• Aucun résultat trouvé

Identifying codes in hereditary classes of graphs and VC-dimension

N/A
N/A
Protected

Academic year: 2021

Partager "Identifying codes in hereditary classes of graphs and VC-dimension"

Copied!
18
0
0

Texte intégral

(1)

HAL Id: hal-01038012

https://hal.archives-ouvertes.fr/hal-01038012v2

Submitted on 2 Mar 2016

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

VC-dimension

Nicolas Bousquet, Aurélie Lagoutte, Zhentao Li, Aline Parreau, Stéphan Thomassé

To cite this version:

Nicolas Bousquet, Aurélie Lagoutte, Zhentao Li, Aline Parreau, Stéphan Thomassé. Identifying codes

in hereditary classes of graphs and VC-dimension. SIAM Journal on Discrete Mathematics, Soci-

ety for Industrial and Applied Mathematics, 2015, 29 (4), pp.2047-2064. �10.1137/14097879X�. �hal-

01038012v2�

(2)

NICOLAS BOUSQUET

† k

, AURÉLIE LAGOUTTE

‡ ∗∗

, ZHENTAO LI

§ ††

, ALINE PARREAU

¶‡‡

,AND

STÉPHAN THOMASSÉ

‡ ∗∗

Abstrat.

Anidentifying odeof a graph is a subset of its verties suh that every vertex of the graph isuniquely

identiedbythesetofitsneighbourswithintheode. Weshowadihotomyforthesizeofthesmallestidentifying

odeinlassesofgraphslosedunderinduedsubgraphs. OurdihotomyisderivedfromtheVC-dimensionofthe

onsideredlassC,thatisthemaximumVC-dimensionoverthehypergraphsformedbythelosedneighbourhoods ofelementsof C. Weshowthat hereditarylasseswithinniteVC-dimension haveinnitelymanygraphswith an identifyingodeof sizelogarithmi inthenumberof verties while lasses withnite VC-dimension havea

polynomiallowerbound.

Wethenturntoapproximationalgorithms. WeshowthatMin IdCode (theproblemof ndingasmallest

identifying ode ina givengraph from somelass C) islog-APX-hard for any hereditary lassof innite VC- dimension. For hereditary lasses of nite VC-dimension, the only known previous results show that wean

approximate Min Id Codewithin a onstantfator insomepartiularlasses, e.g. linegraphs, planar graphs

andunitintervalgraphs. WeprovethatMinId Codeanbeapproximatewithinafator6forintervalgraphs.

Inontrast,weshowthat MinId Code onC4-free bipartitegraphs(alassofnite VC-dimension)annotbe approximatedtowithinafatorofclog(|V|)forsomec >0.

Keywords. Identifyingode,VC-dimension,Hereditarylassofgraphs,Approximation,Intervalgraph

AMSsubjet lassiations. 05C69,05C85,05C62

1. Introdution. Let G = (V, E) be a graph. Anidentifying ode of G is a subset C of

vertiesofGsuhthat,foreahvertexv∈V,theset ofvertiesinC atdistaneatmost1from v, is non-empty and uniquely identies v. In other words, for eah vertex v ∈ V(G), we have N[v]∩C6=∅(Cisadominatingset)andforeahpairu, v∈V(G),wehaveN[u]∩C6=N[v]∩C

(C is a separating set), where N[v] denotes the losed neighbourhood of v in G (v and all its

neighbours). WesaythatasetX ofvertiesdistinguishes u∈V(G)fromv∈V(G)ifN[u]∩X 6=

N[v]∩X. Thisoneptwasintroduedin1998byKarpovsky,ChakrabartyandLevitin[21 ℄and hasappliationsin variousareas suh as fault-diagnosis[21 ℄, routingin networks[23 ℄ oranalysis

ofRNAstrutures[19 ℄. Foraompletesurveyontheseresults,thereaderisreferredtotheonline

bibliographyofLobstein[24℄.

Two vertiesuand v are twinsifN[u] =N[v]. Thewhole vertexset V(G)is anidentifying odeifandonlyifGistwin-free. Sinesupersetsofidentifyingodesareidentifying,anidentifying odeexistsforGifandonlyifitistwin-free. Anaturalprobleminthestudyofidentifyingodes is to ndone of a minimum size. Given a twin-free graph G, thesmallest size of anidentifying odeofGis alled theidentifyingodenumber of Gandis denotedby γID(G). Theproblemof

determiningγIDisalledtheMin Id Codeproblem,anditsdeisionversionisNP-omplete [8 ℄.

LetX ⊆V. WedenotebyG[X]thegraphinduedbythesubsetofvertiesX. Inthispaper,

we fous onhereditary lasses ofgraphs, that is lasseslosed under taking indued subgraphs.

Weonsiderthetwofollowingproblems: ndinggoodlowerboundsandapproximationalgorithms

fortheidentifyingodenumber.

1.1. Previouswork. Inthelassofallgraphs,thebestlowerboundisγID(G)≥log(|V(G)|+

1), sineall thevertiesof the graphs havedistint non-empty neighbourhood within the ode.

Monel[27℄haraterizedallgraphsreahingthislower bound. Asforapproximationalgorithms,

LIRMM,UniversitéMontpellier2,Frane

LIP,UMR5668ENSLyon-CNRS-UCBL-INRIA,UniversitédeLyon,Frane

§

ÉoleNormaleSupérieure,Paris,Frane

LIRIS,UMR5205,UniversitéLyon1-CNRS,Frane

k

DepartmentofMathematisandStatistis,MGillUniversityandGERAD,Montréal,Canada

∗∗

PartiallysupportedbyANRProjetStintunderContratANR-13-BS02-0007.

††

PartiallysupportedbyaFQRNTB3postdotoralfellowshipprogram.

‡‡

PartiallysupportedbyaFNRSpost-dotoralgrantattheUniversityofLiège.

(3)

thegeneralproblemMin Id Codeisknowntobelog-APX-hard [22 ,23 ,33℄. Inpartiular,there

is no (1−ε) log(|V|)-approximationalgorithm for Min Id Code. The problem Min Id Code remainslog-APX-hard even insplit graphs, bipartite graphsor o-bipartitegraphs(omplement ofbipartitegraphs) [14 ℄.

Onthepositiveside,therealwaysexistsaO(log|V(G)|)approximationforMinIdCode[33 ℄.

Moreover, evenif in thegeneralaseMin Id Codeis hardto evaluate, thereexist several on-

stantapproximationalgorithmsforrestritedlassesofgraphs, suh asplanargraphs [29℄orline

graphs[15 ℄.

For the remainder of this artile, n denotes the number of vertiesof G. Table 1 gives an

overviewoftheurrentlyknownresultsforsomerestritedhereditarylassesofgraphs. Theorder

ofmagnitudeofalllowerboundsarebestpossible(thereareinnitefamiliesofgraphsreahingthe

lowerbounds). Min Id Codeforlinegraphsandplanargraphshavea polynomialtimeonstant

fatorapproximation algorithmwith thebest known onstantwritten in parenthesis. Fromthis

table,weobservetwobehaviours: alasseither

1. has a logarithmi lower bound on the size of identifying odes, and Min Id Code is

log-APX-hardinthislass(forexamplesplit, bipartite,o-bipartitegraphs),or

2. there isa polynomial lower-bound onγID(G)and aonstantfatorapproximationalgo- rithmtoomputeγID(G).

Graphlass Lowerbound Complexity Approximability Referenes

Allgraphs Θ(log(n)) NP- log-APX-hard [21 ,22 ℄

Chordal Θ(log(n)) NP- log-APX-hard [14 ℄

Splitgraphs Θ(log(n)) NP- log-APX-hard [14 ℄

Bipartite Θ(log(n)) NP- log-APX-hard [14 ℄

Co-bipartite Θ(log(n)) NP- log-APX-hard [14 ℄

Claw-free Θ(log(n)) NP- log-APX-hard [14 ℄

Interval Θ(n1/2) NP- open [16 ,17 ℄

Unitinterval Θ(n) open PTAS [13 ,16 ℄

Permutation Θ(n1/2) NP- open [16 ,17 ℄

Linegraphs Θ(n1/2) NP- APX(4) [15 ℄

Planar Θ(n) NP- APX(7) [3 ,29 ℄

Table1

KnownlowerboundsonγID(G)andapproximabilityofγID(G).

1.2. Our results. The aim of this paper is to shed some light on the validity of suh a

dihotomyforalllassesofgraphsusingtheVC-dimensionofthelassofgraphs.

VC-dimension. LetH= (V,E)beahypergraph. AsubsetX⊆V ofvertiesisshatterediffor

everysubsetSofX,thereissomehyperedgeesuhthate∩X =S. TheVC-dimensionofHisthe

sizeofthelargestshatteredsetofH. WedenetheVC-dimensionofagraphastheVC-dimension of thelosedneighbourhood hypergraphof G(vertiesare thevertiesofGand hyperedges are

thelosedneighbourhoodsofvertiesofG),alassialwaytodenetheVC-dimensionofagraph (see[1,6℄).

By a shattered set of a graph G, we mean a shattered set of the hypergraph of the losed

neighbourhoods of G. The VC-dimension of a lass of graphs C, denoted by dim(C), is the

maximumoftheVC-dimensionofthegraphsoverC. Ifitisunbounded,wesaythatChasinnite

VC-dimension.

Dihotomy for lower bounds. First we will prove in Setion 2 that there is indeed suh a

dihotomyontheminimumsizeofidentifyingodes: itisalwayseitherlogarithmiorpolynomial,

where the exponentof the polynomial depends on the VC-dimension of the lass of graphs. In

partiular,ourtheoremprovidesnewlowerboundsforgraphsofgirthatleast5,hordalbipartite

graphs,unitdiskgraphsandundiretedpathgraphs. Moreover,theseboundsaretightforinterval

graphsandgraphs ofgirthatleast5.

(4)

Graphlass VCdim IC-lower bound IC-approx

Girth≥5 2 Θ(n12)(opt,new) open

Interval 2 Θ(n12)(opt) 6(Thm. 5.3 )

Chordalbipartite 3 Ω(n13)(new) open

Unitdisk 3 Ω(n13)(new) open

C4-freebipartite 2 Θ(n12)(opt,new) noclog(n)-approx(Thm. 4.3 )

Undiretedpath 3 Ω(n13)(new) open

Table2

Overviewoftheresultsobtainedinthispaper.

Approximation hardness. We then try to extend this dihotomy result for onstant fator

approximations. First,weshowinSetion3thatMinIdCodeislog-APX-hardforanyhereditary

lasswith alogarithmilower bound. Theproofessentiallyonsistsin provingthat a hereditary

lass with innite VC-dimension ontains one of these three lasses, for whih Min Id Code

has been shown to belog-APX-hard [14℄: the bipartite graphs, the o-bipartite graphs, or the split graphs. Unfortunately, the dihotomy does notextend to approximation sineweshow in

Setion 4 thatC4-freebipartite graphshavea polynomial lower bound onthesize ofidentifying odes but Min Id Code is not approximable to within a fator clogn for some c > 0 (under

some omplexityassumption) in thislass. Thus, a onstant fatorapproximationis notalways

possiblein theseond ase.

Approximationalgorithm. Finally,inSetion5 ,weonludethepaperwithsomepositivere-

sultwhenthelowerboundispolynomialbyprovingthatthereexistsa6-approximationalgorithm forintervalgraphs,a problemleftopenin [14 ℄.

Theresultsobtained inthispaperaredetailed inTable2.

2. Dihotomy for lower bound. Most of the results using VC-dimension onsist in ob-

tainingupperbounds. However,in thelastfewyears,severalinterestinglower boundshavebeen

obtainedusingVC-dimension,forinstaneingametheory(e.g.[10 ,28 ℄). Alltheseproofsonsist

inanappliationofalemma,duetoSauer[30 ℄andShellah[32 ℄,oroneofitsvariants. Ourresult

hasthesameavoursineweusethislemmatoprovethat thesizeofanidentifyingodeannot

betoosmalliftheVC-dimensionisbounded. Thetrae ofa setX onY isX∩Y. Byextension,

the traeof avertexxonY istheintersetionofN[x]withY.

Lemma 2.1 (Sauer'slemma [30, 32 ℄). Let H= (V,E)be an hypergraph of VC-dimension d.

Foreveryset X⊆V,the numberof (distint)traesof E on X isatmost

d

X

i=0

|X| i

≤ |X|d+ 1.

Letusnowprovethemainresultofthissetion.

Theorem 2.2. Forevery hereditary lassof graphs C,either

1. for every k ∈ N, there exists a graph Gk ∈ C with more than 2k −1 verties and an

identifyingodeofsize2k,or

2. there existsε >0 suhthat no twin-free graph G∈ C with n vertieshas an identifying odeofsizesmallerthannε.

Proof. Let C bean hereditary lass of graphs. Thelass C either has nite or innite VC-

dimension. First,supposethatChasinniteVC-dimension. WewillshowthatCsatisestherst

onlusion. Bydenition ofinniteVC-dimension,thereisagraph Hk ∈ CwithVC-dimensionk

(5)

x

1

x

2

x

3

Fig.1.Thesetx1, x2, x3 isshatteredinthis

hordalbipartitegraph.

Fig. 2. Aset of three verties shatteredby

disksintheplane.

foreahk. Sothere existsa set ofvertiesX of sizek ofHk whihis shattered. LetY bea set

of 2k −1 verties whose losed neighbourhoods haveall possible traes on X exept the empty

set, meaning that for every X ⊆X, adda vertex y in Y suh that N[y]∩X =X. ChooseY

so that |X∩Y| ismaximized. LetGk =Hk[X∪Y]. The graphGk hasat least 2k−1 verties

sine|Y|= 2k−1. ByhoieofY,X dominatesX∪Y andX distinguisheseverypairofverties ofY. By maximalityof |X∩Y|, X alsodistinguishes every vertexin X from every vertex inY

(otherwiseavertexofY wouldhavethesameneighbourhoodinX asavertexx∈X andthusan

bereplaedbyx, ontraditingthemaximalityof |X∩Y|). For eah x∈X, thevertexyx ∈Y

whoselosedneighbourhoodintersetsX inexatly{x}distinguishesxfromallvertiesinX−x.

SoX∪ {yx|x∈X}isanidentifyingodeofsizeatmost2k,asrequired.

Now suppose that the VC-dimension of C is bounded by d. For any identifying ode C of

a twin-free graph G ∈ C, the traes of verties of Gon C are dierent. Hene, by Lemma 2.1, n≤Pd

i=0 |C| i

≤ |C|d+ 1. Therefore,|C| ≥(n−1)1d,provingthatC satises theseondlaim.

Theproofgives in fat the lower bound γID(G)∈ Ω(ndim1(C)) for theseond item. So ifwe

an boundthe VC-dimensionof thelass, then weimmediately obtain lower bounds onthesize

ofidentifyingodes. Lemma 2.3providessuh bounds forseveral lassesofgraphs.

Letusgivesome denitions. Thegirth ofagraphisthelengthofashortestyle. Ahordal

bipartite graph is abipartite graph withoutinduedyleof lengthatleast 6. A unitdisk graph

is agraph of intersetion ofunitdisks in theplane. Aninterval graph is a graph ofintersetion

of segmentson a line. Anundireted path graph is a graph of vertex-intersetion of paths in an

undiretedtree(i.e. twovertiesareadjaentiftheirorrespondingpathshaveatleastonevertex

inommon).

Lemma 2.3. The following upperboundsholdandaretight:

The VC-dimension of graphsof girth atleast5isatmost 2.

The VC-dimension of hordal bipartite graphs isatmost 3.

The VC-dimension of unitdiskgraphsisatmost 3.

The VC-dimension of intervalgraphsisatmost2.

The VC-dimension of undiretedpathgraphsisatmost3.

Proof.

LetGbeagraphofgirthatleast5. Assumebyontraditionthataset{x1, x2, x3}ofthree

vertiesisshattered. Sinethegirthisatleast5,x1x2x3 isnotalique. Wemayassume

withoutlossofgeneralitythatx1andx2arenotadjaent. Sine{x1, x2, x3}isshattered,

there is a vertex y1 adjaent to both x1 and x2 and not x3 (one losed neighbourhood must have trae {x1, x2} on {x1, x2, x3}) and a vertex y2 adjaent to {x1, x2, x3} (one

losedneighbourhoodmusthavetrae{x1, x2, x3}). Notethatbothy1andy2aredistint

from x1 andx2 sinex1 andx2 arenotadjaent. Moreover y1 andy2 aredistint sine

they do not have the same neighbourhood in {x1, x2, x3}. So x1y1x2y2x1 is a yle of

length4,a ontraditionwiththegirthassumption.

Thisboundistight,forinstane withthepathonsixverties.

LetG= (A∪B, E)beahordalbipartitegraph.Assumebyontraditionthat{x1, x2, x3, x4}

(6)

P

1

P

2

P

3

Fig.3. PathsP1, P2, P3 areshatteredbytheeightpointswhiharepathsoflength0.

isashatteredsetoffourverties. Sinethereisavertexwhoselosedneighbourhoodon-

tains the whole set of verties, it means that at least three verties, say x1, x2, x3 are

on the same side of the bipartite graph. Sine a subset of a shattered set is shattered,

{x1, x2, x3} is shattered. Thus there is a vertex inident to x1, x2 and notx3, a vertex

inidentto x1, x3 and notx2,and a vertexinidentto x2, x3 and notx1. Itprovidesan

induedyleoflength6,aontradition.

Moreover theboundistight,seeFigure1.

LetG bea unit diskgraph. Letus rephrase theadjaenyand shatteringonditions in

this lass: letx1 and x2 beany two verties ofa unit diskgraph anddenote by c1 and

c2 their respetiveenters in a representation of the unitdisk graph in the plane. The verties x1 and x2 areadjaentifand onlyifc1 and c2 are atdistane at most2. Thus

ifa set ofunitdisksis shatteredthenforeverysubsetof enters, thereexists a pointat

distane atmost2 fromthese enters andmore than2 fromtheothers. Inotherwords,

thereexist pointsin allpossible intersetionsofballsofradius2.

A lassialresult ensuresthat theVC-dimension of ahypergraphwhose hyperedges an

berepresentedasa setofdisksin theplane(andvertiesaspointsoftheplane)hasVC-

dimensionat most3(see[26 ℄forinstane). ThusunitdiskgraphshaveVC-dimensionat most3,andtheboundanbereahed(seeFigure2).

Let G be an interval graph. Assume by ontradition that there is a shattered set

{I1, I2, I3} of G. Assume that I1 starts before I2 and that I2 starts before I3. Sine

there is an intervalJ interseting bothI1 and I3 but not I2, J must startafter I2 and

thusI1ontainsI2. Thenthereisnointervalinterseting I2 but notI1,aontradition.

ThusintervalgraphshaveVC-dimensionatmost2,andthebound isagainreahedwith

thepathonsixverties.

LetP ={P1, P2, P3, P4} bea shattered set offour pathsof a treeT. Assume rstthat P2, P3, P4allintersetP1andonsidertherestritionofTtoP1,whihisinfataninterval

graph. ToensureallpossibleintersetionswithP1,theset{P2, P3, P4}isa shatteredset

ofsizethree inanintervalgraph,a ontradition.

Thusat leastonepath, sayP2, doesnotinterset P1 and liesina onnetedomponent

C oftheforestF =T \P1. IfP3 doesnotintersetC,thenthere isnopathinterseting bothP2 andP3but notP1. ThusP3intersets C. IfmoreoverP3 intersetsP1, thenno

pathan interset bothP1 andP2 butnotP3. Thus P3 isalso inludedin C. LetP be

a pathintersetingP1,P2 andP3. Assume rstthat P intersetsthethree pathsin the

orderP1,P2andP3(theaseP1,P3,P2)isthesame. ThennopathanintersetP1and

P3 withoutinterseting P2. Assume now that P intersets thethree paths in theorder P2,P1,P3. Similarly,nopathanintersetP2andP3withoutintersetingP1. Henethe

pathP annotexist,aontradition. Finallytheboundof3anbereahed,asshownin

Figure3 .

Lemma2.3andTheorem2.2implynewlowerboundsformanylasses: Ω(n12)forgraphswith

girthatleast5,Ω(n13)forhordalbipartitegraphs,Ω(n13)forunit-diskgraphs,Ω(n12)forinterval

graphs,Ω(n13)forpermutation graphs,andΩ(n13)forundiretedpathgraphs.

Theexponentgivenby Theorem2.2 is sharpfor several lassesof graphs. Indeed, Fouaud

Références

Documents relatifs

In this paper, we classify unweighted graphs satisfying the curvature dimension condition CD(0, ∞) whose girth are at least

In Sec- tion 4, we prove our main results: the equivalence of curvature dimension conditions and the gradient bounds for heat semigroups on complete graphs, Theorem 1.1, and

There, Roughan defines legitimate authority (chapter 2), explains what she means by the plurality of authorities and their cooperative or conflicting relationships (chapter 3),

La convention d’affacturage est donc une opération de crédit mais pas considérer comme un prêt, c’est une convention qui consiste à transférait des créances commerciales

Our results showed that, despite a higher level of disability for several activities of daily living reported by people with knee arthroplasty, the evolution in disability over

We performed several inversions with the observed geoid and topography data using the viscosity profiles shown in Figure 1.1. Most of these profiles have

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

◊ remarque : on peut obtenir ce résultat plus simplement en considérant que le rapprochement et l'éloignement sont intervertis si on change le signe de v, mais il faut