t h e o r e t i c a l dynamical approach w i t h t h e treatment o f p a r t i c l e evaporation provides a s a t i s f a c t o r y e x p l a n a t i o n o f p a r t i c l e emission associated t o f i s s i o n fragments. As soon as e x c i t a t i o n energy i s t r a n s m i t t e d t o the composite system, p a r t o f t h i s energy i s taken away by p a r t i c l e evaporation. On t h e whole h i s t o r y o f t h e composite system, the time average e x c i t a t i o n energy i s l e s s than t h e t o t a l a v a i l a b l e energy. This leads t o qua1 i f y these n u c l e i more warn than r e a l l y hot. We acknowledge f r u i t f u l discussions w i t h many o f our colleagues, e s p e c i a l l y M. Brack, J. Galin, D. Guerreau, C. Guet, D. Jacquet and G. Peaslee. Ne thank very much M. Marie f o r the c a r e f u l t y p i n g o f t h i s manuscript.

REFERENCES

/1/ Delagrange, H. Ann. Phys. Fr. 3 (1982) 193

/2/ Delagrange, H., Gregoire, C., Scheuter, F., Abe, Y., 2. Phys. A (19861, i n press.

/3/ Bondorf, J.P., Donangelo, R., Wishustin, I.N., Pethick, C.J., Schulz, H. Sneppen, K., Nucl. Phys. A443 (1985) 321.

/4/ Vinet, L., S 6 b i l l e , F., Gr6goire, C., Remaud, B., Schuck, P., P r e p r i n t GANIL P.86-01, Phys. L e t t . B (1986) i n press.

/5/ Bonche, P., L e v i t , S., Vautherin, D., Nucl. Phys. A427 (1984) 278. /6/ Grggoire, C., Ng6, C., Rgnaud, B., Nucl. Phys. A383 (1982) 392. /7/ Bass, R., Nuclear Reactions w i t h Heavy Ions, Springer-Verlag (19801. /8/ Grang6, P., Nucl. Phys. A428 (1984) 37c.

/9/ Grang6, P., L i , Jung-Quing,

,

Weidenmueller, H.A., Phys. Rev. C27 (1983) 2063.

/lo/

Lanza, E.G., Weidennueller, H.A., Z. Phys. A323 (1986) 157.

/11/ Scheuter, F., Yofmann, H., Nucl. Phys. A394 (1983) 477. /12/ Kramers, H.A., Physica VII-4 (1940) 284.

/13/ Gr&goire, C., Scheuter, F., Z. Phys. A303 (1981) 337.

/14/ Scheuter, F., Gregoire, C., Hofmann, H., Nix, J.R., Phys. L e t t . 1498 (1984) 303.

/15/ B a r t e l , J., Quentin,

P.,

Phys. L e t t . 1528 (1985) 29.

/16/ Brack, M., Guet, C., Hakansson, H.B., Phys. Rep. C123 (1985) 275. /17/ Campi, X., S t r i n g a r i , S., Z. Phys. A309 (1983) 239.

/18/ Ledergerber, T., P a u l i , H.C., Nucl. Phys. A207 (1973) 1.

/19/ Jacquet, D., Galin, J., Borderie, B., GardGs, D., Guerreau, D., Lefort, M., Monnet, F., Rivet, M.F., Tarrago, X., Duek, E., Alexander, J.M., Phys. Rev. C32 (1985) 1594.

/20/ Zank, W.?., H i l s c h e r , D., Ingold, G., Jahnke, U., Lehmann, M., Rossner, H.,

Phys. Rev. C33 (1986) 519.

/21/ Ng6, C., Leray, S., Prog. Part. Nucl. 16 (1985).

/22/ Jacquet, D., Duek, E., Alexander, J.M., Borderie,

B.,

Galin, J., Gardes, D., Guerreau, D., L e f o r t , M., Monnet, F., R i v e t , M.F., Tarrago, X., Phys. Rev. L e t t . 53

(1984) 2226.

Figure

TABLE  1 I n f l u e n c e   o f   t h e   temperature  c o r r e c t i o n   o f   t h e   f i s s i o n   v a l l e y   on  t h e   p a r t i c l e  m u l t i p l i c i t i e s ,   f o r   a  pure  f a s t   f i s s i o n   process  i n  the  28Si  (756
Table  3  : Experimental  /20/  and  c a l c u l a t e d  neutron  mu1 t i p l  i c i  ti e s   associated  w i t h   evaporation  residues  and  f i s s i o n   before  scission

Références

Documents relatifs

Nuclear reaction databases contain evaluated cross sections, spectra, angular dis- tributions, fission product yields, thermal neutron scattering, photo-atomic data, etc.. Like

Influence de la diff´ erence entre les distributions de protons et de neutrons dans le noyau sur les processus de fusion et de fission Influence of differences in the proton and

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Dans le domaine des neutrons de résonance, la section efficace totale de capture de neutrons par les actinides présente un grand nombre de résonan- c e s

seuil de fission est inférieur à l’énergie de liaison des neutrons dans de nombreux noyaux lourds, et que les noyaux résiduels d’énergie d’excitation. supérieure

donc plus élevée de 800 keV pour les niveaux de parité négative que pour ceux de parité positive. Examinons un dernier aspect de la fission induite dans 235U, la

Il montre en plus que vraisemblablement la décroissance de la probabilité d’émission pour la fission très asymé- trique (R ~ 1,8) est peut-être due à la déformation

The present work is concerned with ternary fission of natural uranium bombarded with 23 GeV protons incident on uranium layers sandwiched between mica sheets as