• Aucun résultat trouvé

NONLINEAR CONDUCTIVITY IN QUASI-ONE-DIMENSIONAL ORGANIC CRYSTALS

N/A
N/A
Protected

Academic year: 2021

Partager "NONLINEAR CONDUCTIVITY IN QUASI-ONE-DIMENSIONAL ORGANIC CRYSTALS"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00221675

https://hal.archives-ouvertes.fr/jpa-00221675

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NONLINEAR CONDUCTIVITY IN

QUASI-ONE-DIMENSIONAL ORGANIC CRYSTALS

E. Conwell, N. Banik

To cite this version:

E. Conwell, N. Banik. NONLINEAR CONDUCTIVITY IN QUASI-ONE-DIMENSIONAL ORGANIC CRYSTALS. Journal de Physique Colloques, 1981, 42 (C7), pp.C7-315-C7-322.

�10.1051/jphyscol:1981738�. �jpa-00221675�

(2)

NONLINEAR CONDUCTIVITY IN QUASI-ONE-DIMENSIONAL ORGANIC CRYSTALS

E.M. Conwell and N.C. Banik

Xerox Webster Research Center, Webster, N.Y. 14580, U.S.A.

A b s t r a c t . - Large increases i n c o n d u c t i v i t y a w i t h e l e c t r i c f i e l d F, s t a r t i n g a t a few V/cm or l e s s , have been observed i n quasi-one-dimensional conductors such as TTF-TCNQ a t temperatures below the metal-to-semiconductor t r a n s i t i o n . Among the explanations t h a t have been suggested are depinned charge-or s p i n - d e n s i t y waves, conducting defects (<)>-particles) i n the charge-density waves and impact i o n i z a t i o n o f i m p u r i t i e s by hot c a r r i e r s , but none o f these i s s a t i s f a c t o r y . We show t h a t increase i n m o b i l i t y (due t o decreased phonon s c a t t e r i n g o f hot c a r r i e r s ) accounts well f o r t h e e a r l y p a r t o f the increase i n a , and speculate on mechanisms f o r e x p l a i n i n g the remainder.

I . I n t r o d u c t i o n . - The m a t e r i a l s we s h a l l be discussing are t e t r a t h i o f u l v a l e n e tetracyanoquinodimethane, TTF-TCNQ, and r e l a t e d organic s a l t s . In the c r y s t a l , as i n d i c a t e d i n F i g . 1 , the TTF molecules are l i n e d up i n stacks or chains and the TCNQ molecules i n separate s t a c k s . The TTF molecule donates approximately h an e l e c t r o n per molecule t o TCNQ, w i t h the r e s u l t t h a t both types o f stack conduct, TTF by h o l e s , TCNQ by e l e c t r o n s . Another type o f c r y s t a l we s h a l l discuss i s b i s - t e t r a m e t h y l t e t r a s e l e n a f u l v a l e n e hexafluorophosphate, (TMTSF)

2

PFg. The TMTSF molecule i s obtained by r e p l a c i n g t h e 4 H's i n TTF by methyl (CH,) groups and the S's by S e ' s . In t h e c r y s t a l the PFg's perform the acceptor f u n c t i o n o f TCNQ, t a k i n g e x a c t l y % e l e c t r o n from each TMTSF, but do not c a r r y any c u r r e n t . Conduction i s e n t i r e l y by holes along the TMTSF s t a c k s . These m a t e r i a l s are c a l l e d quasi-one-dimensional ( 1 - d ) because a i s much h i g h e r , by a f a c t o r 100 or more, along the stacks than perpendicular t o them.

JOURNAL DE PHYSIQUE

Colloque C7, supplément au n°10, Tome 42, oatobve 1981 page C7-315

Résumé. - Les fortes augmentations de la conductivité a avec le champ électrique F, dès qu'il est de l'ordre de quelques V/cm ont été observées dans des conducteurs quasi-unidimensionnels comme le TTF-TCNQ à des températures inférieures à celle de la transition métal-semiconducteur. Parmi les explications avancées, on trouve l'effet de la disparition de l'ancrage d'ondes de densité de charges ou de spin de défauts conducteurs (particules <(>) dans les ondes de densité de charge et de l'io- nisation par impact d'impuretés par des porteurs chauds ; mais aucune de celles-ci n'est satisfaisante.

Nous montrons que l'augmentation de mobilité due à une interaction décroissante des porteurs chauds avec les phonons rend bien compte de la première partie de l'aug- mentation de a et nous prévoyons des mécanismes pour expliquer le reste de la varia- ti on.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981738

(3)

JOURNAL DE PHYSIQUE

Fig. 1 : TTF and TCNQ molecules and t h e i r arrangement i n t h e c r y s t a l . The s t a c k o f TCNQ molecules ( d a r k c i r c l e s ) i s i n f r o n t 1 o f t h a t o f TTF molecules

TTF

(open c i r c l e s ) . From J. M i l l e r , " S y n t h e s i s and P r o p e r t i e s o f Low- Dimensional M e t a l s " eds.

J.S. M i l l e r and A.E. E p s t e i n (NY Acad. o f Sciences, 1978), p. 26.

TCNQ

A t room t e m p e r a t u r e t h e m a t e r i a l s we a r e i n t e r e s t e d i n may be c o n s i d e r e d m e t a l l i c , w i t h band c o n d u c t i o n a l o n g t h e s t a c k s and a Fermi l e v e l *$ o f t h e way i n t o t h e band. Conduction p e r p e n d i c u l a r t o t h e s t a c k s a t room t e m p e r a t u r e i s p r o b a b l y by hopping. I n t h i s paper we s h a l l d i s c u s s o n l y c o n d u c t i o n p a r a l l e l t o t h e s t a c k s .

I t i s known t h a t as t h e t e m p e r a t u r e i s lowered, a 1-d m e t a l l i c c o n d u c t o r becomes u n s t a b l e and a t some t e m p e r a t u r e TmS undergoes a t r a n s i t i o n t o a semi- c o n d u c t i n g o r s u p e r c o n d u c t i n g ground s t a t e . The l a t t e r case has been found r e c e n t l y f o r (TMTSF)* PF6 under pressure, and f o r some o f i t s c l o s e r e l a t i v e s , b u t w i l l n o t be c o n s i d e r e d f u r t h e r here. The semiconducting s t a t e i s achieved by a gap opening u p a t t h e Fermi s u r f a c e . T h i s i s e n e r g e t i c a l l y f a v o r a b l e because i t d r i v e s e l e c t r o n s i n t o l o w e r energy s t a t e s . I n t h e case o f TTF-TCNQ t h e gap opening i s due t o t h e appearance o f a p e r i o d i c v a r i a t i o n o f t h e d e n s i t y o f conduc- t i o n e l e c t r o n s ( o r h o l e s ) , c a l l e d charge d e n s i t y waves (CDW), w i t h wave v e c t o r 2kF, where kF i s t h e Fermi wave v e c t o r . T h i s i n t u r n causes t h e i o n s t o move, d i s t o r t i n g t h e l a t t i c e ( P e i e r l s d i s t o r t i o n ) . I n t h e o t h e r t y p e o f i n s t a b i l i t y , r e c e n t l y found t o o c c u r i n (TMTSF)2 PF6 a t ambient pressure, t h e gap opening i s due t o t h e c o n d u c t i o n e l e c t r o n s ( o r h o l e s ) o f each s p i n s e p a r a t e l y f o r m i n g waves, c a l l e d s p i n - d e n s i t y waves (SDW), w i t h wave v e c t o r 2kF. The two s p i n - d e n s i t y waves a r e 180° o u t o f phase, so t h e r e i s no n e t c h a r g e d e n s i t y anywhere and no m o t i o n o f t h e l a t t i c e i o n s .

I t i s i n t h e CDW o r SDW ground s t a t e o f t h e s e m a t e r i a l s t h a t t h e n o n l i n e a r -

i t i e s t h a t a r e t h e s u b j e c t o f t h i s paper occur. B e f o r e d e s c r i b i n g them we s h a l l

d i s c u s s l o w - f i e l d c o n d u c t i o n i n t h e m a t e r i a l s s i n c e u n d e r s t a n d i n g t h a t i s a pre-

r e q u i s i t e f o r d e a l i n g w i t h h i g h - f i e l d behavior. W i t h t h e ground s t a t e a r i s i n g f r o m

c o l l e c t i v e b e h a v i o r o f t h e e l e c t r o n s , some o f t h e t h e o r i e s o f c o n d u c t i o n a r e based

on such behavior. The c u r r e n t vs. f i e l d d a t a w i l l t h e n be presented, and i t w i l l

be shown t h a t t h e c o l l e c t i v e t h e o r i e s c a n n o t e x p l a i n t h e s e data. The r e c e n t r e a l -

i z a t i o n t h a t t h e m o b i l i t i e s a r e q u i t e h i g h has l e d us t o f o r m u l a t e a h o t c a r r i e r

t h e o r y which accounts w e l l f o r t h e i n i t i a l v a r i a t i o n o f c o n d u c t i v i t y w i t h f i e l d .

A f t e r d e s c r i b i n g t h a t , we w i l l d i s c u s s t h e s i t u a t i o n a t h i g h e r f i e l d s .

(4)

2. L o w - f i e l d conduction. - I n Fig. 2 we show t h e v a r i a t i o n o f t h e l o w - f i e l d o w i t h T f o r TTF-TCNQ. Below t h e t r a n s i t i o n t e m p e r a t u r e o f 54K o decreases r a p i d l y . From 25 down t o 10K t h e r e i s a r e g i o n o f c o n s t a n t a c t i v a t i o n energy, 200K, t h a t , a c c o r d i n g t o o t h e r measurements such as p h o t o c o n d u c t i v i t y , r e p r e s e n t s t h e semi- c o n d u c t i n g gap. Thus i n t h i s range TTF-TCNQ i s an i n t r i n s i c semiconductor. Below 10K t h e s l o p e o f l o g o vs. 1/T decreases. Cohen and Heeger have drawn i n a n o t h e r 1 c o n s t a n t s l o p e l i n e c o r r e s p o n d i n g t o an a c t i v a t i o n energy o f 14K. A n a t u r a l guess i s t h a t t h i s p a r t o f t h e c u r v e r e p r e s e n t s t h e r m a l e x c i t a t i o n f r o m i m p u r i t y o r d e f e c t l e v e l s w i t h i n t h e gap. That guess i s p r o b a b l y wrong. For one t h i n g ,

a1 though t h e s l o p e i n e v i t a b l y decreases a t l o w temperatures, i n o t h e r p e o p l e ' s d a t a (and perhaps i n t h o s e o f CH i f l o w e r T d a t a had been g i v e n ) i t decreases c o n t i n u - o u s l y w i t h d e c r e a s i n g T. It s h o u l d be n o t e d t h a t , a l t h o u g h t h i s m a t e r i a l and c l o s e

r e l a t i v e s have been s t u d i e d i n t e n s i v e l y f o r a number o f years, t h e o n l y s u c c e s s f u l d o p i n g experiments a r e t h o s e i n which s i m i l a r m o l e c u l e s have been s u b s t i t u t e d , say m o l e c u l e s w i t h H r e p l a c e d by D o r S b y Se. Such molecuf es do n o t change c a r r i e r c o n c e n t r a t i o n and can o n l y a f f e c t e l e c t r i c a l p r o p e r t i e s t h r o u g h t h e d i s o r d e r t h e y c r e a t e . I t has been mentioned f o r t h e case o f ( T M T S F ) ~ PF6 t h a t t h e electrochem- i c a l process b y which i t i s made appears t o be s e l f - p u r i f y i n g . When (TMTSF)~ PF6 i s prevented by p r e s s u r e f r o m under g o i n g t h e SDW t r a n s i t i o n , i t shows no s i g n o f r e s i d u a l r e s i s t a n c e down t o t h e s u p e r c o n d u c t i n g t r a n s i t i o n a t s l ~ . ~ I n l i g h t o f t h e s e f a c t s , i t i s n o t s u r p r i s i n g t h a t t h e r e i s n o t even a model f o r s h a l l o w l e v e l s due t o i m p u r i t i e s o r d e f e c t s i n t h e s e m a t e r i a l s .

What a r e t h e p o s s i b i l i t i e s f o r e x p l a i n i n g c o n d u c t i o n a t t h e s e l o w tempera-

t u r e s i n TTF-TCNQ? One mechanism t h a t m i g h t be i n v o k e d i s moving CDW's. S i n c e

t h e CDU1s a r e charged. t h e y m i g h t move i n an e l e c t r i c f i e l d , c o n s t i t u t i n g a

(5)

C 7 - 3 1 8 JOURNAL DE PHYSIQUE

c o l l e c t i v e e l e c t r o n i c c u r r e n t . U s u a l l y , however, t h e CDW's a r e p r e v e n t e d f r o m moving, t y p i c a l l y by i m p u r i t i e s o r d e f e c t s , w h i c h p r o v i d e r e g i o n s t o w h i c h e l e c - t r o n s a r e a t t r a c t e d o r r e p e l l e d . Nevertheless, CDW1s p i n n e d i n t h i s way can be depinned w i t h a v e r y s m a l l t h r e s h o l d f i e l d i n some m a t e r i a l s , n o t a b l y NbSej, and t h i s does p r o v i d e , i n t h o s e cases, a s t r o n g n o n l i n e a r i t y o f o i n an e l e c t r i c f i e l d . I n TTF-TCNQ t h e p i n n i n g must be q u i t e s t r o n g , however, because i t a r i s e s f r o m t h e e l e c t r o s t a t i c a t t r a c t i o n of t h e p o s i t i v e l y charged CDW's on t h e TTF s t a c k s f o r t h e n e g a t i v e l y charged ones on t h e TCNQ s t a c k s . To a l l o w t h e CDW's t o move i n oppo- s i t e d i r e c t i o n s , t h e e l e c t r i c f i e l d must be s t r o n g enough t o overcome t h i s e l e c - t r o s t a t i c a t t r a c t i o n . However, a mechanism has been found by which p i n n e d CDW1s can p r o v i d e c o n d u c t i v i t y . I t has been p r e d i c t e d t h e o r e t i c a l l y t h a t t h e r e can e x i s t t h e r m a l l y a c t i v a t e d d e f e c t s , i .e., compressions ( $ - p a r t i c 1 es) o r r a r e f a c t i o n s ( a n t i $ - p a r t i c l e s ) o f t h e charge d e n s i t y o s c i l l a t i o n s i n t h e CDW. These d e f e c t r e g i o n s have an excess charge, c l a c u l a t e d as f 2e,3 and can c a r r y c u r r e n t because t h e y a r e m o b i l e ( s o l i t o n s ) , a t l e a s t i n a CDW w i t h o u t d e f e c t s . I t i s t o

$ - p a r t i c l e s t h a t CH a t t r i b u t e t h e c o n d u c t i o n t h e y observe below 10K, a s s i g n i n g t o them t h e 14K a c t i v a t i o n energy. As n o t e d e a r l i e r , however, o t h e r r e s e a r c h e r s do n o t f i n d a 14K a c t i v a t i o n energy. n o r even a c o n s t a n t slope. An a l t e r n a t i v e sug- g e s t i o n t o account f o r t h e s m a l l e r s l o p e s seen a t l o w T ' s i s t h a t t h e y a r e due t o r e g i o n s o f t h e m a t e r i a l w i t h s m a l l e r gaps, t h e s e r e g i o n s d o m i n a t i n g o a t l o w temperatures because t h e l a r g e r gap r e g i o n s a r e f r o z e n out. S m a l l e r gaps c o u l d r e s u l t f r o m t h e presence o f d i s o r d e r , i m p u r i t i e s o r s t r a i n s . I t i s w e l l known f o r

( T M T s F ) ~ PF6 t h a t t h e gap decreases s t r o n g l y w i t h pressure,' d i s a p p e a r i n g a t a b o u t 10Kbar.

3. H i g h f i e l d e f f e c t s . - When t h e a p p l i e d e l e c t r i c f i e l d F i s i n c r e a s e d beyond a few V/cm a t l o w T's, c o n d u c t i o n o f TTF-TCNQ becomes h i g h l y n o n l i n e a r , as shown i n Fig. 3. A t t h e h i g h e s t f i e l d f o r which measurements were taken, ~ 4 0 0 V/cm, o had i n c r e a s e d by a f a c t o r g r e a t e r t h a n 10 4 . The e x p l a n a t i o n o f t h e s e i n c r e a s e s i n o advanced b y CH i n v o l v e d two mechanisms. Up t o

Q

100 V/cm, where a i s n o t changing r a p i d l y , t h e y a t t r i b u t e d t h e i n c r e a s e t o i n c r e a s e d numbers of

$ - p a r t i c l e s , due t o e l e c t r i c - f i e l d - i n d u c e d decrease o f t h e i r a c t i v a t i o n energy.

The r a p i d r i s e above 100 V/cm (where t h e @ - p a r t i c l e s would a l l presumably be f r e e )

t h e y a t t r i b u t e d t o CDW's depinned b y t h e h i g h f i e l d . T h e i r e x p l a n a t i o n i n terms

o f $ - p a r t i c l e s i s i n v a l i d a t e d by t h e f i n d i n g o f C.S. ~ a c o b s e n ~ t h a t j vs. F

behaves s i m i l a r l y above 4K, t o temperatures o f 15K a t l e a s t . I f t h e s o u r c e o f

t h e n o n l i n e a r i t y were $ - p a r t i c l e s w i t h a l o w - f i e l d a c t i v a t i o n energy o f 14K, no

e f f e c t on a o f f i e l d s h o u l d be seen a t 15K. The i d e a t h a t depinned CDW's a r e

c o n t r i b u t i n g t o j a t h i g h F1s i s e l i m i n a t e d by an experiment o f CH,' demonstra-

t i n g t h a t a sample h e a v i l y i r r a d i a t e d w i t h d e u t e r o n s has t h e same b e h a v i o r a t

v e r y h i g h F's as a n u n i r r a d i a t e d one. I r r a d i a t i o n i s known t o g i v e r i s e t o

d e f e c t s t h a t p i n CDW's.

(6)

10

0 .

B

F i g . 3: C u r r e n t d e n s i t y vs. e l e c t r i c f i e l d i n t e n s i t y f o r TTF-TCNQ, from Cohen and Heeger r e f e r e n c e 1.

0 IW 2 0 0 300

4w

E I V l c r n ) o o o

The p o s s i b i l i t y t h a t t h e r a p i d r i s e i n o i s due t o i m p a c t i o n i z a t i o n a c r o s s t h e gap by h o t c a r r i e r s was suggested by ~ a h l e r t , ~ who was t h e f i r s t t o f i n d t h e s e l o w T n o n l i n e a r i t i e s i n TTF-TCNQ. The i d e a o f t h e c a r r i e r s b e i n g h o t a t a11 was d i s m i s s e d by CH on t h e ground t h a t i t would r e q u i r e "a m o b i l i t y

4 2

p > 1 0 cm / V sec, a v a l u e f o u r o r d e r s o f magnitude g r e a t e r t h a n found i n even t h e p u r e s t s i n g l e - c r y s t a l o r g a n i c semiconductors."' A h o t e l e c t r o n t h e o r y was never- t h e l e s s s e t up by B l o c h e t a1,6 w h i c h l e d t o a f i t t o t h e e x p e r i m e n t a l j vs F w i t h a l o w f i e l d m o b i l i t y p o o f 40 cm 2 / V sec a t 4K. H e a t i n g o f t h e c a r r i e r s was found t o o c c u r d e s p i t e t h e l o w p because energy l o s s was k e p t v e r y s m a l l b y i n c l u d i n g o n l y l o s s e s by e m i s s i o n o f o p t i c a l phonons. The i n c r e a s e i n o on t h i s t h e o r y a r o s e m a i n l y f r o m i m p a c t i o n i z a t i o n o f s h a l l o w i m p u r i t y l e v e l s . For t h e CH sample o f Fig. 2, however, even if we assume t h a t t h e 14K s l o p e r e p r e s e n t s such l e v e l s , r e l e a s e o f a l l t h e c a r r i e r s i n v o l v e d would i n c r e a s e o a t 4K by l e s s t h a n 3 o r d e r s o f magnitude.

U n t i l perhaps a y e a r and a h a l f ago t h e p o s s i b i l i t y o f h i g h p c a r r i e r s i n t h e s e c r y s t a l s was n o t t a k e n s e r i o u s l y . I t i s w e l l known t h a t a t room T i n TTF- TCNQ and o t h e r m e t a l l i c members o f i t s f a m i l y p = 1 t o 4 cm 2 / V sec. T h i s i s t h e r e s u l t o f c a r r i e r e f f e c t i v e masses mn and m o f t h e o r d e r o f t h e f r e e e l e c t r o n

P

mass mo and t h e l a r g e number o f phonon branches, due t o t h e l a r g e number o f atoms per u n i t c e l l . The m o b i l i t y i n c r e a s e s a p p r o x i m a t e l y q u a d r a t i c a l l y w i t h d e c r e a s i n g T down t o Tms, b u t i s s t i l l o n l y a c o u p l e o f hundred cm 2 / V sec a t 60K. Below Tms, however, t h e s i t u a t i o n i s r a t h e r d i f f e r e n t , i t was d i s c o v e r e d r e c e n t l y . 4

A l t h o u g h i t i s d i f f i c u l t t o measure d i r e c t l y H a l l o r d r i f t m o b i l i t y a t l o w temper- a t u r e s i n TTF-TCNQ, one can c a l c u l a t e t h e c a r r i e r c o n c e n t r a t i o n f r o m t h e known gap and t h e d e n s i t y o f s t a t e s , w h i c h we s h a l l d i s c u s s below. Combining t h a t w i t h t h e

4 2

measured o a t 10K, we found t h a t p = x 10 cm /V sec a t t h a t temperature.4 Note t h a t t h e c a r r i e r c o n c e n t r a t i o n i s v e r y s m a l l a t 10K, < _ 1 0 ~ ~ / c m ~ . Not l o n g a f t e r we o b t a i n e d t h e s e numbers, pH was measured i n ( T M S F ) 2 PF The most r e c e n t

5 2

r e p o r t f o r t h a t m a t e r i a l i s t h a t pH = 1 0 cm / V sec a t 4 ~ 6 ' Since t h e m a t e r i a l i s i n t r i n s i c t h e r e , t h e i n d i v i d u a l m o b i l i t i e s pn and a r e even l a r g e r .

P

(7)

C7-320 JOURNAL DE PHYSIQUE

What i s i t t h a t makes u so h i g h below Tms? P a r t o f t h e answer t o t h i s q u e s t i o n l i e s i n t h e r e l a t i o n s h i p between energy and t h e wave v e c t o r k. Above TmS s i n c e t h e s e m a t e r i a l s have r e l a t i v e l y narrow c o n d u c t i o n bands, t h e w i d t h

E

= 0.5 t o 1 e v, t h e energy

E

t a k e s t h e t i g h t - b i n d i n g f o r m

E~

= ( ~ ~ / 2 ) ( 1 - COS k b ) ( 1 1

where b i s t h e l a t t i c e spacing. Expanding t h e cosine, we f i n d t h e u s u a l q u a d r a t i c r e l a t i o n between

E

and k f o r s t a t e s near t h e bottom o f t h e band, w i t h an e f f e c -

2 2

t i v e mass m = 2 ).( / s o b . For TTF-TCNQ, m - 2 mo, The gap a r i s e s from m i x i n g o f s t a t e s a t k and k - 2 kF. P e r t u r b a t i o n t h e o r y g i v e s t h e energy o f s t a t e s below

a s

where 2 A i s t h e gap. Again, f o r s t a t e s c l o s e t o t h e gap

E~

and t h e r a d i c a l can be expanded t o g i v e a q u a d r a t i c r e l a t i o n between Ek and (k-kF), k F b e i n g t h e wave v e c t o r a t t h e band edge, w i t h t h e e f f e c t i v e mass

a = (2 2 / s o b 2 ) [ ( E o / ~ ~ ) s i n 2 kFb i cos t F b I-' ( 3 )

The f a c t o r i n t h e f i r s t p a r e n t h e s i s i s r e c o g n i z e d as t h e e f f e c t i v e mass a t t h e bottom o f t h e u n s p l i t band. For a q u a r t e r - f i l l e d band s i n kFb and cos kFb a r e 2-', and t h e t e r m 2 cos k b ( w h i c h g i v e s t h e d i f f e r e n c e between mn and m ) i s q u i t e

F P

s m a l l compared t o t h e o t h e r t e r m i n t h e a n g u l a r b r a c k e t . N e g l e c t i n g cos kFb, we see t h a t m below Tms i s s m a l l e r t h a n t h a t above by a f a c t o r

1.

~ A / E ~ . T h i s f a c t o r i s q u i t e s m a l l . For TTF-TCNQ, where A s 200K, i t i s c 0.1 , w h i l e f o r (TMTSF)2 PF6, where A s 24K, i t i s l e s s t h a n 0.01. Thus a s m a l l mass i s a s s o c i a t e d w i t h a s m a l l gap, j u s t as i n InSb, f o r example. These s m a l l masses, p l u s t h e f a c t t h a t t h e v e r y many o p t i c a l branches o f t h e phonon spectrum a r e f r o z e n o u t , a r e what g i v e r i s e t o t h e h i g h m o b i l i t i e s a t l o w temperatures i n t h e s e m a t e r i a l s .

The h i g h m o b i l i t i e s suggest t h a t t h e dominant s c a t t e r e r s a r e a c o u s t i c pho- nons. We have c a l c u l a t e d LI due t o a c o u s t i c phonons, pat, and f i n d t h i s t o be t h e case.4 The c a l c u l a t i o n i s based on t h e usual p e r t u r b a t i o n t h e o r y . For t h e r - mal e l e c t r o n s , w h i c h a r e c l o s e t o t h e band edge, t h e square of t h e m a t r i x element v a r i e s as ( k - kF) 2 /w, where w i s t h e a c o u s t i c phonon frequency, i t s e l f p r o p o r - t i o n a l t o ( k - kF). These e l e c t r o n s i n t e r a c t w i t h l o n g wavelength phonons, f o r which n + 4 = kB T/

IA.

The o n l y s i g n i f i c a n t d i f f e r e n c e f r o m t h e 3-d case i s i n t h e d e n s i t y o f s t a t e s 9 ( =1/2 n dEk/dk). T h i s v a r i e s as ( k - k F ) - l , i.e., i n v e r s e l y as t h e square r o o t o f t h e energy measured f r o m t h e band edge, t h u s d e c r e a s i n g w i t h i n c r e a s i n g (k - kF) o r Ek f r o m t h e - v a l u e a t t h e band edge c h a r a c t e r i s t i c o f a I - d c r y s t a l . When t h e r e l a x a t i o n t i m e T i s c a l c u l a t e d f r o m t h e Golden Rule, t h e p r o d u c t o f t h e square o f t h e m a t r i x element, n + % and t h e

9

(8)

d e n s i t y of s t a t e s l e a d s t o T = ( k - kF), i.e., T = E', E r e p r e s e n t i n g t h e energy measured from t h e band edge. T h i s d i f f e r s f r o m t h e r e s u l t f o r t h e 3-d case, T E-%, p r e c i s e l y by t h e f a c t o r t h a t g i v e s t h e d i f f e r e n c e between t h e 3-d and 1-d d e n s i t i e s o f s t a t e s . P u t t i n g numbers i n t o t h e t h e o r e t i c a l e x p r e s s i o n

4 2

o b t a i n e d f o r pac,4 we f i n d uaCi 10 cm / V sec f o r TTF-TCNQ, i n good agreement w i t h t h e v a l u e deduced e a r l i e r from t h e measured a and c a l c u l a t e d c a r r i e r c o n c e n t r a - t i o n .

Knowing t h e s c a t t e r i n g mechanism and i t s energy dependence, we a r e i n a p o s i - t i o n t o c a l c u l a t e a as a f u n c t i o n o f F. We have so f a r done o n l y t h e s i m p l e s t t h e o r y , assuming an e l e c t r o n t e m p e r a t u r e Te which i s o b t a i n e d by e q u a t i n g t h e r a t e o f energy g a i n f r o m t h e f i e l d , ep ( T e ) F', t o t h e average r a t e o f l o s s t o a c o u s t i c phonons. From t h i s we o b t a i n f o r t h e change i n u,A p, a t a f i e l d F i n t h e warm e l e c t r o n r e g i o n

where v S i s t h e sound v e l o c i t y . W i t h vs = 3 x 1 0 cm/sec and p a l i t t l e o v e r 10 5 4 cm / V sec a t 4K ( o b t a i n e d by c o r r e c t i n g t h e v a l u e deduced a t 10K f o r v 2

a

T-%)

a c t h i s l e a d s t o a&uo

%

a few % a t 10V/cm, i n agreement w i t h t h e d a t a of Fig. 3.

For (TMTSFl2 PF6 au/uo o f a few % was found a t a much l o w e r f i e l d , 20 mV/cm, a t 4 ~ . I t was suggested t h a t t h e n o n l i n e a r i t y i n t h i s case i s due t o depinned ~ SDW's.' S t r o n g arguments a g a i n s t t h i s s u g g e s t i o n were p u t f o r w a r d by C h a i k i n e t a ~ We f i n d good agreement w i t h warm e l e c t r o n t h e o r y f o r t h i s case a l s o . . ~

5 2

The v a l u e o f pn o r u p deduced f r o m t h e measured pH o f 1 0 cm /V sec a t 4 ~ , * w i t h t h e d i f f e r e n c e i n mn and m t a k e n f r o m Eq. ( 3 ) , i s 6 x l o 6 cm 2 /V sec. When t h i s

P 5

i s i n s e r t e d i n Eq. ( 4 ) , w i t h vS = 3 x 10 cm/sec, t h e r e s u l t i s indeed Av/uo o f a few % a t 20 mV/cm.

For f i e l d s beyond t h e warm e l e c t r o n r a n g e t h e p a r a b o l i c a p p r o x i m a t i o n we have made f o r Ek and t h e d e n s i t y - o f - s t a t e s , a s w e l l as e q u i p a r t i t i o n f o r t h e phonons, a r e no l o n g e r v a l i d and c a l c u l a t i o n s must be done n u m e r i c a l l y . I t i s found t h a t uac i n c r e a s e s w i t h i n c r e a s i n g Te o n l y by a b o u t a f a c t o r 3 f o r TTF-TCNQ, and t h e n decreases w i t h f u r t h e r i n c r e a s e i n Te. How t h e n do we a c c o u n t f o r a n i n c r e a s e i n

a by a f a c t o r > 1 0 ? As n o t e d e a r l i e r , impact i o n i z a t i o n o f i m p u r i t i e s c o u l d n o t 4 a c c o u n t f o r such a l a r g e f a c t o r , a l t h o u g h we c a n n o t e l i m i n a t e t h e p o s s i b i l i t y t h a t i t accounts f o r some o f t h e i n c r e a s e . We suggest t h a t a good p a r t o f t h i s

i n c r e a s e i s due t o t h e b a r r i e r s t h a t must e x i s t . between r e q i o n s w i t h d i f f e r e n t

gaps, p o s t u l a t e d e a r l i e r t o e x p l a i n t h e c o n t i n u o u s l y v a r y i n g s l o p e o f t h e l o w

t e m p e r a t u r e l o g a vs. 1/T. A d d i t i o n a l evidence f o r a r a n g e o f gaps i s t h e c o n t i n -

uous background o f p h o t o c o n d u c t i v i t y and i n f r a r e d a b s o r p t i o n observed a t e n e r g i e s

below t h e gap. A1 so, f o r T < 20K t h e microwave a i s o r d e r s o f magnitude l a r q e r

t h a n dc a. A l t h o u g h t h e b a r r i e r s a r e n o t expected t o be l a r g e ( < ZOK), h e a t i n g

o f t h e c a r r i e r s would i n c r e a s e a o v e r a range o f f i e l d s by p e r m i t t i n g more

(9)

C7-322 JOURNAL DE PHYSIQUE

c a r r i e r s t o surmount t h e b a r r i e r s . W i t h f u r t h e r i n c r e a s e i n Te, c r e a t i o n o f e l e c - t r o n - h o l e p a i r s s h o u l d o c c u r , f i r s t across s m a l l e r gaps and t h e n a c r o s s p r o g r e s - s i v e l y l a r g e r gaps.

I n summary, we have d i s c u s s e d some mechanisms f o r n o n l i n e a r c o n d u c t i v i t y t h a t a r e u n i q u e t o quasi 1-d conductors, n o t a b l y depinned CDW's o r SDW's and + - p a r t i - c l e s . These e f f e c t s do n o t o c c u r i n TTF-TCNQ and r e l a t e d o r g a n i c compounds. Due t o t h e s m a l l e f f e c t i v e masses i n t h e s e m i c o n d u c t i n q s t a t e , h i g h m o b i l i t i e s and h o t c a r r i e r s a t f a i r l y l o w f i e l d s s h o u l d be a common phenomenon i n t h i s f a m i l y o f m a t e r i a l s . C a r r i e r h e a t i n g accounts w e l l f o r t h e i n i t i a l d e p a r t u r e s f r o m Ohm's l a w i n TTF-TCNQ, TSeF-TCNQ and (TMTSF)2 PF6, t h e o n l y compounds i n which n o n l i n e a r c o n d u c t i v i t y has been i n v e s t i g a t e d a t l o w temperatures. To o b t a i n a q u a n t i t a t i v e u n d e r s t a n d i n g o f l a r g e r d e p a r t u r e s r e q u i r e s more knowledge o f l o w - f i e l d c o n d u c t i o n a t l o w temperatures and of t h e phonon spectrum t h a n i s now a v a i l a b l e . Among t h e mechanisms t h a t must p l a y an i m p o r t a n t r o l e a r e surmounting o f b a r r i e r s between r e g i o n s of d i f f e r e n t gap and c r e a t i o n o f e l e c t r o n - h o l e p a i r s by i m p a c t i o n i z a t i o n .

M.J. Cohen and A.J. Heeger, Phys. Rev. B 16, 688 (1977). These a u t h o r s w i l l be r e f e r r e d t o as CH.

D. Jerome, A. Mazaud, M. R i b a u l t and K. Bechgaard, J. Phys. L e t t . 41, L-95

(1 980).

M.J. Rice, A.R. Bishop, J.A. Krumhansl and S.E. T r u l l i n g e r , Phys. Rev. L e t t . 36, 432 (1976).

-

N.C. Banik, E.M. Conwell and C.S. Jacobsen, S o l i d S t a t e Commun. 3, 267 ( 1 981 1,.

H. K a h l e r t , S o l i d S t a t e Commun. 17, 1161 (1975).

A.N. Bloch, T.F. C a r r u t h e r s , T.O. P o e h l e r and D.O. Cowan, i n "Chemistry and P h y s i c s o f One-Dimensional M e t a l s " , ed. H.J. K e l l e r (Plenum, N.Y. 1976) pp. 47-86.

P.M. Chaikin, G. Gruner, E.M. E n g l e r and R.L. Greene, Phys. Rev. L e t t . 45,

1874 (1980).

P. Haen, E.M. Engler,R.L. Greene and P.M. Chai k i n , B u l l . Am. Phys. Soc. 26,

213 (1981).

M.W. Walsh, Jr., F. Wudl, G.A. Thomas, D. Nalewajek, 5.3. Hauser, P.A. Lee

and T. Poehler, Phys. Rev. L e t t . 45, 829 (1980).

Références

Documents relatifs

Les ondes P, dites primaires car elles sont les plus rapides, vibrent dans leur direction de propagation.. Elles sont caractérisées par des zones de compression et de dilation de

Elle est mécanique si elle nécessite un milieu matériel pour se propager, avec pour effet de déplacer localement les particules de matière autour de leurs positions

Les sources les plus énergétiques étant celles qui émettent dans le domaine X, celles-ci sont situées au centre de cette galaxie.. Cette photographie est en «fausses couleurs» car

5 Un radiotélescope capte les ondes radio, c’est-à- dire des ondes dont les longueurs d’onde sont supé- rieures à 10 –1 m. Les ondes radio n’étant pas absor- bées

Les détecteurs sont des dispositifs munis de capteurs qui convertissent les rayonnements reçus en une grandeur physique mesurable (généralement une tension électrique). On utilisera

 Le spectre des ondes électromagnétiques est composé d’une infinité de radiations, chacune caractérisée par sa longueur d’onde dans le vide λ (en m) ou sa fréquence f ou

• Extraire et exploiter des informations sur - les manifestations des ondes mécaniques dans la matière - des sources d'ondes et de particules et leurs utilisations -

Les ondes électromagnétiques ne nécessitent pas d'un support matière pour se propager. Elles se propagent dans le vide. Remarque : Un photon est à la fois une particule et une