• Aucun résultat trouvé

rpoB, a promising marker for analyzing the diversity of bacterial communities by amplicon sequencing

N/A
N/A
Protected

Academic year: 2021

Partager "rpoB, a promising marker for analyzing the diversity of bacterial communities by amplicon sequencing"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02463373

https://hal.archives-ouvertes.fr/hal-02463373

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

rpoB, a promising marker for analyzing the diversity of bacterial communities by amplicon sequencing

Jean-Claude Ogier, Sylvie Pages, Matthieu Barret, Sophie Gaudriault

To cite this version:

Jean-Claude Ogier, Sylvie Pages, Matthieu Barret, Sophie Gaudriault. rpoB, a promising marker for

analyzing the diversity of bacterial communities by amplicon sequencing. 9. Colloque de l’Association

Francophone d’Ecologie Microbienne, Nov 2019, Bussang, France. �hal-02463373�

(2)

RPOB, A PROMISING MARKER FOR ANALYZING THE DIVERSITY OF BACTERIAL COMMUNITIES BY AMPLICON SEQUENCING (1)

J.C. Ogier

1

, S. Pagès

1

, M. Barret

2

and S. Gaudriault

1

1

INRA, Université Montpellier, UMR1333 DGIMI, CC054, 34095 Montpellier Cedex 05, France

2

INRA, Agrocampus Ouest, Université d'Angers, UMR –IRHS, 49071 Beaucouzé, France

OBJECTIVES: Microbiome composition is frequently studied by the amplification and high‐throughput sequencing of specific molecular markers (metabarcoding). The 16S rRNA gene is classically used to estimate bacterial diversity, but its low discriminating power for certain bacterial genera and its variable copy number in prokaryotic genomes constitute important limitations (2). In this study, we assessed the potential benefit of a portion of the rpoB gene as an alternative genetic marker. We first analyzed the sequence data generated by metabarcoding with rpoB and 16S (V3V4 region) markers on an artificial bacterial DNA complex corresponding to 19 different phylogenetic taxa. We then compared the performance of the rpoB and V3 V4 markers in an animal ecosystem model, the infective juveniles (IJs) of the entomopathogenic nematode Steinernema glaseri carrying the symbiotic bacteria Xenorhabdus poinarii.

2. Analysis of Mock communities

Impact on OTU taxonomic affiliations  and observed OTU richness

mock1 mock2 mock3 mock4 mock5 Expected rpoB

mock1 Expected 16S

rpoB

10 20 30 40 50 60

number of OTUs

Expected

symbiotic bacteria Xenorhabdus poinarii.

1. Experimental design for metabarcoding analysis 

IJs crushing and Quick extract Kit DNA extraction from Nematodes Preparation of 5 mock communities

Mix of genomic DNAs extracted from 19 bacterial species 5 mocks differing in the  proportions of the taxa

(5000 IJs)

OTU richness overestimated, especially for 16S marker

Taxonomic assignation level is better with rpoB marker  

7 ussp76

Phylogenetic tree of the overall OTUs

mock2 mock3 mock4 mock5

20% 60%

> order Family Genus Species 16S

0

The optimal read abundance threshold to individual  sample is 0.1%

mock1

mock5 2 3

4 Surface IJs cleaning (water)

*the numbers = OTU number

40% 80%

Illumina Miseq sequencing Amplification of  two genetic markers

16S

v3v4

rpoB

Data analysis

Raw read processing

Quality check

Chimera removal

Read abundance filter ( >0 005% of the whole data set) D

A D A

F R O G

Afaecalis1607

0.050

Illumina_rpoB

threshold =0.1%

sensitivity: 19/19 Seq variants: 12

Chimeras: 1

Xenorhabdu

Acinetobactersp460 0.050

Illumina_16S

threshold =0.1%

Sensitivity: 16/19 Seq variants: 24

Chimeras: 4

430 pb 450 pb

3 replicates per mock 4 replicates per nematode

3. Description of the nematodes IJ microbiota (Steinernema glaseri, 4 replicates)

Read abundance filter ( >0.005% of the whole data set)

2 S

Taxonomic assignment ( RDP Blast, 97% similarity) rpoB database* 

(45 000 seq)

Many additional OTUs are observed with V3V4 marker, corresponding to chimeras and variant sequences

Sensitivity is better with rpoB marker, i.e. the 19 species which compose the mock are detected

OTU composition at the Phylum and Family level Biological cycle of entomopathogenic nematodes

*created for this study and in  open access at  http://frogs.toulouse.inra.fr

Read abundance filter for individual sample  (>0.1% and >1% ) SILVA database

rpoB 16S rpoB 16S

Infective juvenile (IJ) searching for  insect prey in soils

FREE FORM IN SOILS x40

Xenorhabdus Steinernema

Non symbiotic bacteria (intercuticular space)

© S. Pagès

x400

0.75

0.5

0.25

Alcaligenaceae Brucellaceae Caulobacteraceae Comamodaceae Pseudomonaceae Rhizobiaceae Sphingomodaceae Xanthomodaceae Yersiniaceae Enterobacteriaceae Burkholderiaceae

Re la ti ve   abunda nce (% )

0.75

0.5

0.25

Bacteroidetes Proteobacteria Actinobacteria Firmicutes

IJ infects insect host IJs emerge fom insect cadaver

rpoB 16S rpoB 16S

Phylogenetic tree of the overall OTUs

OTU redundancies (Sequences variants)

Delftia815

Ochrobactrum587

Similar bacterial compositions were obtained with both markers at the Phylum level (mainly  Proteobacteria), but differences appear  at the Family level

Bacteria released into insect hemolymph

Bacteria infection kills insect host

PARASITIC PHASE IN INSECTS

IJs emerge fom insect cadaver

IJ development and colonization

Nematode growth using insect and  bacterial biomass as food

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

The OTU richness is dependent on the  used marker (vary from 30 to 55 OTUs)

OTU richness

Enterobacteriaceae206

phomonas155

Rhizobiaceae53 0.050

O

0.10

rpoB marker 24 potential OTUs

12 seq variants

16S marker 23 potential OTUs

46 seq variants

10 20 30 40 50 60 70

N umbe r  of   OT U s The pipeline tools (FROGS vsDADA2)  does not influence the OTU richness

References: (1) Ogier et al., 2019. rpoB, a promising marker for analyzing the diversity of bacterial communities by amplicon sequencing. BMC Microbiol. 2019 Jul 29;19(1):171. doi: 10.1186/s12866-019-1546-z.

(2) Roux et al., 2011, Comparison of 16S rRNA and protein-coding genes as molecular markers for assessing microbial diversity (Bacteria and Archaea) in ecosystems. FEMS Microbiol Ecology. 78. 617–628

CONCLUSIONS: The use of rpoB gene for metabarcoding analysis is a promising approach to accurately explore the diversity of bacterial communities because of its best discriminating power and the reduction of bias compared to the 16S marker. We created a database which includes 45,000 rpoB sequences covering the large diversity of available prokaryotic genomes. This database is available from the FROGS website (http://frogs.toulouse.inra.fr/).

Numerous sequence variants with the 16S marker (overestimation of the OTU diversity)

these sequence variants generate OTU identification errors (e.g. identification of P. luminescensand X. bovienii instead of X. poinarii))

Stenotrop

Only rpoB marker detects the bacterial symbiont X. poinarii

0  Probable over estimation of OTU 

richness with 16S marker

Références

Documents relatifs

Kramer GD, Pausz C, Herndl GJ (2005) Elemental composition of dissolved organic matter and bacterioplankton production in the Faroe-Shetland Channel (North Atlantic). Deep-Sea

Phylogenetic trees based on the 16S rRNA-V3 V4 region Muscle alignment were inferred with MEGA7, a PhyML-based maximum likelihood algorithm and the GTR model for: (a) individual

A main finding of this study is that, although the landscape scale beta diversity patterns of the three microbial domains investigated are all related to plant community

The significant decrease of bacterial density observed in bulk soils and microenvironments in crop systems (from 22 to 74 % according to microenvironments, Fig. 3) compared to

Correspondence analysis (CA) plot generated from the whole non cyanobacterial OTUs obtained with Eub-Pr1 (A) and NC-Pr2 (B) primer set, showing the distribution of the

Although the speci fi city of primers was validated for high number of phylogenetically diverse bacteria in pure culture, we couldn't exclude that some of additional DGGE bands from

Tindemans a fait basculer définitivement cette prérogative dans l'escarcelle du chef du gouvernement. Mais la doctrine a soutenu ultérieurement qu'un tel scénario n'avait

ZHUHILUVWGULYHQE\ ODQGXVHDQGVHFRQGO\E\VRLOWH[WXUHDQG S+/DQGXVHWRWDO&S+DQG WH[WXUH HTXLYDOHQWO\ DIIHFWHG VRLO EDFWHULDO FRPPXQLW\ VWUXFWXUH )RU VRLO EDFWHULDO ULFKQHVV