• Aucun résultat trouvé

DEPTH RESOLUTION IN ION SPUTTERING - AN ASPECT OF QUANTITATIVEMICROANALYSIS

N/A
N/A
Protected

Academic year: 2021

Partager "DEPTH RESOLUTION IN ION SPUTTERING - AN ASPECT OF QUANTITATIVEMICROANALYSIS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00223939

https://hal.archives-ouvertes.fr/jpa-00223939

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DEPTH RESOLUTION IN ION SPUTTERING - AN ASPECT OF QUANTITATIVEMICROANALYSIS

J. Giber, D. Marton, J. László

To cite this version:

J. Giber, D. Marton, J. László. DEPTH RESOLUTION IN ION SPUTTERING - AN ASPECT OF

QUANTITATIVEMICROANALYSIS. Journal de Physique Colloques, 1984, 45 (C2), pp.C2-115-C2-

118. �10.1051/jphyscol:1984226�. �jpa-00223939�

(2)

30URNAL DE PHYSIQUE

Colloque C2, supplément au n°2, Tome 45, février 1984 page C2-115

DEPTH RESOLUTION IN ION SPUTTERING - AN ASPECT OF QUANTITATIVE MICROANALYSIS

J. Giber, D. Marton and J. Laszlo

Physical Institute of the Technical University,Budapest, 1111 Budafoki ut 8., Hungary

Résumé - La résolution en profondeur des profils de pulvérisa- tion a été déterminée en utilisant des multicouches Ni-Cr. Nous avons aussi développé une méthode pour l'évaluation quantitati- ve des résultats. La résolution en profondeur mesurée à l'aide des couches métalliques polycristallines, est fortement influ- encée par la diffusion intermétallique entre couches.

Abstract - The depth resolution of sputter depth profiling has been analysed using Ni-Cr multilayer structures. A new method has been developed to quantify the results. The depth resolu- tion measured using polycrystalline metallic layers is strongly influenced by mutual diffusion of the layers.

The depth resolution of sputter depth profiling is a crucial factor from the point of view of quantitative analysis performed with SIMS, AES, ESCA etc. The finite depth resolution of the measurement leads to primcipal profile distortion which may be mathematically described by a resolution function g (3-z) which is convolved with the measured profile c(J) [1]:

(1) where k is the sensitivity factor.

The determination of the real profile requires therefore

determination of the g function that can be obtained experimentally from the sputter profiling of step function concentration profiles, which being distorted during the measurement may be characterized by the cr standard deviations of the measured nearly error function type profiles. The depth resolution is defined as z=2tf [2], The sample profiles should be strictly rectangular for this measurement, because deviations from that (which are usually due to diffusion processes in practical cases) lead to additional interface broadening. The indep- endent interface broadenings due to different phenomena can be summarized quadratically [3]:

(2) The determination of depth resolution is required usually

according to a depth scale, because it is necessary partly when using eq. (1) and when one studies the sputtering process [4]. The use of

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984226

(3)

JOURNAL DE PHYSIQUE

F i g . 1

Az

2 v s z d e t e r m i n e d b y AES method u s i n g P H I S A M 545 equipment, 5 kev ~ r + i o n s p u t t e r i n g

F i g . 2

A z 2 v s z d e t e r m i n e d b y SIMS method u s i n g B q l z e r s equipment, 3 keV Ar i o n s p u t t e r i n g w i t h o u t ( " A r m ) and w i t h oxygen j e t ( " 0 2 " )

(4)

s i n g l e l a y e r systems f o r t h i s purpose i s d i f f i c u l t , because one needs t h e n a s e r i e s o f i d e n t i c a l i n t e r f a c e s . A more advantageous method t h a t has been suggested b y Hofmann e t a 1 . [ 5 ] uses m u l t i l a y e r s t r u c t u r e s w i t h u n i f o r m l a e r t h i c k n e s s e s . The e v a l u a t i o n o f t h e w a v e - l i k e d e p t h p r o f i l e s o x t a i n e d i n such measurements i s a l s o d i f f i c u l t , b u t can be c a r r i e d o u t under c e r t a i n assumptions:

1

-

t h e d i s t o r t e d p r o f i l e i s w e l l approximated b y s u p e r p o s i t i o n o f e r r o r f u n c t i o n s c e n t e r e d a t t h e i n t e r f a c e s ,

2

-

t h e n e a r e s t n e i g h b o u r a p p r o x i m a t i o n i s v a l i d , i.e. A z

<

d, 3

-

t h e s e n s i t i v i t y f a c t o r s a r e independent o f t h e c o n c e n t r a t i o n w i t h i n t h e l i m i t s o f t h e m i n i m a l and maximal o c c u r i n g c o n c e n t r a t i o n s .

While assumption 1 h o l d s f o r t h e most cases e x c e p t if t h e i n f o r m - a t i o n d e p t h o r cascade m i x i n g a r e t h e main f a c t o r s d e t e r m i n i n g t h e i n t e r f a c e b l u r r i n g , and assumption 2 h o l d s u n l e s s v e r y t h i n l a y e r s o r v e r y deep l y i n g i n t e r f a c e s a r e analysed, t h e v a l i d i t y o f assumption 3 i s q u e s t i o n a b l e , b e f o r e a l l i n S I M S d e p t h p r o f i l i n g -

Unequal s e n s i t i v i t y f a c t o r s f o r d i f f e r e n t c o n c e n t r a t i o n s can

change t h e d e p t h r e s o l u t i o n f o r i o n y i e l d s as compared w i t h t h e d e p t h r e s o l u t i o n o f c o n c e n t r a t i o n s . I n t h i s sense t h e d e p t h r e s o l u t i o n s d e t e r m i n e d from S I M S i o n y i e l d s a r e i n f l u e n c e d b y s e n s i t i v i t y f a c t o r changes w i t h c o n c e n t r a t i o n and can be d i f f e r e n t f o r d i f f e r e n t t y p e s o f ions.

On t h e b a s i s o f t h e assumptions l i s t e d above t h e d e p t h r e s o l u t i o n can be c a l c u l a t e d a c c o r d i n g t o t h e e x p r e s s i o n

The r e s u l t s o f e v a l u a t e d measurements c a r r i e d o u t on d i f f e r e n t N i - C r samples a r e shown i n F i g s . 1, 2 and 3. These samples were

o b t a i n e d b y vacuum e v a p o r a t i o n on unheated s u b s t r a t e s . The d e t a i l s of t h e experiment a r e d e s c r i b e d elsewhere [6]. The e x p e r i m e n t a l r e s u l t s can be f i t t e d t o an eq.:

where A z i s t h e "measured" d e p t h r e s o l u t i o n and A z c and a a r e S a m p l e 342

d

=

10,6nm

Fig. 3

A z v s z d e t e r m i n e d b y 2 AES method u s i n g PH SAM

545 equipment, 3 keV ~ r +

i o n s p u t t e r i n g , The A z = 1.2 z and 2 Az2 = 0.6 z l i n e s c o r r e s p o n d t o s t r a i g h t l i n e s i n F i g . 3 r e f . [ 4 ] .

(5)

C2-118 JOURNAL DE PHYSIQUE

d e t e r m i n e d b y t h e c h e m i c a l c o m p o s i t i o n o f t h e samples and f o r Ni-Cr m u l t i l a y e r sandwiches a n a l y s e d h e r e A z c = 6-8 nm and a=0,2.. .0,5 nm.

The i n t e r f a c e b l u r r i n g due t o s p u t t e r i n g and measurement f a c t o r s a r e t h e n

a z S = J A z '

-

AZ: =

6

(5)

i n accordance w i t h what i s p r e d i c t e d b y t h e t h e o r i e s o f s t a t i s t i c a l s p u t t e r i n g and cascade m i x i n g [ 7 , 8 1 on one hand, and b y s u r f a c e ronghening [ 9 ] on t h e o t h e r .

References:

HO P.S., LEWIS J.E., S u r f . S c i . 55, (1976) 335.

HOFMANN S., S u r f . I n t e r f . Anal.

2,

(1980) 148.

WERNER H.W., HORNSTRA J., WARMOLTZ N., S u r f . I n t e r f . Anal. i n press SEAH M. P., HUNT C . P., S u r f . I n t e r f . Anal. 5, (1983) 33.

HOFMANN S., ZALAR A., T h i n S o l i d F i l m s 60,-(1979) 201.

GIBER J., MARTON D.,

L A S Z L ~

J., HANUSOVSZKY A., STINGEDER P., Vacuum 33, (1983) 117.

HOFER W.O.

,

LITTMARK U., Phys. L e t t . 71A, (1979) 457.

HOFMANN S., Appl. Ph s., 13, (1977) 2 m

SEAH M. P., LEA C . , T x i n s a i d F i l m s

81,

(1981) 257.

Références

Documents relatifs

— We calculate the second order derivatives of the Ronkin function in the case of an affine linear polynomial in three variables and give an expression of them in terms of

The Metal Flux Monitor (MFM) is a pinhole camera which converts the information of the angular distribution of the metal flux at the position of the pinhole into a thickness profile

Such a flow is well known to create an undulation of the unstable manifold leading to a large transport of scalar from inside to outside the homoclinic streamline starting from

with SMC deuteron data [8] gives a result that is also in agreement with the prediction, within larger errors. More data, including the deuteron data from this experiment, will

In a previous article, we presented the basics of an alge- braic framework allowing to algebraically model dynamic gates PAND and FDEP, and determine the structure func- tion of

Furthermore, as shown by Exam- ple 1, in order to determine this differential Hilbert function it may be necessary to compute derivatives of the original equations up to order ν,

Moreover, there is an infinite sequence of strings such that the minimal computation times of associated shortest programs rises incomputably fast but not so fast as the Busy

4-6 the change of temperature increment in time at a depth of 2 mm, 4 mm and 6 mm from the surface of the test object and a distance of 3mm from the heating center, restored