• Aucun résultat trouvé

Worms and minerals influence the biogeochemistry and turnover of composted organic matter

N/A
N/A
Protected

Academic year: 2021

Partager "Worms and minerals influence the biogeochemistry and turnover of composted organic matter"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: hal-01608697

https://hal.archives-ouvertes.fr/hal-01608697

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License

Worms and minerals influence the biogeochemistry and turnover of composted organic matter

Justine Barthod, Marie-France Dignac, Cornelia Rumpel

To cite this version:

Justine Barthod, Marie-France Dignac, Cornelia Rumpel. Worms and minerals influence the bio-

geochemistry and turnover of composted organic matter. 28 th International Meeting on Organic

Geochemistry, Sep 2017, Florence, France. �hal-01608697�

(2)

28

th

International Meeting on Organic Geochemistry 17 – 22 September 2017, Florence, Italy

WORMS AND MINERALS INFLUENCE THE BIOGEOCHEMISTRY AND TURNOVER OF COMPOSTED ORGANIC MATTER

J. Barthod

1

, M.F. Dignac

2

, C. Rumpel

1

1

Institute of Ecology and Environmental Sciences, France

2

Laboratoire of Functional Ecology and Ecotoxicology of Agroecosystems

Introduction

Organic matter management and in particular increasing their content in soils is one of the societal challenges of the 21

st

century. Soil organic matter (SOM) increase may be a solution to improve soil quality, while at the same time mitigating global change. Recycling of organic wastes and their transformation into organic amendments could be one avenue towards this goal. However, during recycling procedures, such as composting, high amounts of CO

2

are emitted to the atmosphere. We aimed to reduce such emissions thanks to the combined use of minerals and worms in order to generate stabilised organic matter, less susceptible to microbial decay (Barthod et al., 2016). In this study, we investigated the influence of both factors on the C mineralisation and biogeochemical parameters of the organic amendment.

To this end, we produced composts with and without worms and minerals during 6 months in the laboratory. Composts (without worms) and vermicomposts (with 8 worms) were produced with 500 g of a mixture of common organic wastes (salad, maize residues, card board, coffee grounds, apples). We added 15% of clay minerals (montmorillonite (clay 2 :1), kaolinite (clay 1 :1)) alone or in mixture (15%:15%) with an iron oxide (goethite). We monitored the CO

2

emissions during composting as well as after the exposure of the produced materials to soil incubation and determined the materials’ lignin and carbohydrate signatures as well as their bulk molecular composition using

13

C CPMAS NMR spectroscopy and analytical pyrolysis.

Results

During composting the highest amounts of CO

2

were emitted in the presence of worms, regardless the added mineral. After exposure to soil, CO

2

emissions of vermicomposts were lower than those of regular composts. Indeed, a close correlation was found between both emissions (Fig. 1). This shows that commuting and processing of organic matter by worms is intense, thereby accelerating the transformation and stabilisation processes of organic matter through organic transformations as well as through interactions with minerals. Montmorillonite appeared to reduce CO

2

emissions more than kaolinite.

The addition of kaolinite + goethite shows opposite effects in treatments with and without worms (Fig. 1): in the absence of worms, this mixture induces a higher mineralization than the traditional compost, conversely in the presence of worms, this mixture decreases the amount of mineralized carbon.

Principal component analyses of chemical parameters showed that the presence of worms

during composting increased final product C mineralisation in soil and nitrate content, but on

the other hand decreased the microbial biomass and the soluble carbon fraction (DOC). The

presence of clay during composting overall decreased the amount of mineralized carbon, as

well as the final product conductivity (CEC) and the DOC. Analyses of biogeochemical

(3)

28

th

International Meeting on Organic Geochemistry 17 – 22 September 2017, Florence, Italy

parameters were in line with these results, showing lower contribution of lignin and higher amounts of polysaccharides and N-containing compounds in vermicomposts. Different minerals had specific effects on the biogeochemical composition of the resulting materials.

Figure 1 Relationship between CO

2

emissions during composting and after addition of compost materials to soil (C30M – compost+30% Montmorillonite; C15M – compost+15%

Montmorillonite; C-compost; CKG-compost+15%Kaolinite+15%Goethite; VKG- vermicompost+15%Kaolinite+15%Goethite; V15M-vermicompost+15%Montmorillonite;

V30M-vermicompost+30%montmorillonite; V-vermicompost)

Conclusions

Addition of minerals and worms had contrasting effects on C mineralisation during composting as well as on the biogeochemical composition of the resulting materials. These results suggest that the presence of worms and / or minerals influences the product properties with several mechanisms: (1) by changing the product microbial biomass, (2) by acting on the formation of organo-mineral associations (quality and quantity) and (3) by changing the OM degradability.

References

Barthod, J., Rumpel, C., Paradelo, R., Dignac, M.F.: The effects of worms, clay and biochar on CO2 emissions during production and soil application of co-composts. Soil, 2, 673–683.

V C

V15M C15M

V30M C30M

VKG CKG

y = -0.20x + 193.1 R² = 0.77

30 40 50 60 70 80 90

500 550 600 650 700 750

Ca rb on em is si on sfr om am en de d so il (m g c- CO

2

. g

-1

C)

Carbon emissions during composting

(mg C-CO

2

. g

-1

C)

Références

Documents relatifs

The intention is to test whether the predicted increase in snow precipitations will change the soil water fluxes but also the patterns of soil organic matter decomposition and

Measured values of the IROC indicator (i.e. calculated from SOL, CEL and LIC biochemical fraction and Cm3) and fitted values of the DPM pools of the model RothC (i.e. fitted values

These results may be explained by (i) the preferential retention of small nonaromatic organic molecules in the solution in response to the preferential binding of aromatic

The adsorption term accounts for hydrogen binding of water molecules onto mineral and LHA surface.. denotes that a hydroxo group can be involved in 2 donating and/or accepting

To identify the faeces types with significantly different quality (scores on PC1 and PC2) and decomposition (C and N losses) compared to that of the intact litter from which the

Title: Influence of organic matter and microbial activities on the mobility of arsenic and metals in polluted soils Name(s) of the author(s): Hugues Thouin 1 , Tiffanie

Nano-ZnS of different sizes have been synthetized in presence of organic molecules in the laboratory and characterized by X-ray Diffraction (XRD) and Wide Angle

The components of H A are associated with clay (d < 2 urn), Ca, stable hydroxides of Fe and Al more than F A and, as a rule, form less soluble complexes with TUE than F A