• Aucun résultat trouvé

Equivalence classes of permutations avoiding generalized patterns modulo left-to-right maxima

N/A
N/A
Protected

Academic year: 2022

Partager "Equivalence classes of permutations avoiding generalized patterns modulo left-to-right maxima"

Copied!
59
0
0

Texte intégral

(1)

Equivalence classes of permutations avoiding generalized patterns modulo left-to-right maxima

Jean-Luc Baril and Armen Petrossian

Laboratory LE2I – CNRS UMR 6306 – University of Burgundy – Dijon

The 13th International Permutation Patterns edition, London, UK,

15-19 June

(2)

Equivalence classes of permutations avoiding generalized patterns modulo left-to-right maxima

Jean-Luc Baril and Armen Petrossian

Laboratory LE2I – CNRS UMR 6306 – University of Burgundy – Dijon

The 13th International Permutation Patterns edition, London, UK,

15-19 June

(3)

Introduction : notations and our precedent results

Definition 1 (Equivalence relation modulo left-to-right maxima)

σ ∼ ` π iff L(σ) = L(π) and σ i = π i for all i ∈ L(σ)

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

σ = 21645783

L(σ) = {1, 3, 6, 7} =

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

π = 21643785

L(π)

S n

`

= {classes of permutations of length n modulo ∼ ` }

(4)

Introduction : notations and our precedent results

Definition 2 (Generalized patterns)

A generalized pattern is a classical pattern where two entries can be separated by a dash, (e.g. ab-c, a-bc)

σ avoids a generalized pattern π if σ does not contain any subsequence order isomorphic to π, where two entries not separated by a dash in π correspond to two consecutive elements in σ.

×

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

5 6 1 7 4 2 10 9 8 3 6∈ S(1-23)

×

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

5 6 2 7 4 1 10 9 8 3 ∈ S(1-23)

×

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

5 6 1 7 4 2 10 9 8 3 6∈ S(1-23)

×

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

5 6 2 7 4 1 10 9 8 3 ∈ S(1-23)

(5)

Introduction : notations and our precedent results

Set Sequence Sloane an,1≤n≤9

Permutations Catalan A000108 1, 2, 5, 14, 42, 132, 429, 1430, 4862 Cycles Catalan A000108 1,1,2, 5, 14, 42, 132, 429, 1430 Involutions Motzkin A001006 1, 2, 4, 9, 21, 51, 127, 323, 835 Derangements Fine A000957 0, 1, 2, 6, 18, 57, 186, 622, 2120

Table: Number of equivalence classes for classical subsets of permutations.

Pattern Sequence Sloane an,1≤n≤9

{1-2-3} Central polygonal A000124 1, 2, 4, 7, 11, 16, 22, 29, 37 {3-1-2},{3-2-1} Catalan A000108 1, 2, 5, 14, 42, 132, 429, 1430, 4862 {1-3-2},{2-1-3},{2-3-1} Power of 2 A000079 1, 2, 4, 8, 16, 32, 64, 128, 256

Table: Number of equivalence classes for permutations avoiding one classical pattern.

(6)

Results relative to permutations avoiding generalized patterns of length 3 modulo left-to-right maxima

Pattern Sequence Sloane an,1≤n≤9

{312},{321},{3-12}, {31-2},{3-21},{32-1}

Catalan A000108 1, 2, 5, 14, 42, 132, 429, 1430, 4862

{1-23} Generalized Catalan A004148 1, 2, 4, 8, 17, 37, 82, 185, 423 {123},{23-1} Motzkin A000124 1, 2, 4, 9, 21, 51, 127, 323, 835 {12-3} Central polygonal A000124 1, 2, 4, 7, 11, 16, 22, 29, 37 {213} Number of Dyck paths with no UDDU A135307 1, 2, 4, 9, 23, 63, 178, 514, 1515 {1-32} Number of Dyck paths with no UUDU A105633 1, 2, 4, 9, 22, 57, 154, 429, 1223 {13-2},{2-13},{21-3},{2-31} Power of 2 A000079 1, 2, 4, 8, 16, 32, 64, 128, 256

{132} New 1, 2, 4, 10, 28, 84, 265, 864, 2888

{231} New 1, 2, 4, 10, 26, 74, 217, 662, 2059

Table: Number of equivalence classes for permutations avoiding one generalized pattern.

(7)

Two results using ECO method

Theorem 1 (Enumeration of S (123)

`

)

The set S(123) modulo left-to-right maxima is enumerated by the Motzkin sequence (A000124).

Theorem 2 (Enumeration of S (1-23)

`

)

The set S(1-23) modulo left-to-right maxima is enumerated by the Generalized Catalan sequence (A004148).

In order to calculate the number of classes for permutations avoiding 123 or 1-23 we will

exhibit one-to-one correspondence between the sets of equivalence classes and some subsets of permutations (the set of representatives) exhibit a recursive relation via ECO method which defines the set of classes

exhibit the generating function which defines the wished sequence

(8)

S(123) `

×

×

×

×

×

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

H H H H

N N N N 6 5 7 4 8 3 2 1

The ECO method applied to a set of representatives of S (123)

`

(9)

S(123) `

×

×

×

×

×

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

H H H H

N N N N 6 5 7 4 8 3 2 1

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 7 4 8 3 2 1 H

The ECO method applied to a set of representatives of S (123)

`

(10)

S(123) `

×

×

×

×

×

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

H H H H

N N N N 6 5 7 4 8 3 2 1

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 7 4 8 3 2 9 1 6 5 7 4 8 3 2 9 1 6 5 7 4 8 3 2 9 1 6 5 7 4 8 3 2 9 1

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 7 4 8 3 2 1

H H H

The ECO method applied to a set of representatives of S (123)

`

(11)

S(123) `

×

×

×

×

×

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

H H H H

N N N N 6 5 7 4 8 3 2 1

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 7 4 8 3 9 2 1

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 7 4 8 3 2 9 1 6 5 7 4 8 3 2 9 1 6 5 7 4 8 3 2 9 1 6 5 7 4 8 3 2 9 1

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 7 4 8 3 2 1

H H H H H H

The ECO method applied to a set of representatives of S (123)

`

(12)

S(123) `

×

×

×

×

×

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

H H H H

N N N N 6 5 7 4 8 3 2 1

×

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 7 4 9 8 3 2 1

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 7 4 8 3 9 2 1

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 7 4 8 3 2 9 1 6 5 7 4 8 3 2 9 1 6 5 7 4 8 3 2 9 1 6 5 7 4 8 3 2 9 1

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 7 4 8 3 2 1

H H H H H H H H H H H

The ECO method applied to a set of representatives of S (123)

`

(13)

S(123) `

×

×

×

×

×

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

H H H H

N N N N 6 5 7 4 8 3 2 1

×

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 7 4 9 8 3 2 1

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 7 4 8 3 9 2 1

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 7 4 8 3 2 9 1 6 5 7 4 8 3 2 9 1 6 5 7 4 8 3 2 9 1 6 5 7 4 8 3 2 9 1

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 7 4 8 3 2 1

H H H H H H H H H H H

The ECO method applied to a set of representatives of S (123)

`

provides the succession rule of the Motzkin sequence

( (1)

(k) (1) · · · (k − 1)(k + 1)

(14)

S(1-23) ` : A set of representatives

Definition 3 (Set of representatives) Let A be the set of permutations

σ 1 B 1 σ i

2

· · · B s−1 σ i

s

B s (only B 1 can be empty)

(15)

S(1-23) ` : A set of representatives

Definition 3 (Set of representatives) Let A be the set of permutations

σ 1 B 1 σ i

2

· · · B s−1 σ i

s

B s (only B 1 can be empty) σ

1

σ

i2

· · · σ

is

list of left-to-right maxima

[B

1

]B

2

· · · B

s

decreasing sub-sequences

1

We insert

[(s − 1)](s − 2), · · · , before

i2

i3

· · · in this order

2

From left-to-right all other elements are chosen as large as possible.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

(16)

S(1-23) ` : A set of representatives

Definition 3 (Set of representatives) Let A be the set of permutations

σ 1 B 1 σ i

2

· · · B s−1 σ i

s

B s (only B 1 can be empty) σ

1

σ

i2

· · · σ

is

list of left-to-right maxima [B

1

]B

2

· · · B

s

decreasing sub-sequences

1

We insert

[(s − 1)](s − 2), · · · , before

i2

i3

· · · in this order

2

From left-to-right all other elements are chosen as large as possible.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

(17)

S(1-23) ` : A set of representatives

Definition 3 (Set of representatives) Let A be the set of permutations

σ 1 B 1 σ i

2

· · · B s−1 σ i

s

B s (only B 1 can be empty) σ

1

σ

i2

· · · σ

is

list of left-to-right maxima [B

1

]B

2

· · · B

s

decreasing sub-sequences

1

We insert

[(s − 1)](s − 2), · · · ,

1 before

i2

i3

· · ·

σ

is

in this order

2

From left-to-right all other elements are chosen as large as possible.

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

(18)

S(1-23) ` : A set of representatives

Definition 3 (Set of representatives) Let A be the set of permutations

σ 1 B 1 σ i

2

· · · B s−1 σ i

s

B s (only B 1 can be empty) σ

1

σ

i2

· · · σ

is

list of left-to-right maxima [B

1

]B

2

· · · B

s

decreasing sub-sequences

1

We insert [(s − 1)](s − 2), · · · ,1 before [σ

i2

i3

· · · σ

is

in this order

2

From left-to-right all other elements are chosen as large as possible.

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

(19)

S(1-23) ` : A set of representatives

Definition 3 (Set of representatives) Let A be the set of permutations

σ 1 B 1 σ i

2

· · · B s−1 σ i

s

B s (only B 1 can be empty) σ

1

σ

i2

· · · σ

is

list of left-to-right maxima [B

1

]B

2

· · · B

s

decreasing sub-sequences

1

We insert [(s − 1)](s − 2), · · · ,1 before [σ

i2

i3

· · · σ

is

in this order

2

From left-to-right all other elements are chosen as large as possible.

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

(20)

S(1-23) ` : A set of representatives

Definition 3 (Set of representatives) Let A be the set of permutations

σ 1 B 1 σ i

2

· · · B s−1 σ i

s

B s (only B 1 can be empty) σ

1

σ

i2

· · · σ

is

list of left-to-right maxima [B

1

]B

2

· · · B

s

decreasing sub-sequences

1

We insert [(s − 1)](s − 2), · · · ,1 before [σ

i2

i3

· · · σ

is

in this order

2

From left-to-right all other elements are chosen as large as possible.

×

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

(21)

S(1-23) ` : A set of representatives

Definition 3 (Set of representatives) Let A be the set of permutations

σ 1 B 1 σ i

2

· · · B s−1 σ i

s

B s (only B 1 can be empty) σ

1

σ

i2

· · · σ

is

list of left-to-right maxima [B

1

]B

2

· · · B

s

decreasing sub-sequences

1

We insert [(s − 1)](s − 2), · · · ,1 before [σ

i2

i3

· · · σ

is

in this order

2

From left-to-right all other elements are chosen as large as possible.

Lemma 1 (Bijection between set of representatives and S (1-23)

`

)

There is a bijection between A and S(1-23) modulo left-to-right maxima.

×

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

(22)

S(1-23) ` : Succession rule

×

×

×

×

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

I I I

5 4 7 3 8 2 9 6 1 10;

σ = σ 1 B 1 σ i

2

· · · B s−1 σ i

s−1

B s (a representative)

(23)

S(1-23) ` : Succession rule

×

×

×

×

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

I I I

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

5 6 3 7 2 8 5 1 9

I

σ = σ 1 B 1 σ i

2

· · · B s−1 σ i

s−1

B s (a representative)

If σ 1 > σ 2 , σ admits [s , σ 1 + 1] as a set of active sites.

(24)

S(1-23) ` : Succession rule

×

×

×

×

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

I I I

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

5 6 3 7 2 8 5 1 9

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

5 4 7 3 8 2 9 6 1 10;

I I

σ = σ 1 B 1 σ i

2

· · · B s−1 σ i

s−1

B s (a representative)

If σ 1 > σ 2 , σ admits [s , σ 1 + 1] as a set of active sites.

If σ 1 < σ 2 , σ admits σ 1 + 1 as only one active site and [s + 1, σ 1 + 2]

(25)

S(1-23) ` : Succession rule

×

×

×

×

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

I I I

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

5 6 3 7 2 8 5 1 9

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9

I I

I I I I

σ = σ 1 B 1 σ i

2

· · · B s−1 σ i

s−1

B s (a representative)

If σ 1 > σ 2 , σ admits [s , σ 1 + 1] as a set of active sites.

If σ 1 < σ 2 , σ admits σ 1 + 1 as only one active site and [s + 1, σ 1 + 2]

is the set of active sites of its unique child `π ` , with ` = σ 1 + 1.

(26)

S(1-23) ` : Succession rule

×

×

×

×

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

I I I

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

5 6 3 7 2 8 5 1 9

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I I

5 4 7 3 8 2 9 6 1 10;

I I

I I I I

σ = σ 1 B 1 σ i

2

· · · B s−1 σ i

s−1

B s (a representative)

If σ 1 > σ 2 , σ admits [s , σ 1 + 1] as a set of active sites.

If σ 1 < σ 2 , σ admits σ 1 + 1 as only one active site and [s + 1, σ 1 + 2]

is the set of active sites of its unique child `π ` , with ` = σ 1 + 1.

When π becomes π ` if the elements of π larger than ` are replaced by their successors.

(27)

S(1-23) ` : Succession rule

×

×

×

×

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

I I I

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

5 6 3 7 2 8 5 1 9

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I I

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I I I

6 4 7 3 8 2 9 5 1 10;

I I

I I I I

σ = σ 1 B 1 σ i

2

· · · B s−1 σ i

s−1

B s (a representative)

If σ 1 > σ 2 , σ admits [s , σ 1 + 1] as a set of active sites.

If σ 1 < σ 2 , σ admits σ 1 + 1 as only one active site and [s + 1, σ 1 + 2]

is the set of active sites of its unique child `π ` , with ` = σ 1 + 1.

(28)

S(1-23) ` : Succession rule

×

×

×

×

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

I I I

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

5 6 3 7 2 8 5 1 9

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I I

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I I I

6 4 7 3 8 2 9 5 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I

4 7 6 3 8 2 9 5 1 10;

I I

I I I I

σ = σ 1 B 1 σ i

2

· · · B s−1 σ i

s−1

B s (a representative)

If σ 1 > σ 2 , σ admits [s , σ 1 + 1] as a set of active sites.

If σ 1 < σ 2 , σ admits σ 1 + 1 as only one active site and [s + 1, σ 1 + 2]

is the set of active sites of its unique child `π ` , with ` = σ 1 + 1.

When π becomes π ` if the elements of π larger than ` are replaced by their successors.

(29)

S(1-23) ` : Succession rule

×

×

×

×

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

I I I

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

5 6 3 7 2 8 5 1 9

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I I

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I I I

6 4 7 3 8 2 9 5 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I

4 7 6 3 8 2 9 5 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I

5 7 6 3 8 2 9 4 1 10;

I I

I I I I

σ = σ 1 B 1 σ i

2

· · · B s−1 σ i

s−1

B s (a representative)

If σ 1 > σ 2 , σ admits [s , σ 1 + 1] as a set of active sites.

If σ 1 < σ 2 , σ admits σ 1 + 1 as only one active site and [s + 1, σ 1 + 2]

is the set of active sites of its unique child `π ` , with ` = σ 1 + 1.

(30)

S(1-23) ` : Succession rule

×

×

×

×

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

I I I

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

5 6 3 7 2 8 5 1 9

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I I

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I I I

6 4 7 3 8 2 9 5 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I

4 7 6 3 8 2 9 5 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I

5 7 6 3 8 2 9 4 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I

6 7 5 3 8 2 9 4 1 10;

I I

I I I I

σ = σ 1 B 1 σ i

2

· · · B s−1 σ i

s−1

B s (a representative)

If σ 1 > σ 2 , σ admits [s , σ 1 + 1] as a set of active sites.

If σ 1 < σ 2 , σ admits σ 1 + 1 as only one active site and [s + 1, σ 1 + 2]

is the set of active sites of its unique child `π ` , with ` = σ 1 + 1.

When π becomes π ` if the elements of π larger than ` are replaced by their successors.

(31)

S(1-23) ` : Succession rule

×

×

×

×

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

I I I

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

5 6 3 7 2 8 5 1 9

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9 6 5 3 7 2 8 4 1 9

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I I

5 4 7 3 8 2 9 6 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I I I

6 4 7 3 8 2 9 5 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I

4 7 6 3 8 2 9 5 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I

5 7 6 3 8 2 9 4 1 10;

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I

6 7 5 3 8 2 9 4 1 10;

×

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

I I I I I

7 6 5 3 8 2 9 4 1 10;

I I

I I I I

σ = σ 1 B 1 σ i

2

· · · B s−1 σ i

s−1

B s (a representative)

If σ 1 > σ 2 , σ admits [s , σ 1 + 1] as a set of active sites.

If σ 1 < σ 2 , σ admits σ 1 + 1 as only one active site and [s + 1, σ 1 + 2]

is the set of active sites of its unique child `π ` , with ` = σ 1 + 1.

(32)

S(1-23) ` : Succession rule

We deduce from this the following

Eco rule for Generalized Catalan succession rule :

 

 

 (2)

(k ) (1) 2 · · · (1) k (k + 1) (1) k (k )

Lemma 2

There a bijection between the set of vertices of level n and the set of vertices labelled by (1) 2 of level n + 2 of the tree induced by the above succession rule.

We will enumerate the sets of vertices labelled by (1) 2 of level n + 2

for all positive integers n.

(33)

S(1-23) ` : Recursive and functional equations

We denote a

n,n+2−`

, ` ≥ 2, the number of vertices (1)

`

of level n

7 1

6

1

5

1

4

1

3

1

2

5 4 3 2 5 1

4

1

3

1

2

4 1

3

1

2

3 1

2

5 1

4

1

3

1

2

3 2 4 1

3

1

2

2 5 1

4

1

3

1

2

3 2 3 1

2

6 1

5

1

4

1

3

1

2

4 3 2 4 1

3

1

2

3 1

2

4 1

3

1

2

2

5 1

4

1

3

1

2

3 2 3 1

2

4 1

3

1

2

2

3 1

2

2

(34)

S(1-23) ` : Recursive and functional equations

We denote a

n,n+2−`

, ` ≥ 2, the number of vertices (1)

`

of level n

• a

n,n+2−`

= a

n−1,n+1−(`−1)

+ P

n−1

i=`

a

n−2,n−i

∀` ≥ 3

7 1

6

1

5

1

4

1

3

1

2

5 4 3 2 5 1

4

1

3

1

2

4 1

3

1

2

3 1

2

5 1

4

1

3

1

2

3 2 4 1

3

1

2

2 5 1

4

1

3

1

2

3 2 3 1

2

6 1

5

1

4

1

3

1

2

4 3 2 4 1

3

1

2

3 1

2

4 1

3

1

2

2

5 1

4

1

3

1

2

3 2 3 1

2

4 1

3

1

2

2

3 1

2

2

(35)

S(1-23) ` : Recursive and functional equations

We denote a

n,n+2−`

, ` ≥ 2, the number of vertices (1)

`

of level n

• a

n,n+2−`

= a

n−1,n+1−(`−1)

+ P

n−1

i=`

a

n−2,n−i

∀` ≥ 3 I If the grandfather of (1)

`

is (i ) with i ≥ ` − 1 there are two paths (i) (i + 1) (1)

`

, (i ) (1)

`−1

7 1

6

1

5

1 4 1

3

1

2

5 4 3 2 5 1

4

1

3

1

2

4 1

3

1

2

3 1

2

5 1 4 1

3

1

2

3 2 4 1

3

1

2

2 5 1 4 1

3

1

2

3 2 3 1

2

6 1

5

1

4

1 3 1

2

4 3 2 4 1 3 1

2

3 1

2

4 1 3 1

2

2

5 1

4

1

3

1

2

3 2 3 1

2

4 1

3

1

2

2

3 1

2

2

(36)

S(1-23) ` : Recursive and functional equations

We denote a

n,n+2−`

, ` ≥ 2, the number of vertices (1)

`

of level n

• a

n,n+2−`

= a

n−1,n+1−(`−1)

+ P

n−1

i=`

a

n−2,n−i

∀` ≥ 3 I If the grandfather of (1)

`

is (1)

i

i ∈ [`, n − 1] there is a unique path (1)

i

(i ) (1)

`

7 1

6

1

5

1

4

1

3

1

2

5 4 3 2 5 1 4 1

3

1

2

4 1

3

1

2

3 1

2

5 1

4

1

3

1

2

3 2 4 1

3

1

2

2 5 1

4

1

3

1

2

3 2 3 1

2

6 1

5

1

4

1

3

1

2

4 3 2 4 1

3

1

2

3 1

2

4 1

3

1

2

2

5 1 4 1

3

1

2

3 2 3 1

2

4 1

3

1

2

2

3 1

2

2

Références

Documents relatifs

Notice that in [1], the author gave a Gray code for n-length permuta- tions with exactly k cycles and deduces a Gray code for n-length permuta- tions with exactly k left-to-right

Two Dyck paths of the same semilength are r-equivalent (resp. p-equivalent and v-equivalent) whenever the positions of their double rises (resp. peaks and valleys) are the same..

Let us define the Dyck path of length 2n (called Dyck path associated with π) obtained from this lattice path by reading an up-step U every time the path moves up, and a down-step

Dans un premier temps nous proposons un schéma d'énumération par le rang, cadre général d'une classe d'algorithmes qui réalisent ces bijections, puis nous l'appliquons aux problèmes

We start with the empty permutation, then insert to its left each value from the non-decreasing parking function by a left to right reading and then add 1 to values greater than

To do this, we construct a bijection from subexcedent functions to an intermediate object: decreasing weighted subexcedent functions which are represented by a Catalan object and

Let us denote by A ∞,q the subspace of C ∞,q whose elements are finite linear combinations of generic norms; this is in fact a subalgebra, which we call the Hecke-Ivanov-Kerov

• Proof of unicity of standard reduction in each equivalence class.. Let ⇢ and be standard and