• Aucun résultat trouvé

Exploring carbon allocation with a multi-scale model: the case of apple

N/A
N/A
Protected

Academic year: 2021

Partager "Exploring carbon allocation with a multi-scale model: the case of apple"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: hal-01602913

https://hal.archives-ouvertes.fr/hal-01602913

Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Exploring carbon allocation with a multi-scale model:

the case of apple

Francesco Reyes, Benoit Pallas, Christophe Pradal, D Zanotelli, Frédéric

Boudon, F Vaggi, M. Saudreau, M Tagliavini, D. Gianelle, Evelyne Costes

To cite this version:

Francesco Reyes, Benoit Pallas, Christophe Pradal, D Zanotelli, Frédéric Boudon, et al.. Exploring carbon allocation with a multi-scale model: the case of apple. International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA 2016), Nov 2016, Qingdao, China. 2016. �hal-01602913�

(2)

Exploring carbon allocation with a multi-scale model: the

case of apple

F. Reyes1,2,*, B. Pallas3, C. Pradal4, D. Zanotelli2, F. Boudon4, F. Vaggi5, M. Sandreau6, M. Tagliavini2, D. Gianelle1, E. Costes3

1DASB, CRI, Fondazione E. Mach, 38010 San Michele all'Adige, Italy 2

Faculty of Science and Technology, UNIBZ, 39100 Bolzano, Italy

3INRA, UMR AGAP, Avenue d’Agropolis, F-34398 Montpellier Cedex 5, France. 4CIRAD, INRIA Virtual Plant, 34095 Montpellier Cedex 5, France

5Unit of Computational Biology, CRI, Fondazione E. Mach, 38010 San Michele all’Adige, Italy 6INRA, UMR 547 PIAF, F-63000 Clermont-Ferrand, France

*

Corresponding author: francesco.reyes@fmach.it

Keywords: Carbon Allocation, Plant architecture, Functional Structural Plant

Model, Multiscale Tree Graph, Sink Strength, Malus x Domestica

Understanding the allocation of carbohydrates among organs is necessary to predict plant growth in relation to climatic conditions and agronomic practices. Despite the large number of studies on the subject of carbon allocation, no clear consensus exists on (i) the most appropriate topological scale (organ, metamer, compartment...) to represent this process on complex plant structures, and (ii) the importance of distances between organs in carbon transport.

In this study, we implemented a generic source-sink based carbon allocation model, following the equation of the SIMWAL model, that takes into account the distances between sources and sinks, the sink strength and the availability of carbohydrates from photosynthesis. Our model makes use of multi-scale tree graph (MTG) to represent geometry and topology of a tree structure at different scales. Starting from the description of a plant at a given scale (e.g. metamer and growing unit scales), we defined additional grouping criteria (fruiting branches and main axis) that were used to represent the plant structure, and the process of carbon allocation at different spatial resolutions. Generic functions to determine the biomass and carbon demand of the individual organs described in an MTG were implemented and calibrated for apple trees (Fuji variety) by means of age and organ type dependent allometric equations and maximum potential Relative Growth Rate curves (RGR) obtained in a field experiment. Photosynthesis for individual leaves of the input MTG was estimated by means of a radiative model (RATP). The model was then applied to architectural mock-ups in the MTG format produced by the MappleT model, representing trees with high and low fruit loads.

Simulations on simplified plant structures qualitatively showed the influence of the scale of representation and of the distance parameter on the predicted carbon

(3)

allocation. In order to test assumptions regarding the effect of distance, the source-sink behavior and the suitability of the alternative scales of representation for predicting carbon allocation, the variability and spatial distribution of the simulated RGR were compared to field observations. Finally, a benchmarking was performed to compare the computational efficiency of the model when running at different scales.

The presented multiscale model provides a framework to re-interpret the plant topology in order to test the influence of some assumptions at the basis of the carbon allocation process, such as branch autonomy or the effect of distance. It is also a mean to investigate the trade-offs between the detail at which a plant is described, and the accuracy and computational efficiency in predicting carbon allocation. The present work was developed on the OpenAlea platform, and will provide existing Functional Structural Plant Models with a new generic model to simulate carbon allocation in plants.

Références

Documents relatifs

The walking link network data model simplifies the data structure of multi-modal transportation networks, and provides an integrated topology to facilitate shortest path finding

We introduce a new allocation rule on multi-choice games with a pal permission structure, called the Multi-choice permission value, which allocates the worth of the grand

Reservoir, cleaning, drug, stationary treatment: Evolution of the population density when contact with an environmental pathogen reservoir is added and when cleaning and. drug

A transitional flow in a porous multiscale network generated by the splitting of a microchannel was addressed analytically following a hydrodynamic approach and taking the wall

In this study, we developed a multi-scale carbon allocation model (MuSCA) that allows the use of different, user-defined, topological scales of a plant, and assessment of the impact

 The model showed its ability to represent the main drivers of carbon allocation, such as source-sink distances and competition among sinks , when applied to simulated apple

Despite the large number of studies on the subject of carbon allocation, no clear consensus exists on (i) the most appropriate topological scale (organ,

Comme ce travail l’a montré, dans leur pays d’origine, l’imbrication entre le sexe et la classe inscrit les trans dans le champ de la prostitution, au sens large (la