• Aucun résultat trouvé

Highly ordered LiFePO4 cathode material for Li-ion batteries templated by surfactant-modified polystyrene colloidal crystals

N/A
N/A
Protected

Academic year: 2021

Partager "Highly ordered LiFePO4 cathode material for Li-ion batteries templated by surfactant-modified polystyrene colloidal crystals"

Copied!
7
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Journal of Power Sources, 205, pp. 414-419, 2012-01-10

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/j.jpowsour.2012.01.042

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Highly ordered LiFePO4 cathode material for Li-ion batteries templated

by surfactant-modified polystyrene colloidal crystals

Yim, Chae-Ho; Baranova, Elena A.; Abu-Lebdeh, Yaser; Davidson, Isobel

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=f44190dc-f6a7-4320-b781-44460cccee7f

https://publications-cnrc.canada.ca/fra/voir/objet/?id=f44190dc-f6a7-4320-b781-44460cccee7f

(2)

JournalofPowerSources205 (2012) 414–419

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Power

Sources

j o ur n a l ho m e p age :w w w . e l s e v i e r . c o m / l o c a t e / j p o w s o u r

Highly

ordered

LiFePO

4

cathode

material

for

Li-ion

batteries

templated

by

surfactant-modified

polystyrene

colloidal

crystals

Chae-Ho

Yim

a

,

Elena

A.

Baranova

b

,

Yaser

Abu-Lebdeh

a,∗

,

Isobel

Davidson

a

aNationalResearchCouncilofCanada,1200MontrealRoad,Ottawa,ON,CanadaK1A0R6

bDepartmentofChemicalandBiologicalEngineering,UniversityofOttawa,161LouisPasteur,Ottawa,ON,CanadaK1N6N5

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received8December2011 Accepted2January2012 Available online 10 January 2012 Keywords:

LiFePO4

Li-ionbattery Cathodematerial

Three-dimensionallyorderedmacroporous structure

Organictemplateassistedsynthesis

a

b

s

t

r

a

c

t

AnorganictemplateassistedsynthesiswasdevelopedtoobtainhighlyorderedporousLiFePO4cathode

material.Thedevelopedsynthesisenabledtheuseofpolystyrene(PS)astemplatebymodifyingitssurface

withasurfactant(Brij78)torenderithydrophilic.Thematerialwassynthesizedinhighyieldandpurity

asconfirmedbyX-raypowderdiffraction.TheTEMandSEMimagesclearlyconfirmedthepresenceofa

highlyorderedporousstructureandthelattershowedthatthestructurehasanaverageporediameter

of400nmandawallthicknessanddepthof∼100nm.Thermalscansandelementalanalysisshowed

thatthematerialcontainsahighamountofcarbonreaching23–28%byweight.Thesurfaceareawas

calculatedusingtheBETmethodandfoundtobe7.71m2g−1.Li/LiFePO

4halfcellsweretestedandgave

satisfactorydischargecapacities;aninitialcapacity(158mAhg−1)closetothetheoreticalvalueand

recoverablecapacitiesathighC-rates(2–5C).

Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

Li-ionbatteriesarecurrentlyusedinmanyconsumerelectronic productsduetotheirsuperiorperformance(e.g.higherenergy den-sityandlongercyclelife)overotherbatterytechnologies[1].They arethereforeunderconsiderationforawidevarietyofapplications whereanenergystoragesystemisneededwithmostofthe atten-tionisfocusedontransportation[2]andtheelectricalgrid[3].This requiresafurtherimprovementintheperformanceofthebatteries, lowertheircostandenhancetheirsafety,whichcanbeachievedby enhancingthefunctionalityofcurrentlyusedmaterialsor introduc-ingnewones.CathodematerialsbasedonolivinestructureLiMPO4

(M:Mn,Fe,CoNi)arecurrentlyconsideredasaviablealternative tothosebasedontheLiMO2layeredoxidestructure,withmostof

thedevelopmentisfocusedonLiFePO4toreplaceLiCoO2.LiFePO4

showsahightheoreticalcapacity∼170mAhg−1at3.4V.Itisless

toxic,lesscostlyandmoreenvironmentalfriendlythanLiCoO2.It

isalsointrinsicallysaferduetothestrongP Ocovalent charac-terofthepolyanion(PO4−3)groupthatrendersthematerialless

pronetooxygenreleasethanlayeredoxides.Themajordrawback ofLiFePO4and olivinematerialsingeneralistheirlow intrinsic

electronic(∼10−9Scm−1)andionicconductivity(uni-dimensional

and/ornotnormaltothecrystallineplanes).Severalapproaches

∗ Correspondingauthor.Tel.:+16139494184;fax:+16139912384. E-mailaddresses:Yaser.Abu-Lebdeh@nrc-cnrc.gc.ca,yagal73@yahoo.ca

(Y.Abu-Lebdeh).

havebeensuggestedtoovercometheproblemsuchas introduc-ingcarbonasacoating[4]onthesurfaceoftheparticlesorasa composite[5],or“doping”withmetalpowders[6]orsupervalent cations[7]ortheformationofironphosphidenetworks[8].

Threedimensionallyorderedmacroporous(3DOM)materialsor inverseopalsisonetypeofhighlyporousmaterialsthatattracteda lotofattentioninrecentyearsandhavebeenusedinawiderange ofapplicationssuchasinbiosensors[9–11],photonics [12–14], andnanofabrications[15].Inbatteries,betterratecapabilitywas demonstratedwithawidevarietyofelectrodematerialsthathave beensynthesizedwitha3DOMstructureduetofasterionic mobil-itybyprovidingcontinuousandveryshortionicpathsandhigh surfaceareaforgreatercontactwiththeelectrolyte.Thisismostly doneby a soft chemical methodthat involves impregnationof theinorganicprecursorsolutionintotheorderedtemplatethatis usuallyorganicinnaturelikepolymers,synthesizedbyradical poly-merization,suchaspoly(styrene)(PS)orpoly(methylmethacrylate) (PMMA)[16],orinorganicsuchassilica[17].Also,whentheordered template is removeda structure withcloselypackeduniformly sized spherical pores (>10nm) and thick walls (10–100nm) is formed.Inthecasewhenanorganictemplateisuseditservestwo purposes:besidesactingasatemplatedirectingthestructureinto threedimensionalorder,itsthermaldecompositionduring syn-thesisleadstotheformationofaconductivecarbon coatingon thesurfaceofthesynthesizedelectrodematerial,which isvery advantageousinthecaseofolivines.

Recently,Dohertyetal.[18]synthesized3DOMLiFePO4using

a polymethyl methacrylate (PMMA) colloidal template and Lu

0378-7753/$–seefrontmatter.Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2012.01.042

(3)

Fig.1. SchematicoftheexperimentalprocedurewithandwithoutBrij78.

etal.[19]usingacopolymerofpoly(styrene-methyl methacrylate-acrylicacid). The use of PMMA as a colloidal templates was a naturalchoiceduetoitshydrophilicitythatallowsforthe infil-trationofLiFePO4aqueousprecursor(CH3COOLi,Fe(NO3)3,H3PO4)

solutionintoitsinterstitialvoidsbyinteractingwiththeionic acry-lategroupsofthepolymer.However,ithasbeendemonstratedthat theperformanceofLiFePO4asacathodematerialinLi-ion

batter-iesdependsontheamount,typeandmorphologyofthecarbon coatingthatinturniscontrolledbythechemistryofthecarbon source[20–22].Awidevarietyofcarbonsourceswerestudiedby otherstoimprovetheelectronicconductivityofolivinematerials [21,22].Nienetal.[22]studiedtheeffectofdifferenttypesof poly-mersandfoundthatPSasacarbonsourceresultedinthehighest capacityforLiFePO4.However,PSunlikePMMAistoo

hydropho-bictoallowfortheimpregnationoftheLiFePO4aqueousprecursor

solutionintoitsinterstitialvoids.Althoughionicresiduesfromthe initiatorafterpolymerizationcouldmakeitslightlyhydrophilicand allowforthesynthesis,hereinweproposeamoreeffectivewayto overcometheproblembasedontheuseofasurfactant.Brij78is anon-ionicsurfactantthatcontainsalonghydrophobic(aliphatic) andhydrophilic(etheric)chain.InfiltrationofBrij78intothePS templateallowsforthehydrophobicchaintointeractwiththe sur-faceofthePSandanchoringthesurfactantmoleculesleavingthe hydrophilicsidefreetointeract(complex)withtheionsinthe pre-cursorsolutionpossiblythroughtheionpairsofethericoxygens. Thiswillallowforafacileimpregnationoftheaqueousprecursor solutionintotheinterstitialvoidsofthetemplate.

Inthiswork,thesynthesisof3DOMLiFePO4assistedbyaPS

templatewassuccessfullypossiblewithveryhighyieldby modify-ingthesurfaceofPSwithanon-ionicsurfactant(Brij78)toenhance itsaffinity(hydrophilicity)totheaqueousprecursorsolution.The obtainedhighlyorderedporousLiFePO4materialwascharacterized

byelementalanalysis(EDXandXRF),SEM,TEM,TGA,andXRD.Its performancewasfullyinvestigatedinLi/LiFePO4halfcellbatteries

(Fig.1).

2. Experimental

2.1. Synthesisofpolystyrene(PS)spherescolloidaltemplate

PScolloids weresynthesized byemulsionpolymerization,as describedbyHollandetal.[23].Thestyrenemonomerwasobtained from Sigma–Aldrich (≥99% Reagentplus) and was purged with nitrogenpriortouse.Then,50mLofstyrenewasaddedto425mL ofde-ionized water,which wasalsopurgedwithnitrogen.The mixture was heated to 70◦C. To initialize the polymerization,

nitrogen-purgedaqueoussolutionof0.1MK2S2O8(Sigma–Aldrich,

99%)wasaddedtothemixture.Thesolutionwaskeptat70◦Cfor

24hundernitrogen.ThePScolloidswerewashedwithethanol (CommercialAlcoholsInc.,95%)andcentrifugedat10000rpmfor 1htoobtaintheorderedorganictemplate,asshowninFig.2,Step1. Thisstepwasrepeatedthreetimestoremovetheinorganic impu-rities.Theresultingtemplatewasdriedinopenatmosphereprior totheinfiltrationofLiFePO4.

Fig.2.Generalsynthesisof3DOMmaterial.Step1:orderingorganiccolloids;Step2:renderinghydrophobicitywithBrij78;Step3:immersionwithprecursorsolution;and Step4:calcinationtoproduce3DOMmaterial.

(4)

416 C.-H.Yimetal./JournalofPowerSources205 (2012) 414–419

2.2. SynthesisofLiFePO4 2.2.1. 3DOMLiFePO4

To infiltrate the hydrophilic LiFePO4 precursor solution,the

hydrophobicityofthePStemplate waschangedwithBrij78,as showninFig.2,Step2.First,0.01gmL−1ofBrij78(Sigma–Aldrich)

solutionwaspreparedbyadding0.3gofBrij78to30mLofethanol. ThePStemplatewasimmersedintheBrij78solutionfor5minto makesuretheBrijisinfiltratedintothetemplate.Theexcess solu-tionwasremovedusingvacuumfiltration,andthetemplatewas transferredtoanaluminaboatforfurtherinfiltrationofthe olivine-basedprecursor solution.Thesolutionwasprepared bymixing LiNO3,H3PO4(BDHInc.,85%),andmetalchloride,FeCl2·4H2O(Alfa

Aesar,98%)indistilledwater.Theprecursorsolutionwasprepared toyield1goftheolivine-basedmaterial.Themetalchloridewas fullydissolvedin1gofwater,andH3PO4andLiNO3wereadded

andmixeduntilthesaltswerefullydissolved.Theprecursor solu-tionoftheolivine-basedmaterialwasinfiltratedintothetemplate. Apipettewasusedtoslowlycoatthetemplatewiththesolution, asshowninFig.2,Step3.Theinfiltratedtemplatewasallowedto dryovernight.Then,thedryorganictemplatewassinteredunder argon(Linde Canada,99.999%). Calcinationswere performedin twostagesunderargon:onceat260◦Cfor3htoremovethePS

templatefromtheolivine-basedmaterialsandagainat700◦Cfor

3htoobtaintheolivine-basedmaterialswitha carboncoating. TopreventthevolatiledecompositionofthePStemplate,aslow temperaturerateof2◦Cmin−1wasused.

2.2.2. Standardnon-templatedLiFePO4/C

A solid-state reactionwas usedto synthesizeLiFePO4 (LFP).

Li2CO3 (Sigma–Aldrich,99%),Fe(C2H3O2)2·2H2O(RiedeldeHaen,

99%),andNH4H2PO4(Sigma–Aldrich,99%)weremixedinamolar

ratioof0.5:1:1.Citricacidwasaddedtothemixturetocarboncoat theLFP.Theamountofcitricacidwas5wt%offinalsynthesizedLFP. Themixturewassoftballmilledusing60mLofNALGENEjar(VWR) withzirconiabeads(TosohCorp.,5mmindiameter)for homoge-nousmixing.EnoughacetonetofillhalfoftheNALGENEjarwas addedtothemixturewith20zirconiabeads.Themixturewasball milledforthreedaysandthenacetonewasevaporatedunderthe fumehood.Theremainingmixturewassinteredunderargonat 700◦C.

2.3. CharacterizationofPSand3DOMLiFePO4

PowderX-raydiffractionwascarriedoutbetween15◦and85

(2angles) usingaBrukerAXSD8diffractometerwitha CoK␣ sourcewith35kVand45mAofpower,adivergenceangleof0.3◦,a

stepsizeof0.027◦,andanacquisitiontimeof1sperstep.The

pat-ternswereanalyzedbytheRietveldrefinementmethod[24]using thesoftwareTOPASv4.2fromBrukerAXS[25].Themorphology ofthematerialwascharacterizedbyscanningelectronmicroscopy (SEM)usingaJEOL840A.Thermalgravimetricanalysis(TGA)was performedtoquantifytheamountofcarbonpresentinthe3DOM LiFePO4.ATGA2950TAinstrumentwasused.Thecompositewas

heatedat10◦Cmin−1upto110Cfor30mintoremovemoisture

containedinthematerialandthenheatedcontinuouslyupto800◦C

inairinordertooxidizethecarbonfromthecomposite.

The elemental analysis technique, X-ray fluorescence (XRF) analysis,wasperformedusinganautomatedBrukerAXSS4 Pio-neer.TheS4pioneerisa4kWsequentialwavelength-dispersive XRFspectrometerusinganRh-anodeX-raytubewith75␮mthin Beendwindow.Allthemeasurementsweredoneundervacuum modeusinga28mmmaskanda0.23◦collimator.Thesamplewas

preparedbythelithiumboratefusionmethod.100mgofsample wasmixedwith7gofflux.ThetypeoffluxusedwasClaisse,which ismadeof66.67%ofLi2B4O7,32.83%ofLiBO2,and0.5%ofLiBr.The

mixtureswerefusedwithaClaisseM4three-positiongasfluxer producing32-mmglassbeadsat1000◦C.

Transmission electron microscopy (TEM) analysis of 3DOM LiFePO4wascarriedoutusingaJEOLJEM2100FFETEMmicroscope

operatingat120kV.ThesamplewaspreparedforTEManalysisby sonicatingandsuspendingthe3DOMLiFePO4 inethanol.Copper

gridwasdippedtothesamplesolutionseveraltimesanddried onair.Bulkelementalcompositionoftheresulting3DOMLiFePO4

depositedoncarbonsupportwasstudiedusingenergydispersive X-rayanalysis(EDX).TheEDXanalysiswasperformedusingaJEOL JSM-7500Ffieldemissionscanningelectronmicroscopeequipped withanenergydispersiveX-rayspectrometer(OxfordInstrument). Thespectrawereacquiredatanaccelerationvoltageof20kV.

The specific surface area was estimated by nitro-gen adsorption–desorption porosimetry at 77K via the Brunauer–Emmet–Teller(BET)method.Theinstrumentemployed wasaMicromeriticsASAP2000system.Priortoeachmeasurement, thesamplewasevacuatedovernightat150◦Cunderapressure,

10−6Torr.

2.4. Lithiumbatteryperformanceof3DOMLiFePO4inLi-ioncell

3DOMLiFePO4 wastestedasa Li-ionhalf-cellusinga

2325-typecoincell.Theelectrodewaspreparedfromaslurrymadeof 75wt%activematerial,5wt%carbonSuperS(Timcalgraphiteand Carbon,Switzerland),5wt%carbongraphiteE-KS4(KG,LonzaG+T, Switzerland)and15wt%ofpolyvinylidenefluoride(PVDF,Kynar Flex 2800dissolvedinN-methyl-pyrrolidonefromAldrich)asa binder.Thecastwaspreparedusinganautomateddoctorblade spreaderanddriedovernightinaconvectionovenat85◦C,and

thenina vacuumovenovernightat80◦C.Individualelectrodes

(Ø=12.5mm) werepunched out, dried at 80◦C under vacuum

overnight,pressedunderapressureof0.5metricton,andwere usedaspositiveelectrodes.Alithiumdisk(Ø=16.5mm)wasused as a negative electrode (counter electrode and reference elec-trode).70␮Lof1MLiPF6 inEC:DMC(1:1byvolume)wasused

aselectrolyteandspreadoveradoublelayerofthepolypropylene separators(Celgard30).Thebatterieswereassembledinan argon-filleddrybox.ThecellswerecycledgalvanostaticallyusinganArbin batterycyclerandtestedusingcyclicvoltammetrytechniques.The cellsweretestedatdifferentC-ratesofcharge/discharge:C/12,C/6, C,2Cand5C.Fivefullcyclesofcharge/dischargeweremeasured foreachC-rate.

3. Resultsanddiscussion

AwhitepowderofPSsphereswasobtainedbycentrifugationof themilkysolutionattheendofpolymerizationreactionofstyrene, separationoforderedPStemplatefromthesolutionanddrying the PStemplate. Coating thepowder withBrij 78 followed by impregnationwithprecursorsolutionandcalcinationsgaveablack LiFePO4powder.Fig.3showstheRietveldrefinementofthe

synthe-sizedLiFePO4powderwiththereferencepeaksforLiFePO4(ISCD

161479)shownasblacklinesrightabovethex-axis.TheXRD pat-ternsshowa pureLiFePO4 phasewithnoevidenceofanyother

phasesorimpurities.ThespacegroupofLiFePO4wasidentifiedas

Pmnawithacrystalsizeof78.1nmandthelatticeparametersare determinedandlistedinTable1.Theparametervaluesandcrystal structureagreeverywellwiththeresultsdescribedinthe litera-ture[18,26–28].Thereferencepeaksareusedtosimulatethefitin ordertoevaluatethelatticeparameterandcrystalsizeusingthe softwareTOPASv4.2.

ThesurfaceareaofthecompositewasmeasuredusingtheBET method.Itwasfoundtobe7.71m2g−1 whichwasmuchlower

(5)

Fig.3.RietveldrefinementoftheX-raydiffractionpatternofthe3DOMLiFePO4.

Table1

LatticeparametersofsynthesizedandreferenceLiFePO4.

Latticeparameters Synthesized Ref.[32]

a( ˚A) 10.3331(5) 10.33

b( ˚A) 6.0106(3) 6.01

c( ˚A) 4.6953(3) 4.70

Crystalsize(nm) 78.1(2) N/A

[18],andalittlesmallerthantheLiFePO4synthesizedbyPhostech

LithiumInc.(12m2g−1)[29].Itisknownthattheamountofcarbon

inLiFePO4/CcompositeaffectsgreatlythesurfaceareaofLiFePO4;

thehighertheamountofcarbonthelowerthesurfacearea[18]. Thiscouldbeattributed,amongotherthings,tothefactthatthe carboncontentinthecompositeinterferesinthe3Dporous net-workandblockssomeofthepathshenceisolatinglargesurfaces fromtheaccessibletotalsurfaceareaofLiFePO4.

Fig.4showstheSEMmicrographsofthesynthesizedLiFePO4

withaBrij78-coatedPStemplateandtheunmodifiedPStemplate. Fromtheinsetimage,itcanbeseenthatPStemplatehas aver-agespherediametersintherangebetween300and500nmclosely packedinanorderlyfashion.Themainimageshowsa macrop-orousstructureofLiFePO4withoverlaidlayersandorderedpores

inasimplecubicstructurehavingadiameterthatmatchesthose ofthespheresofthePStemplate.Thethicknessandthedepthof

Fig.4.SEMmicrographofthesynthesized3DOMLiFePO4andPScolloids(inset).

Fig.5. TEMmicrographofthesynthesized3DOMLiFePO4.

thesynthesized3DOMLiFePO4aresimilarasitisthecaseforcubic

structuresandcanbeapproximatelyestimatedtobeintherange of100nm.Insomepartsoftheimage,rupturesinthestructure canbeeasilyseenthatcouldbeattributedtothevolatile decompo-sitionproductsofsomechainsofthePStemplate.Theprocedure wasrepeatedtoensurethatthesynthesisof3DOMLiFePO4could

bereproducedandthesamemorphology(SEM)andXRD diffrac-tionpatternwereobserved.Fig.5showsTEMmicrographsofthe synthesizedLiFePO4.Theimagesshowclearlyanopenstructure

witharegularvoidpatternthatresemblestheoneobservedinthe SEMimages.Theenlargedimageshowspartofthe3DOM struc-turewithLiFePO4 core(darkregion)surroundedbytheedgesof

thesphericalvoidscoveredbyacarboncoating(brightregion)that is50nmorlessthick.Thewhitedashedlinesshownarethetrace ofthesphericalvoids.ThesecondinsetisanEDXscanofthesame 3DOMLiFePO4sample.Thescanshowsalltheexpectedelementsin

thecomposites:Fe,P,O,C,exceptforLithatcouldnotbeobserved duetothelimitoftheEDX.Cufromthesampleholdercanalsobe seen.

Brij78 wasusedtorenderPStemplate hydrophilictoallow for theinfiltrationof theconcentratedaqueous precursor solu-tionthatisnecessarytoobtainhighyieldofthe3DOMmaterial. Thehighlyconcentratedprecursorsolution(1gofwater)has dif-ficulty infiltratingintothe interstitialvoids of thehydrophobic PStemplatewhennomodificationofsurfacewasmade.Infact, theprecursor solution formeda large convexmeniscus ontop of thePS template and when leftto dry turned intolumps of yellowspotsdistributedunevenlyatthesurface.TheBrij78 surfac-tantconsistsoflongetherichydrophilicandaliphatichydrophobic blocks.ThehydrophobicblocksboundwiththePScolloidswhile thehydrophilicblocksstandingoutofthecolloidstoallowfor infil-trationofthewater-basedprecursorsolution.Thiswasachievedby immersingthedryPStemplateinasolutionofBrij78inethanol. Thepowderbrokeintomillimeter-sizedparticlesassociatedwith smallbubblesoriginatingfromairtrappedamongtheinterstitial voidsofthetemplates.After2min,thefinebubblescouldnolonger beobserved,indicatingthecompletionoftheinfiltration.To com-pletetheinfiltrationoftheBrijsolution,itwasleftstillforfewmore minuteswithtotalinfiltrationtimeofapproximately5min.The excessBrijsolutionwasremovedusingvacuumfiltration.When

(6)

418 C.-H.Yimetal./JournalofPowerSources205 (2012) 414–419

Fig.6.TGAanalysisofLiFePO4underoxygen.

Brij78wascoatedontothetemplate,theinfiltrationperiodforthe aqueousprecursorsolutionwasshortanditwashomogenously infiltratedthroughthePStemplate.

Two-stepcalcinationatveryslowheatingratewasperformed inordertoremovethePScolloidswhilemaintainingthe3DOM structurebypreventingthevolatiledecompositionofPScolloids andtogiveenoughtimefortheinorganicmaterialstocondense andreact.Inthefirststep,calcinationoccurredat260◦Cfor3hin

ordertoremovethePStemplateandcondensethematerial,while inthesecondstepcalcinationoccurredat700◦Cforanother3hin

ordertosynthesizeandcrystallizetheLiFePO4.Attheendofthe

cal-cinationsthesynthesizedmaterialswerelefttocooldownslowly toroomtemperature.Thecalcinationswereperformedunderinert atmosphere(argon)topreventtheoxidizationofFe2+toFe3+,and

alsotoallowfortheformationofcarboncoatingonthematerials insteadofforminggasses.

Fig.6shows thethermal gravimetricanalysis(TGA)curveof LiFePO4 heated inair. TGAwasperformedunder air tooxidize

anddecomposetheentirecarbonresidueinthematerial.TGAis commonlyusedforevaluatingthecarboncontent[27].Basedon theresults,thecommercialLiFePO4had3%weightgain,

suggest-ing1wt%ofcarbonintheactivematerial,when5%weightgain isassumedtobetheresultofLiFePO4oxidation.Thesynthesized

LiFePO4 inthisworkshowed19%weightloss,thatcorresponds

to23wt%ofcarboncontentintheLiFePO4.Athightemperatures

andpressure,Fe(II)inLiFePO4getsoxidizedtoFe(III)(Eq.(1)),as

suggestedbyBelharouaketal.[27]:

LiFePO4+(1/4)O2→ (1/3)Li3Fe2(PO4)3+(1/6)Fe2O3 (1)

Asaresultofthisoxidation,weightgainof5%wasobserveddue tothereactionofoxygenwithironcationinLiFePO4.Thesame

cal-culationwasmadeusingtheTGAresults.Astheoxidationoccurs athightemperaturethat followsthesamereactionpath asEq. (1),usingtheinitialandfinalweights,thecarboncontentsinthe materialswereevaluatedandfoundtobe23wt%.XRFwasusedto verifytheamountofcarboncontent.Duringthesample prepara-tion28wt%losswasobserved,duetothelossofcarbonresidues inthecompositeandthereforethetotalamountofcarboninthe sample.Thevalueisslightlyhighercomparedtotheoneobtained byTGA(23wt%).Also,theatomicratioofthecompositewas con-firmedtobe1:1:4forFe:P:O,whichistheexactcompositionratio ofLiFePO4.

Theeffectoftheamountandtypeofcarboncoatingonthe per-formanceofLiFePO4 hasnotyetbeenfullystudied.However,a

thin layerisonly necessaryin ordertoallowfor thediffusion/

Fig.7.Dischargecurvesof3DOMLiFePO4atdifferentC-rates.

migration of Liions in and outof LiFePO4 and lessthan 5wt%

seemssufficientevenathighcharge/dischargerates.The calcu-latedamountofcarbon(23wt%)inourmaterialisveryhighdue tothenatureofPSdecompositionwhere lessdepolymerization versusside chaindecomposition takesplaceat theinitialstage of calcination.This allows for theformation of higher molecu-lar weight carbon precursor instead of the loss of material by theformation of volatile low molecularweight,depolymerized monomer-likespecies.Also,inoursyntheticmethodthe decompo-sitionproductsoftheBrij78surfactantcontributetotheamount of carbon coating. Moreover,thetype of the carbon formedin ourcase is believed to behighly conductiveas pointed outby Nien et al. [22] who showed that PSmakes highly conductive carboncoatingsonLiFePO4duetothefactthatitcontainsan

aro-maticphenylgroup.Organic(molecularorpolymeric)compounds witharomaticmoietieshavebeeninvestigatedasacarbon precur-sorduringthesynthesisofLiFePO4duetotheirabilitytoforma

highlygraphitictypeofcarbonthatismoreelectronically conduc-tive[20,27].

Fig.7showsthedischargecurveofthesynthesizedLiFePO4that

wastestedasacathodeinahalf-cellwhilelithiummetalwasused asananodeelectrode.Itshowsthetypicalflatdischargecurveof LiFePO4indicativeoftwo-phasereactionofLiFePO4/FePO4

accord-ingto:LiFePO4→FePO4+Li++e−1.Theinitialdischargecapacityat

C/12wasfoundtobe158mAhg−1thatisclosetothetheoretical

capacityof170mAhg−1[26].Thefirstdischargecurvesat

differ-entC-ratesarealsoshown.Itcanbeseenthatathighdischarge C-ratetheflatplateauisshortenedandtheinclineddropin poten-tialdominatesduetodiffusionpolarization(masstransportstep slowerthantheotherstepsintheelectrochemicalreaction).The presenceofahighlyporousstructureintheLiFePO4cathodeseems

tohavelittleeffectinmitigatingtheeffectofdiffusion polariza-tionontheelectrochemicalperformanceofLiFePO4whichisdue

tothelargecarboncontentinthematerial.Similarbehaviorwas observedbyDohertyetal.[18]whoreportedslightlylower capac-ities(140mAhg−1atC/10and70mAhg−1at5C)fortheLiFePO

4

templatedbyPMMA(sphereswithdiameter270nm)andhas car-boncontentof7wt%synthesizedat700◦C.Theysuggestedthat

excesscarbonseemstoblockLiionmovementthroughthe inter-face and theelectrolyte moleculesand ions through thepores. Similarbehaviorwasalsoreportedbymanyothersinnano-sized LiFePO4 particles (∼100nm)and it is widelyacceptedthat low

carboncontent(3.2wt%)withporousstructureandveryhigh con-ductivity(sp2character)issufficienttoallowforelectronstoreach

(7)

Fig.8. Specificcapacityof3DOMLiFePO4atdifferentC-rates.

highpowerapplications.Itisalsoworthmentioningthatthehigh amountofcarbonhasalsoalargenegativeeffectonthevolumetric energydensityofthebattery.Usingadensityvalueof2.2gcm−3

forcarbonand 3.6gcm−3,wecancalculatea 0.7Whcm−3 drop

ofenergydensity(from2.1to1.4Whcm−3)atacarboncontent

of23wt%.In general,wecan seethat thehighamountof car-bon,althoughofthemoreconductivegraphitictype,hasanegative effectontheelectrochemicalandbatteryperformanceofLiFePO4

but different approaches are under consideration to lower the amountofcarbonsuchas:sinteringthematerialindifferentgas compositioninhydrogenandsteamthatarecommonlyusedto purifycarbonnanotubes[30];orusingdifferentsizesofPSspheres [18].

Fig.8showsthespecificdischargecapacityofthesynthesized LiFePO4 tested atdifferentC-rates.Fivecycleswererepeatedat

eachC-rate:C/12,C/6,C,2C,5C,andbacktoC/12againtocheckfor anycapacityfadeafterhighC-ratecycling.Duringthefirst10cycles (atC/12andC/6),capacityfadeof6%wasobservedthatis com-monlyassociatedwithincreasedresistancesattheinterfaceand thebulkelectrode,withtheformerbeingmoresignificantinthis caseduetothehighsurfaceareaofthematerial[31].Afterthetenth cycle,thecapacitywasstabilizedandalsorecoveredatlowC-rate (C/12)witha12%lossfromtheinitialcapacity(158mAhg−1).For

comparison,standardnon-templatedcarbon-coatedLiFePO4was

synthesizedandtestedinahalfcellbatteryandtheresultsarealso showninFig.8.ThedischargecapacityatC/12for3DOMLiFePO4

hasbeenfittedusingthefirstandlastfivecyclesandwere calcu-latedbasedonweightofLiFePO4inthecomposite.Usingthefitted

linethecapacitycouldbecomparedtothestandardLiFePO4.As

showninthefigure,thecapacityis∼20mAhg−1higherfor3DOM

LiFePO4sampleduetothegreateraccessoflithiumintheporous

structure.

4. Conclusions

Threedimensionally orderedmacroporous LiFePO4 was

suc-cessfullysynthesizedbymeansofaneworganictemplate-assisted synthesis. The polystyrene polymer synthesized as spheres in 300–500nmdiameterswasorderedsuccessfullytomakethe tem-plate.ThesurfactantBrij78wasusedtorenderthesurfaceofthe sphereshydrophilictoallowfortheinfiltrationofprecursor solu-tion.Uponcalcinations,purephaseinhighyieldoftheLiFePO4with

acrystalsizeof78.1nmwassuccessfullyachievedasevidencedby XRDpatternsandtheorderedmacrostructurewasclearlyseenby SEMandTEMimages.Carboncontentwasestimatedat23–28wt% ofthematerial.Theresulting3DOMLiFePO4materialshoweda

sat-isfactorybatteryperformancethatwasclearlyaffectedbythehigh amountofcarbonyetstillhigherthanthenon-templatedsample;it showedadischargecapacityof158mAhg−1recoverableafterlong

andhighC-ratecycling.

References

[1]M.Armand,J.M.Tarascon,Nature451(2008)652–657.

[2] G.Gutmann,EncyclopediaofElectrochemicalPowerSources,Elsevier, Amster-dam,2009,pp.219–235.

[3]Z.Yang,J.Zhang,M.C.W.Kintner-Meyer,X.Lu,D.Choi,J.P.Lemmon,J.Liu,Chem. Rev.111(2011)3577–3613.

[4] N.Ravet,Y.Chouinard,J.F.Magnan,S.Besner,M.Gauthier,M.Armand,J.Power Sources97–98(2001)503–507.

[5]H.Huang,S.C.Yin,L.F.Nazar,Electrochem.Solid-StateLett.4(2001). [6]F.Croce,A.D’Epifanio,J.Hassoun,A.Deptula,T.Olczac,B.Scrosati,Electrochem.

Solid-StateLett.5(2002)A47–A50.

[7]S.Y.Chung,J.T.Bloking,Y.M.Chiang,Nat.Mater.1(2002)123–128. [8]P.S.Herle,B.Ellis,N.Coombs,L.F.Nazar,Nat.Mater.3(2004)147–152. [9]J.M.Weissman,H.B.Sunkara,A.S.Tse,S.A.Asher,Science274(1996)959–960. [10] C.E.Reese,M.E.Baltusavich, J.P.Keim,S.A. Asher,Anal.Chem.73(2001)

5038–5042.

[11]T.Cassagneau,F.Caruso,Adv.Mater.14(2002)1629–1633.

[12]W.Cheng,J.Wang,U.Jonas,G.Fytas,N.Stefanou,Nat.Mater.5(2006)830–836. [13] J.D.Joannopoulos,P.R.Villeneuve,S.Fan,Nature386(1997)143–149. [14] E.Yablonovitch,Sci.Am.285(2001)34–41.

[15]U.C.Fischer,H.P.Zingsheim,J.Vac.Sci.Technol.19(1981)881–885. [16]J.C.Lytle,H.Yan,N.S.Ergang,W.H.Smyrl,A.Stein,J.Mater.Chem.14(2004)

1616–1622.

[17] A.Stein,R.C.Schroden,Curr.Opin.SolidStateMater.Sci.5(2001)553–564. [18]C.M.Doherty,R.A.Caruso,B.M.Smarsly,C.J.Drummond,Chem.Mater.21

(2009)2895–2903.

[19] J.Lu,Z.Tang,Z.Zhang,W.Shen,Mater.Res.Bull.40(2005)2039–2046. [20] M.M.Doeff,Y.Hu,F.McLarnon,R.Kostecki,Electrochem.Solid-StateLett.6

(2003)A207–A209.

[21]R.Dominko,M.Bele,M.Gaberscek,M.Remskar,D.Hanzel,S.Pejovnik,J.Jamnik, J.Electrochem.Soc.152(2005).

[22]Y.H.Nien,J.R.Carey,J.S.Chen,J.PowerSources193(2009)822–827. [23]B.T.Holland,C.F.Blanford,T.Do,A.Stein,Chem.Mater.11(1999)795–805. [24]H.Rietveld,ActaCrystallogr.22(1967)151–152.

[25]BrukerAXS,Inc.,Karlsruhe,Germany,2008.

[26]A.K.Padhi,K.S.Nanjundaswamy,J.B.Goodenough,J.Electrochem.Soc.144 (1997)1188–1194.

[27]I.Belharouak,C.Johnson,K.Amine,Electrochem.Commun.7(2005)983–988. [28]D.Jugovic,D.Uskokovic,J.PowerSources190(2009)538–544.

[29]PhostechLithiumInc.,http://www.phostechlithium.com/prdLiFePO4P1e.php, December7,2011.

[30]G.Tobias,L.Shao,C.G.Salzmann,Y.Huh,M.L.H.Green,J.Phys.Chem.B110 (2006)22318–22322.

[31]H.Duncan,Y.Abu-Lebdeh,I.J.Davidson,J.Electrochem.Soc.157(2010). [32]M.S.Song,Y.M.Kang,Y.I.Kim,K.S.Park,H.S.Kwon,Inorg.Chem.48(2009)

Figure

Fig. 1. Schematic of the experimental procedure with and without Brij 78.
Fig. 3. Rietveld refinement of the X-ray diffraction pattern of the 3DOM LiFePO 4 .
Fig. 6. TGA analysis of LiFePO 4 under oxygen.
Fig. 8. Specific capacity of 3DOM LiFePO 4 at different C-rates.

Références

Documents relatifs

L’intérêt de cette distinction repose sur la possibilité de proposer une sorte de graduation de l’artefact de dispositifs d’aide au partage : nous

In order to revalue the waste from the extraction of oil of Opuntia ficus‐indica seeds, in this study cakes resulting from the pressing were macerated in ethanol and then

The depressed transit corridor is the type currently most frequently used for sur- face routes and is the form of transit corridor that offers the most

In this paper we have shown how verifiably common secret encodings may be used to anonymously authenticate membership in dynamic groups. We have also shown how to

By taking a cursory outlook on the regional planning in Japan from Meiji Era to the present time were possible to construct a full picture regarding the influence major

This bachelor thesis has considered what could be the possible impact on labor market and trade as a response to the implementation of the new free trade agreement between the

Social science is both this study's object (the testimonies which social scientists, as expert witnesses, offered in our case study) and this study's method

It shows that (1) antitrust authorities are justified to intervene more intensively in the electronic communications sector than in the other sectors of the economy; (2) the