• Aucun résultat trouvé

QUASI-LANDAU RESONANCES : ANALYTIC TREATMENT OF THE HYDROGENIC SPECTRUM IN THE TWO-DIMENSIONAL MODEL AND RELATION TO OTHER STRONGFIELD PROBLEMS

N/A
N/A
Protected

Academic year: 2021

Partager "QUASI-LANDAU RESONANCES : ANALYTIC TREATMENT OF THE HYDROGENIC SPECTRUM IN THE TWO-DIMENSIONAL MODEL AND RELATION TO OTHER STRONGFIELD PROBLEMS"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00221846

https://hal.archives-ouvertes.fr/jpa-00221846

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

QUASI-LANDAU RESONANCES : ANALYTIC TREATMENT OF THE HYDROGENIC SPECTRUM

IN THE TWO-DIMENSIONAL MODEL AND

RELATION TO OTHER STRONGFIELD PROBLEMS

J. Gallas, R. O’Connell

To cite this version:

J. Gallas, R. O’Connell. QUASI-LANDAU RESONANCES : ANALYTIC TREATMENT OF THE

HYDROGENIC SPECTRUM IN THE TWO-DIMENSIONAL MODEL AND RELATION TO

OTHER STRONGFIELD PROBLEMS. Journal de Physique Colloques, 1982, 43 (C2), pp.C2-435-

C2-437. �10.1051/jphyscol:1982234�. �jpa-00221846�

(2)

JOURNAL DE PHYSIQUE

Colloque C2, supplément au n°ll, Tome 4S3 novembve 1982 page C2-435

QUASI-LANDAU RESONANCES : ANALYTIC TREATMENT OF THE HYDROGENIC SPECTRUM IN THE TWO-DIMENSIONAL MODEL AND RELATION TO OTHER STRONG- FIELD PROBLEMS

J.A.C. G a l l a s and R.F. O'Connell*

Max-Planck Institut fur Quantenoptik, D-8046 Garohing bei Mtinehen, West Germany

and

Departamento de Fisioa, Universidade Federal de Santa Catarina, 88000 Florianopolis, SC, Brasil

*Department of Physios and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70805, U.S.A.

Résumé: Le modèle WKB à 2 dimensions est à l ' o r i g i n e de plusieurs approches numériques du spectre quasi-Landau de l'atome d'hydrogène. On montre i c i que les résultats peuvent être obtenus sous forme analytique en termes d'intégrales e l l i p t i q u e s . Celles-ci peuvent être calculées aisément ce qui permet d'obtenir les prédictions numériques en bon accord avec l'expérience. On montre aussi que plusieurs autres problèmes en champs intenses sont des cas particuliers d'un potentiel plus général pour lequel les niveaux d'énergie et leur espace- ment peuvent être exprimés en termes d'intégrales e l l i p t i q u e s .

Abstract: The two-dimensional WKB model has been the basis for several investigations of the quasi-Landau hydrogenic spectrum. Whereas other authors have used numerical integration, we show that the results can be obtained analytically in terms of elliptic integrals. The later are easily generated by even programmable pocket calculators, from which numerical results - which are in good agreement with experiments - are easily obtained. A further advantage of using elliptic integrals is that several strong-field problems can be shown to be special cases of a general potential whose energy and spacing is expressible in terms of them.

Discussion. In 1969 Garton and Tomkins |1| published a paper the result of which was to unleash an avalanche of research in the general area of what is now referred to as quasi-Landau resonances. They studied the absorption spectrum of barium in a magnetic field of 24 kG, for n values as high as 75, and found broad resonances spaced by approximately 1.5 "fico near E = 0 (to=eB/Mc is the cyclotron frequency where M is the electron mass). These quasi-Landau resonances were observed only in the a spectrum (dm= ±1j) and not in the IT spectrum {hm= 0 ) . Thus, since the a lines

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982234

(3)

C2-436 JOURNAL DE PHYSIQUE

come from s t a t e s which are e s s e n t i a l l y l o c a l i z e d i n the x-y plane (as d i s t i n c t from t h e IIl i n e s which come from a s t a t e w i t h a node i n t h e x-y plane), i t i s n a t u r a l t o n e g l e c t t h e motion i n t h e z d i r e c t i o n and t r e a t the problem as

two-

-dimensional. This was the procedure used by both Edmonds 121 and Starace 131, who reduced t h e problem t o motion i n a p o t e n t i a l V ( p ) where p 2 = x2 + y 2 . Thus i t was then n a t u r a l t o s o l v e t h e problem using WKB techniques. Whereas previous i n v e s t i g a t o r s have solved t h e WKB i n t e g r a l s u s i n g numerical techniques, we have r e c e n t l y shown 141 t h a t r e s u l t s can be obtained a n a l y t i c a l l y i n terms o f e l l i p t i c i n t e g r a l s , n o t o n l y f o r the energy spacings b u t a l s o f o r t h e energy l e v e l s f o r zero and non-zero values o f m. The r e s u l t s so obtained a r e i n very good agreement with, f o r example, t h e experimental r e s u l t s o f Delande and Gay 151 and w i t h t h e numerical 1 y generated r e s u l t s o f McDowell 16

1 .

I n t h e present b r i e f communication our emphasis w i l l be on why we f e e l i t i s advantageous t o work i n terms o f e l l i p t i c i n t e g r a l s , of which t h e r e are o n l y t h r e e kinds. F i r s t o f a l l , they a r e e a s i l y generated by even programmable pocket c a l c u l a t o r s , from which numerical r e s u l i s a r e e a s i l y obtained. As a r e s u l t i t very much f a c i l i t a t e s comparison w i t h work of o t h e r authors. I n a d d i t i o n , we see e x p l i - c i t e l y t h a t the quasi-Landau problem f i t s i n t o a general framework o f s t r o n g - f i e l d problems. This was emphasized by one o f us several years ago 171 and elaborated on a t more l e n g t h i n a review paper presented a t t h e present Colloque 181. To be

s p e c i f i c , we mention f i r s t o f a l l t h e c a l c u l a t i o n of t h e energy spectrum o f e l e c t r o n s o u t s i d e a f r e e surface o f l i q u i d helium. These e l e c t r o n s a r e trapped i n an image p o t e n t i a l which i s e s s e n t i a l l y one-dimensional Coulombic and f o r d i a g n o s t i c purposes an e l e c t r i c f i e l d i s a l s o g e n e r a l l y superimposed. This combined f i e l d problem i s another example o f a s t r o n g - f i e l d problem whose s o l u t i o n can be expressed i n terms o f e l l i p t i c i n t e g r a l s 17,81 as i n t h e case o f t h e quasi-landau resonances 141. A f u r t h e r example i s t h e Stark problem, which was solved t o very good accuracy using WKB techniques 191 and the r e s u l t s obtained

-

i n c l u d i n g t h e case o f a u t o i o n i z i n g s t a t e s

-

were a l l expressed i n terms o f e l l i p t i c i n t e g r a l s . F i n a l l y , we mention t h e c a l c u l a t i o n o f t h e spectrum o f Charmonium

] l o ] .

I n essence, t h e p o t e n t i a l s f o r a l l t h e problems a r e s p e c i a l cases o f a general p o t e n t i a l whose energy spectrum and spacing i s e x p r e s s i b l e i n terms o f e l l i p t i c i n t e g r a l s . Elsewhere, we w i l l present i n more d e t a i l a general framework which can be used f o r t h e c o n s i d e r a t i o n o f a l a r g e c l a s s of s t r o n g - f i e l d problems.

Acknowledgments. We would l i k e t o thank Dr. J.-C. Gay and Prof. M.R.C. McDowell f o r discussions and communications o f t h e i r r e s u l t s . JACG i s supported a l s o by the Deutscher Akademischer Austauschdienst/Bonn-Bad Godesberg. RFO'C i s supported by the Department o f Energy, D i v i s i o n o f M a t e r i a l Sciences, c o n t r a c t n r .

DE-AS05-79ER10459.

(4)

References.

I. Garton W.R.S. and Tomkins F.S., Astrophys. J. - 158(1969) 839.

2. Edmonds A.R., J.Phys.(Paris) 31-C4(1970)71.

3.

Starace A.F., J.Phys. B

-

6(1973) 585.

4. Gallas J.A.C. and O'Connell R.F., J.Phys. B - 15(1982)L75 and L309; ibid. to be published.

5. Delande D. and Gay J.-C., Phys. Lett. - 82A(1981) 399 and ref. therein.

6. McDowell M.R.C., these Proceedings.

7. 0' Connell R.F., Phys.Rev. A x(1978) 1984; Phys.Lett.

-

60A(1977)

481.

8.

O'Connell R.F., these Proceedings.

9. Gallas J.A.C., Walther H. and Werner

E.,

Phys.Rev. A, in press, 1982.

10. Killingbeck J., J. Phys. A E(1980) L393; Flessas G.P., J.Phys. A

-

15(1982) L1.

Références

Documents relatifs

We introduce a “Coulombian renormalized energy” W which is a logarithmic type of interaction between points in the plane, computed by a “renormalization.” We prove various of

In conclusion, our variational search for d-wave supercon- ductivity in the two-dimensional Hubbard model gives a dif- ferentiated picture, namely, a large 共moderate兲 correlation

Upon doping, the hopping of holes makes the (t-J) model much more complicated. However, Variational Monte Carlo simulations indicate that a pairing instability with d-wave

Here, we investigate the electronic properties of 1T-TaS 2 using self-consistent full potential linearized augmented plane wave 共 FLAPW 兲 calculations based on the experimental

Given a non-negative boundary value f b with finite mass and entropy, there exists a stationary non- negative renormalized solution in L 1 with finite entropy-dissipation to

10.2. Trivial normal bundle, finite Ueda type: the fundamental isomorphism. Still using the formal classification of [14] as recalled in Section 10.1, one can investigate, without

Phenomenological scalings for the inertial ranges in both the IC and the forward enstrophy cascade will be proposed for the scalar flux spectrum F s k d and the scalar variance

Phenomenological scalings for the inertial ranges in both the inverse cascade and the forward enstrophy cascade will be proposed for the scalar flux spectrum F (k) and the