• Aucun résultat trouvé

flip, f Best uniform approximation by analytic functions

N/A
N/A
Protected

Academic year: 2022

Partager "flip, f Best uniform approximation by analytic functions"

Copied!
11
0
0

Texte intégral

(1)

Best uniform approximation by analytic functions

LENNAI~T CAP~LESON and SIGVARD ~ACOBS

Introduction

L e t F C LP( - st, ~), 1 < p ___ oo, and consider the extremal problem inf

lip + flip, f

in Hp. For notations and basic results on H~-spaces, see [6]. This problem was extensively treated b y i%ogosinski and H. S. Shapiro in [10] and also b y Kavinson in a series of papers. Havinson studied the corresponding problem in general domains. We refer to the survey [13] b y Toumarkine and I-Lvinson, which also contains a quite complete bibliography.

The case p = oo is of a special interest. I t can also be formulated as a problem on so called I-[ankel matrices and is in this w a y of importance in probability. We wish to mention in particular the papers b y Nehari [9], I-Iartman [4], I-Ielson and Szeg5 [5] and Adamyan, Arov a n d Krein [1]. We shall here consider continuous

~' and look for results on the best approximation f, whereas in the above mentioned papers (except [5]) the results are expressed in terms of t h e matrix. I t is easy to see t h a t in this case a unique best approximation f exists in H ~. One might ask to what extent do F a n d f have the same regularity. The investigation of these problems is the main object of the present paper. We shall see t h a t the answer is about the same as for conjugate functions. We shall also restrict ourselves to the case of the u n i t disc U. I{owever, the function-theoretic proofs in sections 2, 3 and 4 are all of a local character, and so all the results can easily be carried over to a n y region which has in each case a sufficiently regular boundary.

I n section 1 we have stated the dual problem and collected some well-known material. Theorem 1 is originally due to Bonsall [3] and Shapiro [11]. Section 2 is devoted to the s t u d y of the extremal functions of the dual problem in H 1. I n the case F E L ~, de Leeuw and i%udin [8] have examined the question of uniqueness for the corresponding extremal function in H I. We give a complete solution of this problem, provided F is in C. I n section 3 we t r e a t our main problem and in section 4 we give an example which shows t h a t the conditions in Theorem 3 a can not be weakened as long as the regularity of _~ is expressed only in terms of

(2)

220 L E i N ~ q A ~ T C A R L E S O ~ N " A I ~ D S I G V A R D J A C O ] ~ S

its m o d u l u s o f c o n t i n u i t y . I n p a r t i c u l a r we c o n s t r u c t a n F E C whose best a p p r o x i m a t i o n f is n o t in A ---- H + N C. This was f i r s t done b y A d a m y a n , A r o v a n d K r e i n [1], R e m a r k 3.2 p. 13.

1. The dual problem

W e s t a r t w i t h t h e following simple b u t useful c o r o l l a r y o f t h e ~ a h n - B a n a c h t h e o r e m , a t e c h n i q u e w h i c h has n o w b e c o m e s t a n d a r d .

L ~ A 1. Let B be a Banach space, M a linear subspace and denote by M ~ the annihilator subspace of B* corresponding to M. Then for any L E B* we have

i n f l l L - - 1 ] l = sup IL(x) I,

1 E M ~ x E M , I]x]] <_ 1

and there is always an l E M ~ for which the i n f is attained.

F o r a p r o o f see e.g. [12], t h e o r e m 4.3-F, p. 188. I f we a p p l y this l e m m a to B ---- L 1, M z H 1 (the subspace o f H 1 o f f u n c t i o n s v a n i s h i n g a t t h e origin), we g e t

m = i n f lip + fl]~ = sup F(e~~176 ,

fEHOO hEHo~llh]h < 1 - - ~

since in this case /~* ---- L +, M ~ ---- H *. T h u s , t h e r e is always a n f E H + for w h i c h [[~P + f l [ , ~ m. Since we a v o i d t h e t r i v i a l case m -~ 0, we m a y suppose m ~- 1 a n d t h e sup can o f course be t a k e n o f t h e real p a r t of t h e i n t e g r a l as well.

T h e n e x t q u e s t i o n is w h e t h e r a m a x i m i z i n g h E H01 exists. W i t h t h e aid o f F e i d r ' s t h e o r e m a n d t h e t h e o r y o f n o r m a l families, it is e a s y t o p r o v e t h e following, cf [3]

T h e o r e m 4 or [8] T h e o r e m 10 a.

TgEORE~ 1. I f f ' E C ~- H ~176 in particular if 2' E C, then at least one h in the unit ball of H~ exists maximizing

R e ~

1/

F(e'+)h(e~+)dO.

COROLLARY. Under the above conditions on F the minimizing

f

E H ~ is unique.

This follows f r o m T h e o r e m 14 in [10] a n d also s i m p l y f r o m t h e following fact. F o r a n y p a i r o f e x t r e m a l s f a n d h, we h a v e

(3)

B E S T U N I F O R M APPROXIi~CIATION B Y A N A L Y T I C F U N C T I O N S 2 2 I 1 = R e ~

1/

(F(e i~ -]-f(e~~176 < 1, a n d so

- - x r

(F(e ~~ + f(d~ ~ -~ Ih(d~ a.e. (*)

F r o m this v a r i a t i o n a l e q u a t i o n a n d t h e f a c t t h a t av E C, we shall o b t a i n all o u r i n f o r m a t i o n .

2. Properties of the extremals in the dual problem

E v e r y t h i n g in this section will d e p e n d on t h e f a c t t h a t i f F E C a n d if /~(e i~) = 0, t h e n b y (*), f h has its v a l u e s in a small sector for 0 close t o T a n d we c a n m a k e use o f t h e following t h e o r e m .

LwMMA 2. I f v is real valued and harmonic in the simply connected domain D and Iv(z)[ < #, z C D, then the analytic function g =-e u+~€ is in HP(D) for

p < ~/2#.

A p r o o f w h i c h easily carries o v e r to a n y s i m p l y c o n n e c t e d d o m a i n D m a y be f o u n d in [7], T h e o r e m 1.9, p. 70.

B e f o r e a n n o u n c i n g t h e t h e o r e m s we w a n t t o m a k e a d e f i n i t i o n .

Definition. L e t f be a n a l y t i c in a region D h a v i n g a s m o o t h b o u n d a r y 0D, D n o t necessarily s i m p l y c o n n e c t e d a n d a s s u m e e.g. f E HI(D). W e s a y t h a t f is o u t e r in D i f for z E D

1 s

OG(z, ~)

log If(z)l - - 2:~ J an

O o

G being t h e G r e e n ' s f u n c t i o n of D.

- - log ]f($)lds,

TI~nOREM 2. I f aV C C, then we have for the corresponding h E H~

a. h E H ~ for every p < oo.

b. h is outer in some annulus t l o~- {z]r o < lzI < 1}.

_Remark. :For l a t e r use we o b s e r v e t h a t t h e a s s u m p t i o n on h can be localized t o h e H i ( R ) for some a n n u l u s /~ = {zIr < [z I < 1}. T h e conclusions are t h e n v a l i d in some _R 0 w i t h r o > r .

T h e following corollaries are consequences of t h e p r o o f of T h e o r e m 2 b r a t h e r t h a n o f t h e result.

COROLLAnr 1. I f f~ = f + F(ei~), then f~ is outer in subregions D r of D o = {z = rd~ < r < 1, IO - - T1 < 6} with smooth boundaries. We can choose 6 and r o independently of 7.

(4)

222 L E N ~ A _ R T C A R L E S O N A N D S I G V A R D J A C O B S

COROLLARY 2. I f h (1) and h (2) are extremals corresponding to the same F E C, then h~ (2) is a rational function.

COROLLARY 3. I f 1~ E C, a necessary and sufficient condition for h E H 1 satisfying (*) to be unique is that h -1 6 H 1, and this implies that h -1 E H e for every p < ~ . Remark 1. I f we r e s t r i c t h to be in HI, Corollary 3 s h o u l d b e f o r m u l a t e d with h r e p l a c e d b y h 0, w h e r e ho(z ) ~ h(z)/z.

Remark, 2. I n t h e ease _P E L ~ de L e e u w a n d R u d i n h a v e p r o v e d , [8] T h e o r e m 8, t h a t a s u f f i c i e n t c o n d i t i o n for h 6 H I to be u n i q u e is t h a t h -~ 6 H ~. N e c e s s a r y is t h a t h is o u t e r a n d t h a t for h~(z) ~ h(z)/(z -- e~a) ~, h~ fails t o b e in H I for e v e r y real ~. W e shall give a p r o o f w h i c h shows t h a t h -1 6 H 1 is sufficient also in t h e general case F E L ~.

F o r t h e p r o o f o f T h e o r e m 2, set ~v = F - - iV(e t~) a n d f~ ~ f + F(e") so t h a t F~(e t~) = 0 a n d (,) r e a d s

(F (#o) + L(e ))h(e ) : to to [h(et~ a.e.

F i x a n a r b i t r a r y p < ~ , choose s > 0 so small t h a t a r c t g e/(1 - - e) < ~r/2p a n d let ~ be such t h a t ]F~(et~ < e for 0 E ~ = {0110 - - z] < 5}. O b s e r v e t h a t this implies ]f~(ele)] > 1 - - e a.e. on y~. P u t f f l = u + i v . F o r 0 E v ~ we t h e n h a v e u(e t~ > (1 - - e)]h(#~ a n d Iv(#~ < e]h(#~ a.e. T h u s , if (1 ~- fi)e : 1, 1 ~ u(e ~~ =~ flv(e ~~ ~ 1 a.e. on 7~, a n d since f~h 6 H 1, this implies t h a t 1 + u(z) ~ flv(z) > I in D~ = {z]lO - - z[ < 81 ( 8, r T < Iz] < 1}.

H e n c e , log (1 + f f l ) is a n a l y t i c in D~ a n d [arg (1 +A(z)h(z)l < a r c t g 1/fl <

< z / P p , z E D . B y L e m m a 2 , f f l E H q D ) , a n d since If~(et~ 1 - - e a.e. on r~, ]h(#~ PdO < m. N o w F is u n i f o r m l y c o n t i n u o u s on t h e u n i t circle w h i c h can t h u s be c o v e r e d b y a f i n i t e n u m b e r o f y,'s. H e n c e f ~ [h(e ~~ fdO < ~ .

N e x t , choose p = 2 a n d d e f i n e ~ b y ~ ( 0 ) = - - i a r c t g v(e~~ ~ i f 0 E V~

a n d h(e t~ ~ O, a n d ~ ( 0 ) = 0 elsewhere. F o r m

7~

1

fle

t~

+

z

= e x p 3

B y L e m m a 2, k E H 2. Thus, for G~ ~-- f f l k we h a v e b y T h e o r e m 2 a t h a t G~ E H i, a n d b y t h e c o n s t r u c t i o n of G~, t h a t G~(# ~ ~ 0 a.e. on y~. This implies t h a t G~

can be a n a l y t i c a l l y c o n t i n u e d o v e r 7,, a n d in p a r t i c u l a r t h a t G~ is o u t e r in D~

for a n y (~1 < ~ i f o n l y r~ is s u f f i c i e n t l y close to 1. T h e f a c t o r s o f G~ are t h u s all o u t e r in D r T h i s p r o v e s T h e o r e m 2 b a n d also C o r o l l a r y 1, e x c e p t t h a t we h a v e to p r o v e t h a t t h e r e is an r 0 w h i c h will do for e v e r y ~. I n T h e o r e m 2 b this is e v i d e n t , since [ - - 7~, ~r] c a n be c o v e r e d b y a f i n i t e n u m b e r of i n t e r v a l s o f l e n g t h 2~ 1 = ~. If, h o w e v e r , r~ is s u f f i c i e n t l y close to 1, we also f i n d f r o m t h e r e p r e s e n t a t i o n f o r m u l a for

(5)

B E S T U I q l F O I ~ N I AP:PROXIlVIATION B Y A N A L Y T I C F U N C T I O N S 2 2 3

o u t e r f u n c t i o n s t h a t [f~(z)] > 1(1 - - e) in D . Since f~ = f~ -4- F(e ~) - - -F(e~), f~ is also o u t e r in D i f l a - - v l < ~ - - ~ . T h e same r w i l l t h e r e f o r e do for la - - v[ < rain (~x, 6 - - ~x), a n d b y t h e same a r g u m e n t as a b o v e t h e p r o o f o f Corollary 1 is finished.

T o p r o v e Corollary 2, suppose t h a t h r a n d h (2) C H ' b o t h s a t i s f y (,). T h e y m u s t t h e n h a v e t h e same a r g u m e n t on 7 . T h u s ~(') = w~(2), k~l) = k~(2) a n d so t h e f u n c t i o n ~ = h(~)/h(2)= G!~)/G~ 2) is a n a l y t i c in a n e i g h b o u r h o o d of 7~

e x c e p t for possible poles on 7~ a n d R takes p o s i t i v e values there. I t n o w follows t h a t R is a r a t i o n a l f u n c t i o n .

I f F E C, we f i n d a l m o s t i m m e d i a t e l y b y t h e p r e c e d i n g a r g u m e n t s t h a t a s u f f i c i e n t c o n d i t i o n for t h e u n i q u e n e s s of h is t h a t h -1 E H i. L e t us, h o w e v e r , for t h e m o m e n t suppose o n l y t h a t (,) is satisfied w i t h F in L ~. I f h -1 E H 1, t h e n h = k ~, k o u t e r , k -1 E H e. L e t hi = glk~ be a n y e x t r e m a l f u n c t i o n c o r r e s p o n d i n g to the same F , w h e r e gl is a n i n n e r f u n c t i o n a n d k 1 is o u t e r w i t h k 1 E H e . B y (*), glkl k-1 = ]~1 k-1 a.e. ]-Ience gxk~k -1 = const., w h e n c e gl = ela, k l = e-la/2]~

a n d hi = h.

I f c o n v e r s e l y h is k n o w n t o be u n i q u e it can h a v e no zeros in U, cf [8], p. 479.

N a m e l y , suppose h(a) = O, a E U, a n d f o r m (z - b ) ( 1 - - g z )

h ( 1 ) ( z ) ---- 9 h ( z ) ,

( z - a ) ( 1 - a z )

w i t h b # a. T h e n h (~) E H 1 a n d h (1) also satisfies (*).

Now, assume a g a i n iv E C a n d f i x a n a r b i t r a r y p < ~ . Since, b y L e m m a 2 again, ffl~ E H P ( D ) , we will be t h r o u g h i f we can p r o v e t h a t G~ -~ E H~(D~), a n d this is fulfilled i f G~ is free f r o m zeros on 7~. I f G~(e ~') = 0, t h e zero is o f e v e n o r d e r a n d so w i t h G ~ ) ( z ) = - d % G ~ ( z ) ( z - d~) -~, G~ 1) is p o s i t i v e a n d a n a l y t i c o n 7~. T h u s h (1) = G(~)/f~k~ E H i ( D ) a n d t h e n h (1) E H ~ since also h(~)(z) ~- -- e~zh(z)(z - - e~) -2. ~Vforeover h (~) satisfies (,), a n d we h a v e p r o v e d t h a t for a u n i q u e e x t r c m a l h we n e c e s s a r i l y h a v e h -x E H y for e v e r y p < ~ , p r o v i d e d t h a t F is c o n t i n u o u s .

3. The regularity of the minimizing f in relation to that of the given F L e t C~o d e n o t e t h e class o f f u n c t i o n s being D i n i - c o n t i n u o u s . T h e y f o r m a

1 1

B a n a e h a l g e b r a u n d e r t h e n o r m []F]]~ ---~ m a x IF(x)[ -~ f o CoF(t)t- dt, w F s t a n d i n g for t h e m o d u l u s o f c o n t i n u i t y o f F . A s is t h e class o f f u n c t i o n s w h i c h s a t i s f y L i p s c h i t z c o n d i t i o n o f o r d e r a, a n d b y / v E C n+a, h E N , 0 < a < 1, is m e a n t t h a t F E C ~ w i t h F (n) in A s.

T ~ E O ~ n ~ 3. a. 2' E C~o ~ f E A and in general F (n) E Co., ~ f(") E A . b. I f 0 < ~ < 1 , then F E A s ~ f E A s and also F E C n+~ ~ f E Cn+%

(6)

224 L E N N A ~ T C A ~ L E S O ~ A N D S I G V A ~ D J A C O B S

Consequently F in C + implies f in C ~,

cf. [1], p. 17

and we have moreover e. There is a q independent of +n such that

(Hf(n,H~ 11/n (l[[?,k,t[r ~l/k

V v - . ] <- 9

I f thus F E

C(M,)

where the sequence

(M,/ni) 1/"

is non-decreasing, then f, regarded as a function of 0, belongs to

C(M~+I).

A rough estimate b y the Cauchy and Bessel inequalities also gives

(++) + +

n n n

whence f, regarded as a function of z, is in

C(M~+2).

The following theorem has been proved b y H. S. Shapiro [11] in the case M~ = n!

COROLLARY.

I f the sequence (M,/nt) 1I~ is non-decreasing and if

log M , = O(n2),

then F in C(M~) implies f in C(M~).

That log M n =

O(n ~)

is a sufficient condition for

C(M~)

and C(M,+t ) to coincide is proved in [2], Theorem VII.

The proof is based on the result in Corollary 1 in the preceding section. Now if f is outer in D~ and if

g(z) = f(ei~),

ther~ g is outer in a corresponding region D: in the upper half-plane. Accordingly, it is sufficient to prove the theorem for the upper half-plane under the conditions t h a t

IF(x) +

f(x)] ~ 1 a.e. and that

F ( T ) -~ 0 implies f outer in a region D+ whose boundary contains the interval

(v -- ~, ~ + ~), F and f being periodic with period 2z. B y doing so we reach a typographic simplification but, above all, we do not have to distinguish between derivatives with respect to arc length and derivatives with respect to

z,

when studying the behaviour of f on the boundary. Before proving the theorem we shall state a simple lemma on Cauchy integrals.

fl ~,(t)

LEMMA 3. I f Ilc(:J:

t)] ~

og(t)

a.e.,

where - ~ - dt < ~ and if f ~ lc(t)

= - - dr, then f o r z e So(~) = {z = x + iyrlxl < y, lz[ <

~),

~ t - - z

/ ++ f ~

Ix(z) - ~ ( 0 ) l < A - 7 - dt + A l z l ~ d t .

0 I~[

~(z) =

I f instead

[k(:~

t)t ~_ Itineo(t), then

(7)

] 3 E S T U N I F O I ~ 4 : APPX:~OXI1M:ATIO12q B Y A ~ A L Y T I C FU/VCTIOI'ffS 2 2 5

Izl a

lu(~)(z) - - x(~)(O)] < Ann! ~ dt +

A~n!Izl T -

dt for

W e o n l y h a v e t o e s t i m a t e t h e i~tegrMs

[=1 a

}) fl

- zl -~- m(t)dt a n d t - - z t

o M

u s i n g t h a t I t - - zl > AIt[ i f z Es

z e & ( 6 ) .

I f co r 0 is a m o d u l u s of c o n t i n u i t y , t h e n for e v e r y e > 0 t h e r e is a n V such t h a t Ix(z) -- ~(0)[ < Aco(s) if z E So(T), for

f f f -(')

Izl - ~ dt < re(e) whil~ - 7 - dt a n d lzl ~ - dt

b o t h t e n d t o zero w i t h [zl. I f o~(t) = t ~, 0 < ~ < 1, we f i n d t h a t lz(z) - - z(O)l <

A(~)Izl ~, z e $o(6 ). Also let us o b s e r v e t h a t t h e r e s u l t s h o l d as well for

f ~ § tz k(t)

x ( z ) = t ~ z 1 q - t 2 - - d t

since this i n t e g r a l differs f r o m t h e C a u c h y i n t e g r a l o n l y b y a c o n s t a n t .

F i x a n a r b i t r a r y 3 E_R a n d f o r m F~ a n d f~ as in t h e p r o o f o f T h e o r e m 2.

W e k n o w t h a t f~ is b o u n d e d a w a y f r o m zero in a r e g i o n D r of l e n g t h 26. L e t L~ ---- log f~ a n d let z e Dr, t h e n

f

a 1 q - t z

log

If~(t) I

L (z) = i~ t - - z 1 q- t 2

--3

dt q- X~(z) = ~ ( z ) -f- ,~(z),

w h e r e 2 r can be a n a l y t i c a l l y c o n t i n u e d o v e r ( 3 - 6, 3 - r N o w 1 - [fr(x)l~ = IF~(x)l ~-~ 2 R e F~(x)f~(x) a,e. a n d so ]1 - - I f d x ) l ~ l <

A~,F(ix--

31) a.e. T h u s also ilogrf~(x)][ ~ Ave(Ix - - 3[) a.e. in (3 - - 6, 3 -~ 6). B y L e m m a 3, it is t h e n possible for a n y e > 0 to f i n d a n V such t h a t Iz~(z)--x~(3)t < e for z in a s e c t o r S~(V) w i t h r a d i u s 7. T h e a r g u m e n t s a f t e r L e m m a 3 Mso show t h a t ~ can b e chosen so as t o be i n d e p e n d e n t o f 3. Since 2~ is a n a l y t i c o v e r (3 - - 6, z q- 6), [2~(z) - - 2~(3)[ < A l z - - 3[, a n d since the b o u n d o f ~ in D~ a n d t h e l e n g t h a n d h e i g h t o f D~ are all i n d e p e n d e n t o f 3, so is A. T h u s [L~(z) - - L~(3) Z < 2s f o r z e S~(V), i.e. t h e same ~ will do for e v e r y 3. A c c o r d i n g l y

[exp (L~(z) - - L~(3)) - - I r < 3e, fL(z) - - L(3) J < 3e a n d If(z) -- f(3)[ < 3e

(8)

2 2 6 L E ~ A ~ T C A ~ L E S O ~ A - N D S I G V A R D ffACOBS

for z in S,(~). I f l a - - 3 I < ~ we c a n t h e n f i n d a z 0 E S . ( v ) N S . ( ~ ) such t h a t If(Zo) -- f(3)] < 3e a n d If(Zo) - - f ( a ) ] < 3e, a n d we h a v e If(a) - - f(3) l < 6s for [a - - 3f < v.

T h e p r o o f of t h e f i r s t p a r t o f T h e o r e m 3 b can be c a r r i e d o u t on e x a c t l y t h e same lines. L e m m a 3 will n o w give [n,(z) - - ~ ( 3 ) 1 <

Aiz

- - 31 ~, z E S , ( 6 ) . T h u s I f ( z ) - - f ( 3 ) l < A ] z - - ~ 1 ~ f o r z in S~(V) a n d A a n d ~/ are i n d e p e n d e n t o f T.

As [ % - - 3 1 ~-4- 1 % - - a l ~ < 2 1 a - 3[ ~ for a suitable z 0 E S ( ~ ) N S o ( ~ ) we h a v e ]f(a) -- f(3)[ < A la -- 3 [~ for I a ~ 3[ < ~/, a n d this i n e q u a l i t y t h e n holds g e n e r a l l y w i t h a n A i n d e p e n d e n t o f a a n d 3.

Also t h e proofs o f t h e second p a r t s o f T h e o r e m s 3 a a n d 3 b are a l m o s t identical.

W e p r e f e r t o c a r r y o u t t h e second of t h e m w h i c h is s o m e w h a t m o r e i n v o l v e d since we h a v e t o check t h a t all t h e c o n s t a n t s o c c u r r i n g are i n d e p e n d e n t o f 3.

N o w f o r m

,, F(k)(~:) . F~k~(3)

F,(x) : F(x) -- ~0 k! (x -- 3) ~ a n d L(z) ~--f(z) + ~'o ~.. (z -- "~)~.

As long as we r e s t r i c t x a n d ~ to some c o m p a c t set we h a v e I1 --lf,(x)12/ <

< ~ A l x - - 3 I ~+~' w i t h A i n d e p e n d e n t of 3. F o r L , t h u s

a n d

., f

tog IL(t)l dt + 2~")(z) L~~ = i-~ (t - - ~)"+~

--3

[loglL(t)ll < A i t -- zl "+~ if it - - ~] < 0. B y L e m m a 3 we get [~!=)(z) - - ~!")(311 < A I z - - 31 ~ for z E S,(61 ,

I f!")(z) f!n)(3) I

L(z) L(3) < A I z - - T [ ~, z ~ S , ( ~ ) .

F u r t h e r , ~G(3) a n d L!")(3) a r e bo~h b o u n d e d for 3 E [ ~ ~, ~], a n d t h e n so is f~)(~). K e n e e [f~")(z) --f~')(~)l < A1 z -- ~l ~ a n d If~O(z) -- f(")(~)[ < AI z -- z] ~ for z E S~(~) w i t h A a n d V still i n d e p e n d e n t o f v. ( T h e y o f course d e p e n d on n.) An a p p l i c a t i o n o f this r e s u l t in t w o sectors S~ a n d S~ gives ]riO(z) - - f(")(3)[ <

< A l a - - 3 1 ~ for l a - - 3 1 < ~ / .

a n d b y t h e same a r g u m e n t as a b o v e it follows t h a t IL!")(z) - - L!")(3)[ < AIz - - 3[ ~ for z i n S,(V), w i t h A a n d V i n d e p e n d e n t o f 3. A s s u m e t h a t we h a v e p r o v e d t h e t h e o r e m u p t o a n d including n - - 1. T h e n also If~k)(z) - - f!k)(3)] < A t z -- 3[ ~, 0 < k < n - - 1 , w i t h A i n d e p e n d e n t o f ~ as long as Iz] a n d 3 b e l o n g t o some

= = ~(~- ~)~ w h e r e

compact set. Form

~ L!"~--f!~

Since ~ ~ ( L , . . . , ~ ,,

R(xo . . . x,_O is d i f f e r e n t i a b l e w i t h b o u n d e d d e r i v a t i v e s if Ix01 > m > 0 a n d

~'~-~ [x~L 2 < M , i t follows t h a t [~(z) - - ~v (3)[ < A[z -- 3I ~, w i t h A i n d e p e n d e n t o f T i f zES~(V) a n d v E [ - - ~ r , ~ ] . T h u s also

(9)

BEST UNIFORM APPROXIMATION BY" A2,TALYTIC FUNCTIONS 227 I n the p r o o f of T h e o r e m 3 c we suppose t h a t lim~_~ (]lF('Ollo)/n!)~/" = oo. The case w h e n F is a n a l y t i c is more easily t r e a t e d w i t h t h e aid of t h e principle of reflection as IF(x) + f(x)[ = 1, a n d we o m i t it. L e t 8 -1 = max0<k_<~

(llF(k)lloJk!)xz~,

where n is to be t a k e n so large t h a t ~ is sufficiently small. I t will m e a n no restric- tion i f we choose ~ = 0. The construction of F o a n d T a y l o r ' s t h e o r e m yield

x

1 f (F(~ -- ~(~)(0))(-- tydt.

t0(x) - (~ _ ~)!o

W i t h o~ = oF("), we h a v e ]F0(x)l <

]x[~%(lx])/n!

This implies t h a t [F0(x)[ _< 89 i f Ix] ~ 8. F o r o~(Ix[) < o,(~) < ~. j ~ o~(t)t -~ dt <_ 1liFO)lie ~ l n ! 8 - n if

lxl < 8 . tIence 1 < Ifo(X)l < ~ and so I~--Ifo(x)?l

<Alxl%~(Ixl)/n!

a n d

floglfo(x)I 1 < A t x l n ~ o = ( t x l ) / n ! if Ixl _<8 w i t h A i n d e p e n d e n t o f n. ~ o r 1 f 1 + tz

log If0(t)[

z~ = i z

J

t - - z 1 -~ t ~ dt thus

Aj! f l ~n(t) 8 n

f~J)(O) < ~-. J tn-J t at <_ A j ! 8-J . ~ [IF(~ < Aj! 8-J ,

0

i f 0 < j < n. B y i n d u c t i o n it is n o w easily p r o v e d t h a t ](noP)(J)(0) [ __< A P ( j + 1)P-lj!8 - j for e v e r y p E i V a n d 0 < j _ < n . W i t h k 0 = C ~ this gives

j~

i~J)(0)l < j +----~ e ~(i§ 9 ~-J < j! qJS-J, 0 _< j < ~ .

T h e m a x i m u m principle shows t h a t [Re no(Z)] < A. I f for some a < ~ we can p r o v e t h a t ]t~eLo(z)l_<A for [z[__<a, I m z > _ 0 , we f i n d t h a t ~ o = L o - - n o is a n a l y t i c in t h e disc tz] ~ a w i t h IRene(Z)] < A there. L e t l o = e z~ The C a u c h y e s t i m a t e t h e n gives [l(oi)(0)] ~ A j ! a - J , a n d for f o = k o l o we get

lf(on)(0)l

< n!q"a -~. W e will f i n d t h a t a = 8/3 will do. F o r

I F ( k ) ( 0 ) ]

ak < ~

[[F(k)ll~ ak

< ~

(a(~--l)k <~ 1

i f a = 8/3. Thus, i f n is s u f f i c i e n t l y large, T h e o r e m 3 a tells us t h a t 1 9 .< Ifo(Z)l < 8 8 . i f [z] < . (~/3, . I m z > 0, a n d so [ReLo(z)] < A . in this region.

As f~o")(0)= f ( " ) ( 0 ) + F0)(0), we also h a v e If(")(0)[ < n ! q " a - " w i t h a -1 = 3 m a x

(llF(k)llo~[k!)X/k.

0 ~ k ~ < n

This proves T h e o r e m 3 c, since all constants are easily seen to be i n d e p e n d e n t o f t h e choice of ~.

(10)

228 L E N N A I % T C A R L E S O N A N D S I G V A R D J A C O B S

4. The weakest condition on ~F which guarantees ] to be in A

THEOREM 4 . . F o r every continuous, non-decreasing and subadditive function ~o with

~o(0)

= 0 and

f o ~(t)t-idt

1 divergent, there is an .F ~ C with o~(t) ~ (9(t) for which the best approximation f ~ H ~ is not in A .

F o r t h e p r o o f we r e q u i r e t h e following l e m m a .

LEM~A 4. Let co be as in the theorem and p u t F(e i') : m(t -- ~) in [% ~ + ~], F(e/') --~ 0 in [v - - ~, T) and continuous elsewhere. I f the corresponding f e H ~ is in A , then f(e ~ ) = =~= i. We assume F to be defined in such a way that Il~ + fIl~ = L

W e suppose f C A w i t h R e f(e i~) =/= O. L e t u(O) = log

if(d~

Since F(e ~) = 0 a n d lF(e ~~ + f(e~~ = 1, u ( r ~- t) < -- Ao~(t) or u('~ d- t) > Aco(t) for t E ( 0 , ~ l ) a n d some A > 0, d e p e n d i n g on w h e t h e r l~ef(e ~) is p o s i t i v e or n e g a t i v e . F o r t E ( - - @ 0), on t h e o t h e r h a n d , u(~ + t) e q u a l s zero. T h u s

1

f u(~ + t) - u(~ - t)

Jim dt = oo

~-~0+ t '

E

whence, see e.g. [14], T h e o r e m 7.20, p. 103, lim,_~l_ ]argf(re~*)] = oo. This c o n t r a - dicts f in A w i t h lf(d~)[ = 1, a n d t h e l e m m a is p r o v e d .

N o w let d ~ = z . 2 -~, n = 0 , 1 , 2 , . . . , a n d p u t co~(0) = w ( 0 - - ~ ) for 0 in

~ , , o)~(0)= co(~_ 1 - - 0 ) for 0 in 2 , d~_l a n d o ~ ( 0 ) = 0 elsewhere. L e t c~ = 0, 2-~ or i . 2-89 d e p e n d i n g on w h e t h e r n is even, n ~ 1, rood 4 or n - - 3, m o d 4 r e s p e c t i v e l y . P u t F(e ~~ = ~.~ c~c%(O). I t is easily seen t h a t 2' E C w i t h coF(t ) _< co(t) if t < ~/4. Assume t h e c o r r e s p o n d i n g f t o be in A. L e m m a 4 t h e n tells us t h a t f(sd~+x ) = 4 - m - i a n d f(ed,+a ) = 4 - m , w h e r e

e n = e id~ a n d m = Ill ~ -4-fl[o~ > 0, as -F(e ~~ = 0 in ( - - ~, 0). Since lim d~ = 0,

this is, h o w e v e r , i n c o n s i s t e n t w i t h f in A. ~-~

References

I. A D • V. M., A ~ O V , D. Z. a n d KREIiV, iV[. G., Infinite H a n k e l matrices a n d generalized Carath6odory~Fej~r a n d F. Riesz problems. Funktsional'nyi Analiz i ego Prilozheniya.

2, 1968, p. i.

2. B A N G , T., O n quasiranalytic functions. (In Danish.) Thesis. C o p e n h a g e n 1946.

3. BONSALIJ, F. F., D u a l e x t r e m u m p r o b l e m s in the theory of functions. Journal of the L o n d o n M a t h . Soc. 31, 1956, p. 105.

(11)

: B E S T IYl~IFO:B1V[ AI~I~:BOXL~CIATIO~N- :BY A I ~ A L Y T I O : F U N O T I O ~ S 229

4. tIA:BT~AN, Pro, On completely contbmous t I a n k e l matrices. Prec. of the American Math.

Soc. 9, 1958, p. 862.

5. HELSON, H. a n d SZEGS, G., A problem in prediction theory. A n n a l i di Matematica pura ed applicata 51, 1960, p. 107.

6. 1LIOFF~AN, K., Banach spaces of analytic functions. Englewood Cliffs, N.J. 1962.

7. KATZl~ELSO:N, Y., A n introduction to harmonic analysis. New Y o r k 1968.

8. DE LEEUW, K. a n d I~UDIN, W., E x t r e m e points a n d e x t r e m u m problems in H I. Pacific Journal of Math. 8, 1958, p. 467.

9. N E ~ I , Z., On b o u n d e d bilinear forms. Annals of Math. 65, 1957, p. 153.

10. I~OGOSII~SKI, W. W. a n d SHAI~IRO, I~. S., On eartain e x t r e m u m problems for analytic functions. Acta Math. 90, 1953, p. 287.

11. S~APmO, It. S., E x t r e m a l problems for polynomials a n d power series. Dissertation. M . I . T . 1952.

12. TAYLOR, A. E., I,r~troduction to functional analysis. New York 1958.

13. TOU/CIAICKINE, G. a n d HAVI>rSOX, S., Propridtds qualibatives des solutions des probl@mes extrdmaux de certains types. Fonctions d'une variable complexe. Probl~mes contemporains. Paris 1962, p. 73.

14. ZYGMVND, A., Trigonometric series. Vol. I. Cambridge 1959.

Received February 2, 1972. Lermart Carleson a n d Sigvard Jacobs Inst. Mittag-Leffler

Djursholm

Références

Documents relatifs

In this paper the embedding results in the questions of strong approximation on Fourier series are considered.. Previous related re- sults from Leindler’s book [2] and the paper [5]

precisely to the approximation of f(z) by polynomials, which case has been treated with others in the papers just mentioned. Special cases of these results are

T h e analogous problem of approximating a bounded measurable function on the boundary of a plane domain (especially, the unit disk) by the boundary values

As mentioned in the introduction in [20] three big classes of functions X were found which are invariant under the best approxima- tion operator ~r The first class

In this paper we answer the question for general Douglas algebras negatively, our counterexample being a certain &#34;natural&#34; Douglas algebra... 288

In addition to the new approximation bounds that they provide, the obtained results enable to establish the robustness of the algorithm that is addressed here, since this

We prove that, with respect to the standard ratio, this algorithm provides new approximation ratios for MetricP 4 P , namely: the approximate solu- tion respectively achieves a 3/2-,

We consider in this paper four versions of Steiner: the general one where the input graph is only supposed connected and the edge distances are supposed arbitrary (this is the