• Aucun résultat trouvé

Protozoan and bacterial pathogens in tick salivary glands in wild and domestic animal environments in South Africa

N/A
N/A
Protected

Academic year: 2021

Partager "Protozoan and bacterial pathogens in tick salivary glands in wild and domestic animal environments in South Africa"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-02152195

https://hal.archives-ouvertes.fr/hal-02152195

Submitted on 28 Jun 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

glands in wild and domestic animal environments in

South Africa

M. Berggoetz, M. Schmid, D. Ston, V. Wyss, Christine Chevillon, A.-M

Pretorius, L. Gern

To cite this version:

M. Berggoetz, M. Schmid, D. Ston, V. Wyss, Christine Chevillon, et al.. Protozoan and bacterial

pathogens in tick salivary glands in wild and domestic animal environments in South Africa. Ticks and

Tick-borne Diseases, Elsevier, 2014, 5 (2), pp.176-185. �10.1016/j.ttbdis.2013.10.003�. �hal-02152195�

(2)

Pleasecitethisarticleinpressas:Berggoetz,M.,etal.,Protozoanandbacterialpathogensinticksalivaryglandsinwildanddomesticanimal environmentsinSouthAfrica.TicksTick-borneDis.(2013),http://dx.doi.org/10.1016/j.ttbdis.2013.10.003

ARTICLE IN PRESS

GModel

TTBDIS-266; No.ofPages10

TicksandTick-borneDiseasesxxx (2013) xxx–xxx

ContentslistsavailableatScienceDirect

Ticks

and

Tick-borne

Diseases

j ou rn a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / t t b d i s

Original

article

Protozoan

and

bacterial

pathogens

in

tick

salivary

glands

in

wild

and

domestic

animal

environments

in

South

Africa

M.

Berggoetz

a,∗

,

M.

Schmid

a

,

D.

Ston

a

,

V.

Wyss

a

,

C.

Chevillon

b

,

A.-M.

Pretorius

c

,

L.

Gern

a

aInstitutdeBiologie,Laboratoired’Eco-EpidémiologiedesParasites,UniversityofNeuchâtel,EmileArgand11,2000Neuchâtel,Switzerland

bMaladiesInfectieusesetVecteurs:Ecologie,Génétique,Evolution,Contrôle(MIVEGEC;UMR5290CNRS-IRD-UniversitésMontpellierIetII),Montpellier,

911AvenueAgropolis,BP64501,34394Montpelliercedex5,France

cDepartmentofHealthSciences,FacultyofHealthandEnvironmentalSciences,CentralUniversityofTechnology,FreeStateProvince,Bloemfontein9300,

SouthAfrica

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received10July2013

Receivedinrevisedform10October2013 Accepted14October2013 Available online xxx Keywords: Ticks Tick-bornepathogens Africanwildlife Livestock Coinfections Theileria Babesia Ehrlichia Anaplasma

a

b

s

t

r

a

c

t

Atotalof7364ticksbelongingto13specieswascollectedfrom64gameanimals(belongingto11species) andfrom64livestockanimals(cattleandsheep)livinginclosevicinityat6localitiesin3SouthAfrican Provinces(FreeState,Mpumalanga,andLimpopo).Thegeographicdistributionofalltickspecieswas congruentwiththeliteratureexceptforHaemaphysalissilacea.Fromeachinfestedhost,amaximum of10malesand10femalesofeachtickspeciesweredissectedtoisolatethesalivaryglands.Salivary glandswerescreenedfortick-bornepathogensusingpolymerasechainreactionfollowedbyreverse lineblottingandsequencing.Thisapproachallowedustoevaluatetheexposureofwildanddomestic hoststotick-bornepathogensintheirrespectiveenvironments.Amongthe2117examinedticks,329 (15.5%),belongingto8species,wereinfectedandharboured397infections.Amongthose,57.7%were identifiedtospecieslevelandwereassignedto23pathogenspeciesofthegeneraBabesia,Theileria, Anaplasma,andEhrlichia.In3outof6localities,salivaryglandsfromticksinfestingwildruminants displayedsignificantlyhigherinfectionprevalenceandpathogenmeandensitythansalivaryglandsfrom ticksinfestinglivestockanimals.Fourpiroplasmspecies[Theileriabicornis,Babesiasp.(sable),Theileriasp. (giraffe),andTheileriasp.(kudu)]weredetectedforthefirsttimeinticks.ThetickspeciesRhipicephalus evertsievertsi,Rhipicephalus(Boophilus)decoloratus,Hyalommarufipes,Rhipicephalusappendiculatus,and Amblyommahebraeumwereassociatedwithabroaderpathogenrangethanpreviouslyknown,andthus newvector–pathogencombinationsaredescribed.Inaddition,previouslyunknowncoinfectionpatterns inticksalivaryglandsarereported.

© 2013 Elsevier GmbH. All rights reserved.

Introduction

Ticksarevectorsofagreatvarietyoftick-bornepathogens.In therecentdecades,thedevelopmentofmoleculartoolsincreased theirknown number and theirknown variety.The majority of tick-bornepathogenspeciesthatcirculatebetweenticksandboth gameandlivestockanimalshavebeenreportedinthevertebrate hosts theyinfect and less in theticks. Indeed, in earlystudies thataimedtodetecttick-bornepathogensinwildAfrican ungu-lates,animalserawerescreened(NeitzandDuToit,1932;Neitz,

1935;Löhrand Meyer, 1973;Löhret al.,1974;Carmichael and

Hobday, 1975). More recently, in studies reporting tick-borne

∗ Correspondingauthor.Tel.:+41327183043;fax:+41327183001. E-mailaddresses:mirko.berggoetz@unine.ch(M.Berggoetz),

melody.schmid@unine.ch(M.Schmid),daniel.ston@unine.ch(D.Ston),

virginie.wyss@unine.ch(V.Wyss),Christine.chevillon@ird.fr(C.Chevillon),

gnvramp@gmail.com(A.-M.Pretorius),lise.gern@unine.ch(L.Gern).

pathogensaffectinggameanimals,hostbloodwasexamined,but nottheassociatedtickspecies(Nijhofetal.,2003,2005;Spitalska

etal.,2005;Brothersetal.,2011;Oosthuizenetal.,2008,2009;

Pfitzeretal.,2011).Inaddition,severaltick-bornepathogenswith

knowntick vectorsdisplay abroader hostrange thanformerly thought.AnexampleisTheileriasp.(sable)thatinfectsthesable (Hippotragusniger)and roan(H. equinus) antelopeandthat has beennewly described in red hartebeest(Alcelaphus buselaphus)

(Spitalskaet al.,2005), cattle(Yusufmiaetal., 2010), andnyala

(Tragelaphusangassii)(Pfitzeretal.,2011).Forthesepathogens,a broaderhostrangecouldmeanthat additional,sofarunknown vectors, especially when associated with a wide host variety, mightbeinvolvedintheirtransmission.Fromthispointofview, the two-hosttick R. e. evertsi, thethree-host ticks Amblyomma hebraeum and R. appendiculatusas wellas the one-hosttick R. (Boophilus)decoloratusaregoodcandidates.Thesetickspecieswere recordedfroma greatvarietyofhostspeciesandare geograph-icallywidelydistributedinsouthern Africa(Walkeretal.,2000,

2003).

1877-959X/$–seefrontmatter © 2013 Elsevier GmbH. All rights reserved.

(3)

2 M.Berggoetzetal./TicksandTick-borneDiseasesxxx (2013) xxx–xxx

Therefore,inthisstudy,wefocusedonthepresenceofBabesia, Theileria,Anaplasma,andEhrlichiainthesalivaryglandsof differ-enttickspeciescollectedfromwildanddomestic ruminantsin SouthAfrica. Detectionofpathogens in salivaryglands of ticks allowedustodistinguishpathogensthatinfectedtheticksbefore theyattachedtothehostsfromthose takenupbyticksduring theirbloodmeal.Thus,thisapproachallowstoevaluatethe expo-sureofwildanddomesticruminantstotick-bornepathogensin theirrespectiveenvironments.Thepresenceofapathogenintick salivaryglands stronglysuggests thatit may betransmittedto thehost,butthisisnotsufficienttoproveitsvectorrole,which wouldrequiretransmissionexperiments.Thepurposeherewas(i) toevaluatethepossibleroleofticksinthetransmissionofrecently describedpathogenspecies,(ii)toverifywhetherpathogenswith a broadhostrange have a broadervector rangethan currently known,(iii)toinvestigatetheexposureofgameandlivestockto tick-bornepathogensintheirrespectiveenvironments,and(iv)to obtaininformationoncoinfectionsinticks.

Materialsandmethods

Studyareas

Tickswerecollectedin 2009(May toJuly),2010(Januaryto May),and2011(ApriltoJune)at6localitiesin3SouthAfrican Provinces.IntheFreeState,3provincialnaturereserves, Tüssen-Die-Riviere, Willem Pretorius, and Sandveld, as wellas several livestockfarmsattheirsurroundingswereinvestigated(highveld). IntheMpumalangaProvince,onegamefarmandonelivestockfarm wereinvestigatednearBethal(highveld).Finally,5gamefarmsand 5livestockfarmswereinvestigatedintheLimpopoProvinceinthe ThabazimbiandLephalaleareas(lowveld).

Ticksampling

Ateachlocality,ticksamplingswereperformedondomesticand wildanimalswithinthesameweek.Ticksweresampledfroman equalnumberoflivestockanimalslivingonfarmssharinga com-monborderwiththereservesorgamefarmsorlocatedintheclose surroundings(within the range of40km).Ticks werecollected fromgameanimalsduringgamecapture,cullingoperations,and hunts.Cattleweremaintainedinholdingfacilitiesduringsampling, andsheepwereimmobilisedbyhandinsmallcamps.Hostswere visuallyexaminedforticks;palpationhelpedtolocalisespecimens attachedonflanks,back,belly,neck,andlegs.Allthefoundticks wereremovedwithtweezers.Tickidentificationwasperformed accordingtoMatthysseandColbo(1987)andWalkeretal.(2000,

2003). Tickswere pooled per species, host,and developmental

stageandstockedinalcoholin50-mllabelledtubes. Detectionandidentificationofpathogenspeciesinticksalivary glands

Fromeach individual host,a maximum of 10 males and 10 females from each tick species was analysed. To distinguish pathogensthathadinfectedticksbeforetheyattachedtothehost fromthosetakenupbyticksduringtheircurrentbloodmeal,each tickwasdissectedandthesalivaryglandsofdissectedtickswere analysedfor pathogens.Salivaryglandswerecarefullyremoved withtweezers–specialattentionwaspaidtoavoid contamina-tionwiththemidgut,andwashedtwiceinPBSin96-wellplates (Milian®,Geneva,Switzerland).Instrumentsweresterilisedfora fewsecondsin5MHCland5MNaOH(Aktasetal.,2009)anddried withsterilewipesbetweeneachdissection.

DNAfromticksalivaryglands wasextractedusingQIAamp® DNAMicrokit(Qiagen,Hombrechtikon,Switzerland)followingthe

manufacturer’sinstructionswithmodifications.Tissuelysisbuffer andproteinaseKwereaddedinthe1.5-mltubesbeforethesalivary glands.DNAwasstoredat−20◦C.

Anapproximately500-basepair(bp)fragmentofthe16S ribo-somalRNA(rRNA)genespanningthehypervariableV1regionofthe generaAnaplasmaandEhrlichiaandanapproximately400-bp frag-mentofthe18SrRNAgenespanningtheV4hypervariableregion ofthegeneraBabesiaandTheileriawereamplifiedbyPCR(Tonetti etal.,2009).Positivecontrol,includedineachrun,consistedof DNAofA.phagocytophilum(providedbyAnaSofiaSantos, Insti-tutoNacionaldeSaude,Lisboa,Portugal)andB.divergens(provided bySimonaCasati,InstitutCantonaldeMicrobiologie,Bellinzone, Switzerland).PCRproductswereanalysedusingreverseline blot-ting (RLB)(Tonetti et al., 2009). In addition to the original 15 oligonucleotideprobes,whicharelistedinTonettietal.(2009)(2 genus-specificBabesia/TheileriaandAnaplasma/Ehrlichia,and13 species-specific),26probeswereadded:onegenus-specific

Theile-riaspp.(Nagoreetal.,2004)and25species-specificprobes,B.ovis,

B.crassa(Schnittgeretal.,2004),B.major(Georgesetal.,2001), Babesiasp.(sable)(Oosthuizenetal.,2008),B.caballi(Butleretal., 2008),B.occultans(Ros-Garciaetal.,2011),B.orientalis(Heaetal., 2011),B.gibsoni(fromPfitzer,2009),B.rossi(Matjilaetal.,2004),B. bicornis(Nijhofetal.,2003),B.motasi,Theileriasp.(greaterkudu), Theileriasp.(sable)(Nijhofetal.,2005),T.separata,T.lestoquardi,T.

ovis(Schnittgeretal.,2004),T.buffeli(Gubbelsetal.,1999),T.

bicor-nis(Nijhofetal.,2003),Theileriasp.(buffalo)(Ouraetal.,2004),T.

equi(Butleretal.,2008),T.annulata(Georgesetal.,2001),Ehrlichia

sp.(Omatjenne)(Bekkeretal.,2002),and4A.phagocytophilum (fromPfitzer,2009)thatreplacedtheoriginaldegeneratedprobe. SamplesreactingonlywiththeBabesia/Theileriaprobewere con-sidered Babesia spp. since a genus-specific probe wasincluded forthegenusTheileria.Totestfortheoreticalspecificity, oligonu-cleotideprobeswerealignedwithvarioussequencesoftargeted speciesavailablefromtheNationalCentreforBiotechnology Infor-mation(NCBI)usingasoftwarepackage:CLCSequenceViewer6 (CLCbio,Aarhus,Denmark).

Sequencing

PCR products that reacted only with genus-specific probes Babesia/Theileria,Theileriaspp.,orAnaplasma/Ehrlichiaand did not hybridise with the panel of species-specific probes were sequenced.Prior sequencing,PCR products werepurified using Wizard®SVandPCRClean-UpSystem(Promega,Madison,USA) followingthemanufacturer’sinstructions exceptthatweeluted with35␮lratherthan70␮lNuclease-FreeWater.Sequencingwas performedbyMicrosynthAG (Balgach,Switzerland).Sequences werecomparedandcorrectedwithCLCSequenceViewer6(CLCbio, Aarhus,Denmark)andBioedit(TomHallIbisBiosciences,Carlsbad). Corrected sequences were compared with available sequences retrievedfromGenBankusingNCBIBasicLocalAlignmentSearch Tool(BLAST).

Dataanalysis

Datawereanalysedwith“R”2.14forWindows(RDevelopment Core Team, 2012. R: A language and environment for statisti-cal computing. RFoundation for Statistical Computing,Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.org/), usingsoftwarepackages(Skaugetal.,2010;Hussonetal.,2012).A generalisedlinearmixedmodel(GLMM)withnegativebinominal errors was used to evaluate tick salivary gland infection (tak-ingintoaccountthe4maininfectedtickspecies)collectedfrom wildanddomesticruminantsoriginatingfrom6localities.Ineach locality,thesignificanceofthefactorsLOCATIONandHOSTTYPE (i.e.ticksinfesting wildvs. domestic ruminants)as wellasthe

(4)

Pleasecitethisarticleinpressas:Berggoetz,M.,etal.,Protozoanandbacterialpathogensinticksalivaryglandsinwildanddomesticanimal environmentsinSouthAfrica.TicksTick-borneDis.(2013),http://dx.doi.org/10.1016/j.ttbdis.2013.10.003

ARTICLE IN PRESS

GModel

TTBDIS-266; No.ofPages10

M.Berggoetzetal./TicksandTick-borneDiseasesxxx (2013) xxx–xxx 3

LOCATION–HOSTTYPEinteractionwasassessed,Pvalueswere con-sideredsignificantwhenbelow0.05.Inordertocomputewhether associationsbetweenpathogenspeciesincoinfectionswere signifi-cantapermutationtestproposedbyRaupandCrick(1979),adapted

toRbyCluaetal.(2010)constrainedtolocationswasused.Here,P

valueswereconsideredsignificantwhenbelow0.0001(Bonferroni corrected).

Results

Ticksampling

Atotalof7364ticksbelongingto13specieswascollectedfrom 13ruminantspecies(Table1).Fivetickspeciescontributed96.5% of thetotal sampling: R. (B.) decoloratus (n=2611), R.e. evertsi (n=2225),Margaropuswinthemi(n=1085),A.hebraeum(n=767), andHyalommarufipes(n=417),and71%ofthemwerecollected fromwildanimals(Table1).Alltickspeciesweredetectedinareas that were congruentwith theirknown geographic distribution exceptHaemaphysalissilacea,whichwasrecordedatWillem Pre-toriusgamereserve(centralFreeState)(SupplementaryTableS1). The2mostabundanttickspecieswerecollectedateachofthe6 samplingsites,R.(B.)decoloratusinfested9ruminantspeciesand R.e.evertsiallhostspecies.

Supplementarymaterialrelatedtothisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.ttbdis.2013.10.003.

Infectionofticksalivaryglands

Amongthe2117examinedticks,329(15.5%)wereinfected,and theyharboured397infections(Table2).Themajority(95%)ofthe infectionswereobservedin4tickspecies:R.e.evertsiharboured 48.6%oftheinfections(193/397),R.(B.)decoloratus24.7%(98/397), A.hebraeum11.8%(47/397),andHy.rufipes9.6%(38/397)(Table2). Fivetickspecies(Ixodesrubicundus,M.winthemi,Hae.silacea, Oto-biusmegnini, and R.zambeziensis) were free of pathogens. One hundredsixty-eightinfectionswereidentifiedatgenuslevelonly: 69Babesiaspp.,56 Theileriaspp.,and 43AnaplasmaorEhrlichia spp.Sequencingofallthesesamplesdidnotallowfurther identi-fication.Theremaininginfections(n=229)(57.7%)wereidentified tospecies level and were assigned to 23 pathogen species, all knowntooccurinSouthAfrica,exceptT.annulata(Table2).Among them were 46 identified by sequencing (Table 3). Theileria sp. (sable)(n=38;9.6%),T.buffeli(n=37;9.3%),T.bicornis(n=27;6.8%), Ehrlichiasp. (EU191229.1)(n=23;5.8%),and T.separata (n=18; 4.5%)werethemostfrequent(Table2).

Pathogendistributionamongtickspecies

Ninepathogenspeciesweredetectedinonetickspeciesonly. Theileriaequi,T.separata,A.ovis,andA.platysweredetectedinR.e. evertsi;B.occultansandBabesiasp.(sable)wereonlydetectedinHy. rufipes,andTheileriasp.(kudu),Anaplasmacentrale,andEhrlichia ruminantiuminR. appendiculatus,R.gertrudae,and A.hebraeum, respectively(Table2).Sevenpathogensweredetectedin 2tick species.Babesiabigemina,B.caballi,A.bovis,T.ovis,andTheileriasp. (giraffe)weredetectedinR.(B.)decoloratusandR.e.evertsi.Theileria bicorniswasdetectedinR.e.evertsiandR.appendiculatus.Finally,T. mutanswasdetectedinR.e.evertsiandA.hebraeum.Fourpathogen specieswereidentifiedin3tickspecies.Theileriasp.(sable)was detectedinR.e.evertsi,R.(B.)decoloratus,andA.hebraeum. Thei-leriataurotragiwasdetectedinR.appendiculatus,R.e.evertsi,and Hy.rufipes.AnaplasmamarginalewasdetectedinR.gertrudae,R.(B.) decoloratus,andR.e.evertsi.Ehrlichiasp.(EU191229.1)wasdetected inR.(B.)decoloratus,R.e.evertsi,andHy.rufipes.Finally,T.buffeli andE.ovinaweredetectedin4tickspecies:Theileriabuffeliwas

detectedinR.(B.)decoloratus,R.e.evertsi,Hy.rufipes,andR. appen-diculatus,whileE.ovina wasdetectedinR.(B.)decoloratus, R.e. evertsi,Hy.rufipes,andR.gertrudae.

Salivaryglandinfectionofticksattachedtowildversusdomestic ruminants

Ticksthatwereattachedtowildruminantsshowedan infec-tionprevalenceof23.3%(227/973)andharboured284infections, while ticksattachedtodomestic ruminantsdisplayedan infec-tionprevalenceof11.5%(102/885)andharboured113infections

(Tables4aand4b).ThedifferencesweremainlyduetoTheileria

spp.(16.1%vs.8.4%),Theileriasp.(sable)(12.6%vs.1.7%),T.buffeli (10.2%vs.6.7%),T.bicornis(7.4%vs.5%),andT.separata(4.9%vs. 3.4%)(Tables4aand4b).

Takingintoaccountthe4maininfectedtickspecies[R.(B.) decol-oratus,R.e.evertsi, A. hebraeum,and Hy.rufipes],salivarygland infection(prevalenceofinfectionandmeandensityofpathogens) variedsignificantlyamongthesamplinglocalities(Table5).The infectionpatternwasimpactedbythefactorsLOCATIONandHOST TYPEaswellasbytheinteractionofbothfactors(Glmmanalyses P<0.001forthefactorsLOCATION,HOSTTYPE,andtheir interac-tions).Incontrast,theintensitiesofinfectiondidnotsignificantly differamonghosttypesand/orlocationsatthe5%risk(datanot shown).InSandveld,Thabazimbi,andLephalale,infection preva-lenceandmeandensityofpathogensweresignificantlyhigherin salivaryglandsofticksinfestingwildthandomestichosts. Simi-larly,thetickmeandensitywassignificantlyhigheronwildanimals thanondomesticanimalsinSandveldandThabazimbi(datanot shown).

Coinfections

Amonginfectionsidentified atspecieslevel,93(44.7%) were coinfections:57(61.3%)involved 2pathogens,24(25.8%)3,and 12(12.9%)4(datanotshown).Rhipicephaluse.evertsishowedthe highestprevalenceofcoinfections(n=67;72%),followedbyR.(B.) decoloratus(n=21;22.6%),R.appendiculatus(n=3;3.2%),andHy. rufipes(n=2;2.2%)(datanotshown).Sixassociations involving 5pathogenspeciesweresignificant:Theileriasp.(sable)withT. separata;Theileria sp.(sable)withT.bicornis;T.separatawithT. bicornis;T.separatawithT.buffeli;T.bicorniswithT.buffeli,and T.buffeliwithB.caballi[P<0.0004,permutationtestconstrained tolocations(RaupandCrick,1979,modifiedbyCluaetal.,2010)] (SupplementaryTableS2).

Supplementarymaterialrelatedtothisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.ttbdis.2013.10.003.

Discussion

Inthisstudy,13tickspeciescollectedfromwildanddomestic ruminantswereanalysedbyRLBhybridisationusingprobes allow-ingidentificationoftick-bornepathogensatthegenusandspecies level.Themajority(n=229)ofthe397infectionswereidentified atspecieslevel.Amongthose,46infectionsassignedto7species wereidentifiedbysequencing:Ehrlichiasp.(EU191229.1),E.ovina, Theileriasp.(giraffe),A.platys,A.ovis,A.marginale,andA.bovis.No species-specificprobeswereincludedintheassayfortheformer4 species.Thelatter3speciesdidnotreactwiththeirspecific oligonu-cleotideprobes.ForA.ovisandA.marginale,thiswasprobablydue totheforwardpositionoftheprobesontheamplifiedsequence, while for A. bovis,it wasprobably due toone basepair differ-enceintheamplifiedsequences.Theremaining168infectionswere onlyidentifiedatthegenuslevel,evenaftersequencing,probably becauseofthepresenceofmultiplepathogens(Microsynth,pers. communication)forwhichnoprobeswereavailable.

(5)

4 M.Berggoetzetal./TicksandTick-borneDiseasesxxx (2013) xxx–xxx

Table1

Hostinfestation(n=128)by13tickspeciesinsixlocalitiesinSouthAfrica.

Tick(bold)andhostspecies Hosts Numberofticks

No.infested/examined Larvae Nymphs Males Females Total

Rhipicephalus(B.)decoloratus

Commoneland(Tragelaphusoryx) 1/9(11%) 9 91 135 97 332 Greaterkudu(T.strepsiceros) 3/8(38%) 1 59 35 35 130 Impala(Aepycerosmelampus) 2/7(29%) 213 483 434 207 1337 Southerngiraffe(Giraffacamelopardalis) 5/5(100%) 0 0 6 23 29 Bluewildebeest(Connochaetestaurinus) 4/5(80%) 8 10 40 53 111 Sableantelope(Hippotragusniger) 2/2(100%) 0 14 37 45 96 Gemsbok(Oryxgazellagazella) 1/1(100%) 33 52 72 56 213 Cattle(Bosprimigeniustaurus/B.p.taurus/indicus) 17/50(34%) 0 21 136 204 361

Sheep(Ovisaries) 2/14(14%) 0 0 0 2 2

Total 37/101(37%) 264 730 895 722 2611

R.e.evertsi

Africanbuffalo(Synceruscaffer) 14/15(93%) 0 0 330 112 442 Commoneland(T.oryx) 9/9(100%) 0 2 262 27 291 Greaterkudu(T.strepsiceros) 4/8(50%) 7 24 7 0 38

Impala(A.melampus) 3/7(43%) 0 49 11 2 62

Bluewildebeest(C.taurinus) 5/5(100%) 0 0 48 38 86 Springbok(Antidorcasmarsupialis) 4/6(67%) 0 0 6 5 11 Southerngiraffe(G.camelopardalis) 4/5(80%) 0 0 15 12 27 Blesbok(Damaliscuspygarusphillipsi) 1/3(33%) 3 5 0 0 8 Blackwildebeest(C.gnou) 2/3(67%) 0 0 3 3 6 Sableantelope(H.niger) 2/2(100%) 0 0 9 1 10 Gemsbok(O.g.gazella) 1/1(100%) 0 0 26 5 31 Cattle(B.p.taurus/B.p.t./indicus) 49/50(98%) 189 424 431 153 1197

Sheep(O.aries) 5/14(36%) 0 0 14 2 16

Total 101/128(79%) 199 504 1162 360 2225

Margaropuswinthemi

Commoneland(T.oryx) 6/9(67%) 11 505 287 234 1037 Greaterkudu(T.strepsiceros) 1/8(13%) 0 0 0 9 9 Gemsbok(O.g.gazella) 1/1(100%) 1 0 0 27 28 Cattle(B.p.taurus/B.p.t./indicus) 3/50(6%) 0 0 0 11 11

Total 11/68(16%) 12 505 287 281 1085

Amblyommahebraeum

Southerngiraffe(G.camelopardalis) 5/5(100%) 0 0 307 117 424 Cattle(B.p.taurus/B.p.t./indicus) 10/50(20%) 0 0 229 114 343

Total 15/55(27%) 0 0 536 231 767

Hyalommam.rufipes

Buffalo(S.caffer) 8/15(53%) 0 0 13 8 21

Commoneland(T.oryx) 9/9(100%) 0 0 215 14 229 Southerngiraffe(G.camelopardalis) 4/5(80%) 0 0 19 5 24 Bluewildebeest(C.taurinus) 3/5(60%) 0 0 4 7 11 Sableantelope(H.niger) 1/2(50%) 0 0 1 0 1 Cattle(B.p.taurus/B.p.t./indicus) 28/50(56%) 0 0 80 49 129

Sheep(O.aries) 2/14(14%) 0 0 1 1 2

Total 55/100(55%) 0 0 333 84 417

Ixodesrubicundus

Commoneland(T.oryx) 4/9(44%) 0 0 22 32 54 Greaterkudu(T.strepsiceros) 5/8(63%) 0 0 16 34 50 Springbok(A.marsupialis) 5/6(83%) 0 0 9 11 20 Cattle(B.p.taurus/B.p.t./indicus) 4/50(8%) 0 0 7 21 28

Sheep(O.aries) 2/14(14%) 0 0 1 1 2

Total 20/87(23%) 0 0 55 99 154

R.appendiculatus

Impala(A.melampus) 1/7(14%) 0 0 4 0 4

Southerngiraffe(G.camelopardalis) 1/5(20%) 0 0 9 4 13 Cattle(B.p.taurus/B.p.t./indicus) 3/50(6%) 0 0 19 2 21

Total 5/62(8%) 0 0 32 6 38

R.gertrudae

Africanbuffalo(S.caffer) 1/15(7%) 0 0 21 1 22

Commoneland(T.oryx) 1/9(11%) 0 0 8 0 8

Total 2/24(8%) 0 0 29 1 30

R.warburtoni

AfricanBuffalo(S.caffer) 1/15(7%) 0 0 1 0 1

Commoneland(T.oryx) 2/9(22%) 0 0 13 1 14

Total 3/24(12%) 0 0 14 1 15

Haemaphysalissilacea

Africanbuffalo(S.caffer) 2/15(13%) 0 0 0 8 8

Total 2/15(13%) 0 0 0 8 8

R.(B.)microplus

Cattle(B.p.taurus/B.p.t./indicus) 1/50(2%) 0 3 1 3 7

Otobiusmegnini

Cattle(B.p.taurus/B.p.t./indicus) 2/50(4%) 0 5 0 0 5

Total 2/50(4%) 0 5 0 0 5

R.zambeziensis

Impala(A.melampus) 1/7(14%) 0 0 2 0 2

(6)

Please cite this article in press as: Berggoetz, M., et al., Protozoan and bacterial pathogens in tick salivary glands in wild and domestic animal environments in South Africa. Ticks Tick-borne Dis. (2013), http://dx.doi.org/10.1016/j.ttbdis.2013.10.003

ARTICLE IN PRESS

G Model TTBDIS-266; No. of Pages 10 M. Berggoetz et al. / Ticks and Tick-borne Diseases xxx (2013) xxx xxx 5 Table2

Infectionof8outof13tickspeciesby23pathogenspeciescollectedfrom64wildand64domesticruminantsinSouthAfrica.

Pathogens/ticks R.(B.) decoloratus R.e. evertsi A. hebraeum H.m. rufipes R. appendiculatus R. gertrudae R.(B.) microplus R. warburtoni I. rubicundus M. winthemi H. silacea O. megnini R. zambeziensis %ofpathogen speciesD B/Tgenusg 24 30 6 6 3 0 0 0 0 0 0 0 0 69(17.4%) B.occultans 0 0 0 2a,f 0 0 0 0 0 0 0 0 0 2(0.5%) B.bigemina 5b,c,e,f 1f 0 0 0 0 0 0 0 0 0 0 0 6(1.5%) B.caballi 7b,c,e 5b,c 0 0 0 0 0 0 0 0 0 0 0 12(3%) B.sp.Sable 0 0 0 1b 0 0 0 0 0 0 0 0 0 1(0.3%) T.spp. 15 23 13 2 3 0 0 0 0 0 0 0 0 56(14.1%) T.bicornis 0 26a,b,c,e 0 0 1e 0 0 0 0 0 0 0 0 27(6.8%) T.ovis 2e 2a,c 0 0 0 0 0 0 0 0 0 0 0 4(1%) T.equi 0 14a,b,c,e,f 0 0 0 0 0 0 0 0 0 0 0 14(3.5%) T.separata 0 18b,c,d,e 0 0 0 0 0 0 0 0 0 0 0 18(4.5%)

T.sp.(sable) 9c,e,f 24b,c,d,e 5e,f 0 0 0 0 0 0 0 0 0 0 38(9.6%)

T.buffeli 17b,c,e,f 17b,c,e,f 0 2a,f 1e 0 0 0 0 0 0 0 0 37(9.3%)

T.taurotragi 0 1f 0 1b 2e 0 0 0 0 0 0 0 0 4(1%)

T.annulata 4b,e 2b,e 0 0 0 0 0 0 0 0 0 0 0 6(1.5%)

T.sp.(kudu) 0 0 0 0 1e 0 0 0 0 0 0 0 0 1(0.3%) T.mutans 0 1f 1f 0 0 0 0 0 0 0 0 0 0 2(0.5%) T.sp.(giraffe) 1f 1f 0 0 0 0 0 0 0 0 0 0 0 2(0.5%) A/Egenus 3 7 18 11 0 0 1 3 0 0 0 0 0 43(10.8%) A.bovis 1b 11a,b,c 0 0 0 0 0 0 0 0 0 0 0 12(3%) A.centrale 0 0 0 0 0 1a 0 0 0 0 0 0 0 1(0.3%) A.marginale 1d 1c 0 0 0 4a 0 0 0 0 0 0 0 6(1.5%) A.ovis 0 3c,f 0 0 0 0 0 0 0 0 0 0 0 3(0.8%)

E.sp.(EU191229.1) 8b,e 3c,f 0 12a,c 0 0 0 0 0 0 0 0 0 23(5.8%)

E.ovina 1c 2a,c 0 1a 0 1a 0 0 0 0 0 0 0 5(1.3%) E.ruminantium 0 0 4f 0 0 0 0 0 0 0 0 0 0 4(1%) A.platys 0 1a 0 0 0 0 0 0 0 0 0 0 0 1(0.3%) Prevalenceof infectionA 84/395 (21.3%) 147/909 (16.2%) 42/233 (18%) 37/259 (14.3%) 9/26(34.6%) 6/18 (33.3%) 1/4(25%) 3/14 (21.4%) 0/131 0/116 0/7 0/4 0/1 329/2117 (15.5%) Pathogenmean densityB 98/395(0.25) 193/909 (0.21) 47/233 (0.20) 38/259 (0.15) 11/26(0.42) 6/18 (0.33) 1/4(0.25) 3/14(0.21) 0/131 0/116 0/7 0/4 0/1 397/2117 (0.19) Intensityof infectionC 98/84(1.17) 193/147 (1.31) 47/42 (1.12) 38/37 (1.03) 11/9(1.22) 6/6(1) 1/1(1) 3/3(1) 0 0 0 0 0 397/329(1.21)

ANo.ofinfectedticks(datanotshown)/no.oftestedticks. B No.ofinfections/no.oftestedticks.

C No.ofinfections/no.ofinfectedticks.

D %ofthegivenpathogenspeciesamongthe397infections.

Locationsoftheinfectionsidentifiedatspecieslevel:a,Tüssen-Die-Riviere;b,WillemPretorius;c,Sandveld;d,Bethal;e,Thabazimbi;f,Lephalale. Inbold:newvector–pathogencombinations.

(7)

6 M.Berggoetzetal./TicksandTick-borneDiseasesxxx (2013) xxx–xxx

Table3

Pathogenspeciesidentifiedfromticksalivaryglandsbysequencing.

Identifiedsequence Homologywith %ofhomology Speciesname Identifiedfrom KF414714 EU191229.1 100% Unnamed(E.sp.) H.m.rufipes(n=12) KF414714 EU191229.1 100% Unnamed(E.sp.) R.(B.)decoloratus(n=8) KF414714 EU191229.1 100% Unnamed(E.sp.) R.e.evertsi(n=3) KF414715 AF318946.1 99% E.ovina R.e.evertsi(n=2) KF414715 AF318946.1 99% E.ovina H.m.rufipes(n=1) KF414715 AF318946.1 99% E.ovina R.gertrudae(n=1) KF414715 AF318946.1 99% E.ovina R.(B.)decoloratus(n=1) KF414716 FJ155997.1 100% A.bovis R.e.evertsi(n=11) KF414717 EU191231.1 100% A.ovis R.e.evertsi(n=3) KF414718 FJ155998.1 99% A.marginale R.gertrudae(n=1) KF414719 AY040853.1 99% A.platys R.e.evertsi(n=1) KF414720 FJ213583.1 100% T.sp.(giraffe) R.e.evertsi(n=1) KF414720 FJ213583.1 100% T.sp.(giraffe) R.(B.)decoloratus(n=1)

Thegeographic distributionof alltick and pathogen species wascongruentwiththeirknowngeographicdistributionexcept forHae. silacea,T.annulata, andEhrlichia sp.(EU191229.1). The tickHae.silaceawascollectedatWillemPretoriusgamereserve inthecentreoftheFreeState.Itsknowngeographicdistribution isthenorth-easternKwaZulu-NatalandtheEasternCapeProvince

(Norval,1975;Walker,1991;Horaketal.,1991,2007).InAfrica,

T.annulataoccursonlyinnorthernAfrica(Pipano,1994;Jacquiet etal.,1990).Here,T.annulatawasdetectedinthesalivaryglands of4R.(B.)decoloratusand2R.e.evertsiatThabazimbiandinthe FreeState(WillemPretorius)wheretheyweresharingthesame individualhosts.AllT.annulatainfectionswereidentifiedthrough hybridisationwithRLB-probesdesignedbyGeorgesetal.(2001). Crossreactivity with pathogens identified in this studycan be excluded.Whethercrossreactivity occurredwithanalternative orunknownTheileriaspeciesremainsapossibility.Unfortunately, sequencingofthesesampleswasnotsuccessful.Thus,thefinding

ofthiseconomicallyimportantcattleparasiteinSouthAfricamust beconsideredwithcaution.Thispathogenisnotdiscussed fur-ther,andEhrlichiasp.(EU191229.1)willbediscussedelsewhere (Berggoetzetal.,unpublished).

Amongtheobservedtick-pathogencombinations,17were con-gruent with the literature. Among those, 10 were recorded in thesalivaryglandsofR.e.evertsi:B.bigemina(Büscher,1988),B. caballi(DeWaalandvanHeerden,1994),T.ovis(JansenandNeitz,

1956),T.equi(DeWaalandPotgieter,1987),T.separata(Jansen

andNeitz, 1956), Theileriasp.(sable)(Steyletal.,2012), T.

tau-rotragi(Lawrenceetal.,1994a),A.marginale(Potgieter,1981),A.

ovis(Kaufmann,1996),andE.ovina(Neitz,1956).Theremaining7

knownvector–pathogencombinationswererecordedinthe sali-varyglandsof4tickspecies:B.bigemina(PotgieterandEls,1977),

T.ovis(JansenandNeitz,1956),andA.marginale(Potgieter,1981)

inR.(B.)decoloratus;T.mutans(Lawrenceetal.,1994a)andE. rumi-nantium(Bezuidenhoutetal.,1994)inA.hebraeum;B.occultans

Table4a

Pathogensidentifiedinseventickspeciescollectedfrom64wildruminants.

Pathogens/ticks R.(B.)decoloratus R.e.evertsi A.hebraeum H.m.rufipes R.appendiculatus R.gertrudae R.warburtoni %ofpathogen speciesd B/Tgenuse 16 21 2 1 3 0 0 43(15.1%) B.occultans 0 0 0 1 0 0 0 1(0.4%) B.bigemina 2 0 0 0 0 0 0 2(0.7%) B.caballi 6 5 0 0 0 0 0 11(3.9%) T.spp. 14 19 9 1 3 0 0 46(16.1%) T.bicornis 0 20 0 0 1 0 0 21(7.4%) T.ovis 2 0 0 0 0 0 0 2(0.7%) T.equi 0 14 0 0 0 0 0 14(4.9%) T.separata 0 14 0 0 0 0 0 14(4.9%) T.sp.(sable) 9 23 4 0 0 0 0 36(12.6%) T.buffeli 14 14 0 1 0 0 0 29(10.2%) T.taurotragi 0 1 0 1 0 0 0 2(0.7%) T.annulata 3 1 0 0 0 0 0 4(1.4%) T.sp.(giraffe) 1 1 0 0 0 0 0 2(0.7%) A/Egenus 2 7 9 5 0 0 3 26(9.1%) A.bovis 0 8 0 0 0 0 0 8(2.8%) A.centrale 0 0 0 0 0 1 0 1(0.4%) A.marginale 0 0 0 0 0 4 0 4(1.4%) E.sp.(EU191229.1) 2 1 0 11 0 0 0 14(4.9%) E.ovina 1 0 0 0 0 1 0 2(0.7%) E.ruminantium 0 0 2 0 0 0 0 2(0.7%) Prevalenceof infectiona 61/235(26%) 108/474(22.78%) 22/91(24.18%) 20/129(15.5%) 7/12(58.33%) 6/18(33.33%) 3/14(21.43%) 227/973(23.33%) Pathogenmean densityb 72/235(0.31) 149/474(0.31) 26/91(0.29) 21/129(0.16) 7/12(0.58) 6/18(0.33) 3/14(0.21) 284/973(0.29) Intensityof infectionc 72/61(1.18) 149/108(1.38) 26/22(1.18) 21/20(1.05) 7/7(1) 6/6(1) 3/3(1) 284/227(1.25)

aNo.ofinfectedticks(datanotshown)/no.oftestedticks. b No.ofinfections/no.oftestedticks.

c No.ofinfections/no.ofinfectedticks.

d %ofthegivenpathogenspeciesamongthe284infections.

(8)

Pleasecitethisarticleinpressas:Berggoetz,M.,etal.,Protozoanandbacterialpathogensinticksalivaryglandsinwildanddomesticanimal environmentsinSouthAfrica.TicksTick-borneDis.(2013),http://dx.doi.org/10.1016/j.ttbdis.2013.10.003

ARTICLE IN PRESS

GModel

TTBDIS-266; No.ofPages10

M.Berggoetzetal./TicksandTick-borneDiseasesxxx (2013) xxx–xxx 7

Table4b

Pathogensidentifiedinsixtickspeciescollectedfrom64domesticruminants.

Pathogens/ticks R.(B.)decoloratus R.e.evertsi A.hebraeum H.m.rufipes R.appendiculatus R.(B.)microplus %ofpathogen speciesd B/Tgenuse 8 9 4 5 0 0 26(21.8%) B.occultans 0 0 0 1 0 0 1(0.8%) B.bigemina 3 1 0 0 0 0 4(3.4%) B.caballi 1 0 0 0 0 0 1(0.8%) B.sp.(sable) 0 0 0 1 0 0 1(0.8%) T.spp. 1 4 4 1 0 0 10(8.4%) T.bicornis 0 6 0 0 0 0 6(5%) T.ovis 0 2 0 0 0 0 2(1.7%) T.separata 0 4 0 0 0 0 4(3.4%) T.sp.(sable) 0 1 1 0 0 0 2(1.7%) T.buffeli 3 3 0 1 1 0 8(6.7%) T.taurotragi 0 0 0 0 2 0 2(1.7%) T.annulata 1 1 0 0 0 0 2(1.7%) T.sp.(kudu) 0 0 0 0 1 0 1(0.8%) T.mutans 0 1 1 0 0 0 2(1.7%) A/Egenus 1 0 9 6 0 1 17(14.3%) A.bovis 1 3 0 0 0 0 4(3.4%) A.marginale 1 1 0 0 0 0 2(1.7%) A.ovis 0 3 0 0 0 0 3(2.5%) E.sp.(EU191229.1) 6 2 0 1 0 0 9(7.6%) E.ovina 0 2 0 1 0 0 3(2.5%) E.ruminantium 0 0 2 0 0 0 2(1.7%) A.platys 0 1 0 0 0 0 1(0.8%) Prevalenceofinfectiona 23/160(14.4%) 39/435(9%) 20/142(14.1%) 17/130(13.1%) 2/14(14.3%) 1/4(25%) 102/885(11.5%)

Pathogenmeandensityb 26/160(0.16) 44/435(0.10) 21/142(0.15) 17/130(0.13) 4/14(0.29) 1/4(0.25) 113/885(0.13)

Intensityofinfectionc 26/23(1.13) 44/39(1.13) 21/20(1.05) 17/17(1) 4/2(2) 1/1(1) 113/102(1.11)

aNo.ofinfectedticks(datanotshown)/no.oftestedticks. bNo.ofinfections/no.oftestedticks.

c No.ofinfections/no.ofinfectedticks.

d %ofthegivenpathogenspeciesamongthe113infections.

eB/T:includesinfectionsreactingwiththisprobeonly;consideredasbelongingtothegenusBabesia.

(ThomasandMason,1981)andT.taurotragi(Lawrenceetal.,1994b)

inHy.rufipesandR.appendiculatus,respectively.Rhipicephaluse. evertsiappearsasaveryimportantvectorforT.separata,T.equi, andTheileriasp.(sable)inSouthAfrica.Interestingly,B.bigemina wasdetectedinthesalivaryglandsofoneR.e.evertsiadult.The exactroleofR.e.evertsiintheepidemiologyofredwaterremains unclear(DeVosandPotgieter,1994).AccordingtoBüscher(1988), onlynymphstransmitB.bigemina,andtransovarialtransmission doesnotoccur.Furtherstudiesareneededtoevaluatetheroleof R.e.evertsiadultsinthecirculationofB.bigemina.

Toourknowledge,theremaining23vector–pathogen combi-nationswereneverdescribed before.Amongthose,11 involved combinations with multiple records at different sites. Three vector–pathogencombinationsinvolvedatickspecies,R.gertrudae, thatwasneverreportedasavector(Walkeretal.,2000).Onethird ofR.gertrudaespecimenscarriedbacterialpathogens,allidentified

atspecieslevel.Fouroutof6A.marginaleinfectionsweredetected inthistickspeciessuggestingapossiblevectorroleofR.gertrudaein theepidemiologyofgallsickness.Inaddition,E.ovinaandA.centrale wereeachidentifiedinoneR.gertrudae.Onevector–pathogen com-binationinvolvedT.bicornisdetectedforthefirsttimeinticksand previouslyreportedinrhinoceroses(Nijhofetal.,2003;Govender etal.,2011),cattle(Muhanguzietal.,2010),andnyala(Pfitzeretal., 2011).Itwasidentifiedinthesalivaryglandsof26R.e.evertsiat 4localitiesinthelowveldandinthehighveld.Thisstrongly sug-geststhatR.e.evertsitransmitsT.bicornisonalargearea.Three vector–pathogencombinationsinvolvedT.buffeliwhichhas rec-ognizedvectorsinsomepartsoftheworld(Gubbelsetal.,2000), buttoourknowledge,noidentifiedvectorinSouthAfrica. Theile-riabuffeliinfections(n=34)weredetectedinR.e.evertsiandR.(B.) decoloratus,aswellasin2Hy.rufipesatsitessituatedinthelowveld andhighveld.ThissuggeststhatR.e.evertsiandR.(B.)decoloratus Table5

Within-localitiescomparisonoftickinfectionprevalencesandtickinfectionmeandensitiesconsideringthefourmaininfectedtickspecies[R.(B.)decoloratus,R.e.evertsi,A. hebraeum,andHy.rufipes].

Location Tickinfectionprevalence Tickpathogenmeandensity

No.infected/tested z-Values P-Values Meaninfection/tick z-Values P-Values Sandveld(w) 77/343(22.45%) 4.02 <0.0001 110/343(0.32) 5.09 <0.0001 Sandveld(d) 24/251(9.56%) 25/251(0.10) WillemPretorius(w) 14/137(10.22%) 0.1 0.91 18/137(0.13) 0.28 0.78 WillemPretorius(d) 25/254(9.84%) 29/254(0.11) Tüssen-Die-Riviere(w) 32/183(17.49%) -0.55 0.58 33/183(0.18) -0.09 0.93 Tüssen-Die-Riviere(d) 21/108(19.44%) 20/108(0.19) Bethal(w) 2/3(66.67%) 1.63 0.1 2/3(0.67) 2.41 0.016 Bethal(d) 3/62(4.84%) 4/62(0.06) Thabazimbi(w) 41/78(52.56%) 4.51 <0.0001 50/78(0.64) 4.01 <0.0001 Thabazimbi(d) 10/80(12.50%) 14/80(0.18) Lephalale(w) 59/228(25.88%) 2.43 0.01 71/228(0.31) 2.54 0.01 Lephalale(d) 21/131(16.3%) 21/131(0.16)

(9)

8 M.Berggoetzetal./TicksandTick-borneDiseasesxxx (2013) xxx–xxx

playaroleinthemaintenanceofthisparasiteinSouthAfrica.Three vector–pathogencombinationsinvolvedA.bovisandTheileriasp. (sable)identifiedinthesalivaryglandsoftickspeciesthatwere suspectedvectors.AnaplasmaboviswasreportedbyTonettietal.

(2009)inentireR.e.evertsiticks.Here,A.boviswasdetectedinthe

salivaryglandsof11R.e.evertsicollectedat3localities.Our obser-vationcorroboratespreviousreportsandsupportsthatR.e.evertsi mayactasavectorforA.bovis.ThedetectionofTheileriasp.(sable) inthesalivaryglandsof9R.(B.)decoloratusat3sitesandof5A. hebraeumat2ofthesesitesindicatesthattheseticksmayactas vectorsinadditiontoR.e.evertsiandR.appendiculatus(Steyletal., 2012).TheobservationofTheileriasp.(sable)inthese2additional tickscontributestoexplainthebroadhostrangeofTheileriasp. (sable)(Spitalskaetal.,2005;Yusufmiaetal.,2010;Pfitzeretal.,

2011;Steyletal.,2012).BabesiacaballihasaknownvectorinSouth

Africa,butitwasobservedin2newvector–pathogen combina-tions,involvingatickspeciesknowntotransmitotherpathogens. WedetectedB.caballiinthesalivaryglandsof7R.(B.)decoloratus at3locationssuggestingthatthistickmaybeanadditionalvector ofR.e.evertsi(DeWaaletal.,1988).

Theremaining12vector–pathogencombinationsinvolvedonly oneor2records.Amongthose,5werepreviouslysuspected.This wasthecaseforT.mutansinR.e.evertsi(DeVosandRoos,1981), E.ovina in R. (B.) decoloratus (Schulz, 1940) and in Hy. rufipes (Hyalommaspp.,Schulz,1940),andT.taurotragiinH.rufipes(Binta etal.,1998).Inaddition,Babesiasp.(sable)(Oosthuizenetal.,2008) thatwasidentifiedinthesalivaryglandsofHy.rufipesis geneti-callyveryclosetoB.occultans(Oosthuizenetal.,2008)whichis transmittedbyHy.rufipes(ThomasandMason,1981).Thus,our observationisnotsosurprising.Theremaining7vector–pathogen combinationswereunknown.Theileriabicorniswasdetectedinone R.appendiculatus.AnaplasmaboviswasdetectedinoneR.(B.) decol-oratus;itsvectorinSouthAfricaisR.appendiculatus(Scott,1994). Anaplasmaplatyswhichisgenerallyassociatedwithcaninehosts

(Huangetal.,2005)andR.sanguineus(Hoskinsetal.,1991)was

detectedinoneR.e.evertsi.Theileriasp.(giraffe)whichwasonly knowningiraffe(Oosthuizenetal.,2009)wasdetectedinoneR. e.evertsiandoneR.(B)decoloratus.Finally,Theileriasp.(kudu),a pathogenofgreaterkudu(Nijhofetal.,2005)andnyala(T.

angas-sii)(Pfitzeretal.,2011),andT.buffeliwereidentifiedinthesalivary

glandsofR.appendiculatus. These12 vector–pathogen combina-tionsneedfurtherrecordsforconfirmationofthevectorroleof theseticks.

Morethan70%ofthecollectedtickspecieswereattachedtowild ruminants.Differencesininfestationbetweenwildanddomestic hostscanbeexplainedbyalowerexposuretoticksofdomestic animalsthatweretreatedwithacaricidesonaregularbasis. Fur-thermore,domesticanimalsgrazeinmanagedcampsrestrictedto severalhectareswhilewildanimalhabitatsaremuchlargerand non-managed.Salivaryglandsofticksthatwereattachedtowild ruminantsdisplayedsignificantlyhigherinfectionprevalencesand pathogenmeandensitiesthansalivaryglandsofticksattachedto domesticanimalsat3localities.Thepathogensthatmainly con-tributedtothesignificantdifferencebetweenwildanddomestic animalsweretheilerialspeciestransmittedonlytransstadiallyby thetwo-hosttickR.e.evertsi.Rhipicephaluse.evertsipopulationsin reserveshaveagreatervarietyofhoststhanthoselivingonfarms. Thisallowsthemtoaccumulatepathogenspeciesoriginatingfrom varioushosts.Thiscouldbeone explanationforthedifferences betweensalivaryglandinfectionsofticksassociatedwithwildvs. domesticruminantenvironments.Anotheronecouldbethat acari-cidetreatmentsareappliedondomesticanimals.Thiscouldaffect thetickpopulationstructure(e.g.proportionsbetweenlifestages) andthereforereduceverticaltransmissionandpathogenloadin tickpopulations.Finally,differencesinthesusceptibilityto aca-ricidesof infectedticksandnon-infectedtickscouldreducethe

proportionofinfectedticksintheenvironment.Thefrequenceof givenpathogenspeciesinwildordomesticruminantsisalsolinked tothehostpreferenceoftheirvectorticks.Forexample,B.bovis transmittedbyR.(B.)microplusinSouthAfrica(Tonnesenetal., 2004)isalmostexclusivelyfoundoncattleduetothefactthatthey representtheonlyeffectivehostsforR.(B.)microplus(Walkeretal.,

2003).

Here,72%ofthecoinfectionswereobservedinthetwo-hosttick R.e.evertsiandonly22.6%intheone-hosttickR.(B.)decoloratus, despitethefactthattheone-hosttickdisplayedaslightlyhigher infectionprevalenceandpathogenmeandensity.Ticklifecycles with2and 3 hosts increasethechance ofcoinfections. Among the529(23×23)possibilitiesofcoinfections,6pathogen associ-ationsinvolving4TheileriaspeciesandoneBabesiaspecieswere significant.Ifcoinfections inIxodes ticksinvolvingBorreliaspp., Babesiaspp.,Anaplasmaspp.,and Rickettsiaspp. weredescribed inNorthAmerica(forexample,Swansonetal.,2006)andEurope (forexample,Lommanoetal.,2012),muchlessisknownon coin-fectionsinticksinsouthernAfrica.Here,significantassociations involvedthemostfrequentpathogenspecies.Thiscouldindicate thatassociationsarelinkedtopathogenfrequency.However,the mostfrequentassociations[Theileriasp.(sable)withT.separata, Theileriasp.(sable)withT.bicornis,andT.separatawithT. bicor-nis]werethesameasthoseobservedinthebloodofhostsexposed totheseticks(Berggoetzetal.,2013).Thissuggeststhatthe asso-ciatedspeciestakeadvantageoftheirreciprocalpresence.Future studieswillhavetounderstandthemechanismsofcoinfectionsin ticksandevaluatetheirimpactonwildanddomesticruminants.

The present study shows that many examined tick species wereassociatedwithamuchbroaderpathogenrangethan pre-viouslyknown.Rhipicephaluse.evertsiandR.(B.)decoloratusare mainlyconcernedandappearasimportantvectorsinSouthAfrica. PathogenspecieslikeT.bicornis,Theileriasp.(giraffe),Theileriasp. (kudu),andBabesiasp.(sable)weredetectedforthefirsttimein ticks,morepreciselyintheirsalivaryglands,whichsuggeststheir vectorrole.Furthermore,ourobservationsshowedthatticksfrom wildanimal environmentsgenerally harbouredmore infections thanticksfromdomesticanimalenvironments.Thisindicatesthat wildruminantsaremoreexposedtotick-bornepathogenswhich canprobablybeexplainedbythefactthattheyliveinan uncon-trolledenvironmentwithahigherhostspeciesrichnessthaninthe managedcampofdomesticruminants.Ourresultsalsoshedlight onthehighfrequencyofcoinfectionsinticks.

Acknowledgements

We particularlythank F. Marais,J. Watson, and P.Nel from theDepartmentofEconomicDevelopment,Tourismand Environ-mentalaffairs(Detea),FreeStateProvince,fortheirtechnicaland administrativesupport.Withouttheirhelpthisworkwouldnot havebeenpossible.WethanktheveterinariansE.Albertyn,F.Du Plessis,andN.Krielfortheirhelp.Wewouldliketothankallthe FreeStatereservemanagersfortheirsupport.Wearegratefulto theWebsterfamilymembersfortheirhelpandkindness.Wethank allfarmersforwelcomingusontheirfarmsfortickcollection.We addressspecialthankstoR.A.Slobodeanu(Instituteof Mathemat-ics,UniversityofNeuchâtel)forstatisticalanalysis.WethankO. Rais,V.Douet,andN.Tonettifortheirusefuladvicesin labora-torytechniques,andA.S.SantosandS.Casatiforpositivecontrols. Wewouldalsoliketothank«LeRéseauEcologiedesInteractions Durables»andthegroup«TiquesetMaladiesàTiques»aswellasthe «EcoleDoctorale»,UniversityofNeuchâtel.Thisstudyispartofthe PhDthesisofM.Berggoetz.TheSwissNationalScienceFoundation (SNSF)(FN31003A125492/1) fundedthis research.Inaddition, financial support wasgiven by the Funds M. Wüthrich and A.

(10)

Pleasecitethisarticleinpressas:Berggoetz,M.,etal.,Protozoanandbacterialpathogensinticksalivaryglandsinwildanddomesticanimal environmentsinSouthAfrica.TicksTick-borneDis.(2013),http://dx.doi.org/10.1016/j.ttbdis.2013.10.003

ARTICLE IN PRESS

GModel

TTBDIS-266; No.ofPages10

M.Berggoetzetal./TicksandTick-borneDiseasesxxx (2013) xxx–xxx 9

Mathey-Dupraz(UniversityofNeuchâtel)andtheSwissAcademy ofSciences(SCNAT).Wewouldliketothankthe2reviewersfor theirusefulcomments.

References

Aktas,M.,Altay,K.,Dumanli,N.,Kalkan,A.,2009.Moleculardetectionand

identi-ficationofEhrlichiaandAnaplasmaspeciesinixodidticks.Parasitol.Res.104,

1243–1248.

Bekker,C.P.J.,deVos,S.,Taoufik,A.,Sparagano,O.A.E.,Jongejan,F.,2002.

Simulta-neousdetectionofAnaplasmaandEhrlichiaspeciesinruminantsanddetection

ofEhrlichiaruminatiuminAmblyommavariegatumticksbyreverselineblot

hybridisation.Vet.Microbiol.89,223–238.

Berggoetz,M.,Schmid,M.,Ston,D.,Wyss,V.,Chevillon,C.,Pretorius,A.-M.,Gern, L.,2013.Tick-bornepathogensinthebloodofwildanddomesticungulatesin

SouthAfrica:interplayofgameandlivestock.TicksTickBorneDis.(inpress).

Bezuidenhout,J.D.,Prozesky,L.,duPlessis,J.L.,vanAmstel,S.R.,1994.Heartwater.

In:Coetzer,J.A.W.,Thomson,G.R.,Tustin,R.C.(Eds.),InfectiousDiseasesof

Live-stock,withSpecialReferencetoSouthernAfrica.OxfordUniversityPress,Oxford,

UK,pp.351–370.

Binta,M.G.,Losho,T.,Allsopp,B.A.,Mushi,E.Z.,1998.IsolationofTheileriataurotragi

andTheileriamutansfromcattleinBotswana.Vet.Parasitol.77,83–91.

Brothers,P.S.,Collins,N.E.,Oosthuizen,M.C.,Bhoora,R.,Troskie,M.,Penzhorn,B.L., 2011.Occurrenceofblood-bornetick-transmittedparasitesincommontsessebe

(Damaliscuslunatus)antelopeinNorthernCapeProvince,SouthAfrica.Vet.

Para-sitol.183,160–165.

Büscher,G.,1988.TheinfectionofvarioustickspecieswithBabesiabigemina,its

transmissionandidentification.Parasitol.Res.74,324–330.

Butler,C.M.,Nijhof,A.M.,Jongejan,F.,vanderKolk,J.H.,2008.Anaplasma

phagocy-tophiluminfectioninhorsesintheNetherlands.Vet.Rec.162,216–218.

Carmichael,I.H.,Hobday,E.,1975.BloodparasitesofsomewildBovidaeinBotswana.

OnderstepoortJ.Vet.Res.42,55–62.

Clua,E.,Buray,N.,Legendre,P.,Mourier,J.,Planes,S.,2010.Behaviouralresponse

ofsicklefinlemonsharksNegaprionacutidenstounderwaterfeedingfor

eco-tourismpurposes.MarineEcol.Prog.Ser.414,257–266.

DeVos,A.J.,Roos,J.A.,1981.ObservationsonthetransmissionofTheileriamutansin

SouthAfrica.OnderstepoortJ.Vet.Res.48,1–6.

DeVos,A.J.,Potgieter,F.T.,1994.Bovinebabesiosis.In:Coetzer,J.A.W.,Thomson,

G.R.,Tustin,R.C.(Eds.),InfectiousDiseasesofLivestock,withSpecialReference

toSouthernAfrica.OxfordUniversityPress,Oxford,UK,pp.278–294.

DeWaal,D.T.,Potgieter,F.T.,1987.ThetransstadialtransmissionofBabesiacaballi

byRhipicephalusevertsievertsi.OnderstepoortJ.Vet.Res.54,655–656.

DeWaal,D.T.,VanHeerden,J.,VandenBerg,S.S.,Stegmann,G.F.,Potgieter,F.T.,1988.

IsolationofpureBabesiaequiandBabesiacaballiorganismsinsplenectomized

horsesfromendemicareasinSouthAfrica.OnderstepoortJ.Vet.Res.55,33–35.

DeWaal,D.T.,vanHeerden,J.,1994.Equinebabesiosis.In:Coetzer,J.A.W.,Thomson,

G.R.,Tustin,R.C.(Eds.),InfectiousDiseasesofLivestock,withSpecialReference

toSouthernAfrica.OxfordUniversityPress,Oxford,UK,pp.295–304.

Georges,K.,Loria,G.R.,Riili,S.,Greco,A.,Caracappa,S.,Jongejan,F.,Sparagano,O., 2001.Detectionofhaemoparasitesincattlebyreverselineblothybridisation

withanoteonthedistributionofticksinSicily.Vet.Parasitol.99,273–286.

Govender,D.,Oosthuisen,M.C.,Penzhorn,B.L.,2011.Piroplasmparasitesofwhite

rhinoceroses(Ceratotheriumsimum)intheKrugerNationalPark,andtheir

rela-tiontoanaemia.J.SouthAfricanVet.Ass.82,36–40.

Gubbels,J.M.,deVos,A.P.,vanderWeide,M.,Viseras,J.,Schouls,L.M.,deVries,E., Jongejan,F.,1999.SimultaneousdetectionofbovineTheileriaandBabesiaspecies

byreverselineblothybridisation.J.Clin.Microbiol.37,1782–1789.

Gubbels,M.J.,Hong,Y.,vanderWeide,M.,Qi,B.,Nijman,I.J.,Guangyuan,L.,Jongejan, F.,2000.MolecularcharacterisationoftheTheileriabuffeli/orientalisgroup.Int.

J.Parasitol.30,943–952.

Hea,L.,Fenga,H.H.,Zhanga,W.J.,Zhanga,Q.L.,Fanga,R.,Wanga,L.X.,Tua,P.,Zhoub, Y.Q.,Zhaoa,J.L.,Oosthuizend,M.C.,2011.OccurrenceofTheileriaandBabesia

speciesinwaterbuffalo(Bubalusbabalis,Linnaeus,1758)intheHubeiprovince,

SouthChina.Vet.Parasitol.170,323–326.

Horak,I.G.,Williams,E.J.,VanSchalkwyk,P.C.,1991.Parasitesofdomesticand

wildanimalsinSouthAfrica.XXV.Ixodidticksonsheepinthenorth-eastern

OrangeFreeStateandintheEasternCapeProvince.OnderstepoortJ.Vet.Res.

58,115–123.

Horak,I.G.,Golezardy,H.,Uys,A.C.,2007.Ticksassociatedwiththethreelargestwild

ruminantsspeciesinsouthernAfrica.OnderstepoortJ.Vet.Res.74,231–242.

Hoskins,J.D.,1991.Ehrlichialdiseasesofdogs:diagnosisandtreatments.Canine

Pract.16,13–21.

Huang,H.,Unver,A.,Perez,M.J.,Orellana,N.G.,Rikihisa,Y.,2005.Prevalenceand

molecularanalysisofAnaplasmaplatysindogsinLara,Venezuela.BrazilianJ.

Microbiol.36,211–216.

Husson, F., Josse, J., Le, S., Mazet, J., 2012. FactoMineR: Multivariate exploratory data analysis and data mining with R. R package version 1.20,http://CRAN.R-project.org/package=FactoMineR

Jacquiet,P.,Dia,M.L.,Perié,N.M.,Jongejan,F.,Uilenberg,G.,Morel,P.C.,1990.

PrésencedeTheileriaannulatainMauritania.Rev.Elev.Méd.Vét.PaysTrop.

43,489–490.

Jansen,B.C.,Neitz,W.O.,1956.TheexperimentaltransmissionofTheileriaovisby

Rhipicephalusevertsi.OnderstepoortJ.Vet.Res.27,3–6.

Kaufmann,J.,1996.ParasiticInfectionsofDomesticAnimals:aDiagnosticManual.

BirkhäuserVerlag,Basel,Schweiz,pp.189.

Lawrence,J.A.,deVos,A.J.,Irvin,A.D.,1994a.Theileriamutansinfection.In:Coetzer,

J.A.W.,Thomson,G.R.,Tustin,R.C.(Eds.),InfectiousDiseasesofLivestockwith

SpecialReferencetoSouthernAfrica.OxfordUniversityPress,Oxford,UK,pp.

336–337.

Lawrence,J.A.,deVos,A.J.,Irvin,A.D.,1994b.Theileriataurotragiinfection.In:

Coet-zer,J.A.W.,Thomson,G.R.,Tustin,R.C.(Eds.),InfectiousDiseasesofLivestock,

withSpecialReferencetoSouthernAfrica.OxfordUniversityPress,Oxford,UK,

pp.334–335.

Löhr,K.F.,Meyer,H.,1973.Gameanaplasmosis:theisolationofAnaplasma

orga-nismsfromAntelope.Z.Tropenmed.Parasitol.24,192–197.

Löhr,K.F.,Ross,J.P.,Meyer,H.,1974.Detectioningameoffluorescentand

aggluti-nationantibodiestointraerythrocyticorganisms.Z.Tropenmed.Parasitol.25,

217–226.

Lommano,E.,Bertaiola,L.,Dupasquier,C.,Gern,L.,2012.Infectionsand

coinfec-tionsofquestingIxodesricinusticksbyemergingzoonoticpathogensinwestern

Switzerland.Appl.Environ.Microbiol.78,4606–4612.

Matthysse,J.G.,Colbo,M.H.,1987.TheIxodidTicksofUganda:TogetherwithSpecies

PertinenttoUgandaBecauseofTheirPresentDistribution.Entomological

Soci-etyofAmerica,CollegePark,MD.

Matjila,P.T.,Penzhorn,B.L.,Bekker,C.P.J.,Nijhof,A.M.,Jongejan,F.,2004.

Confirma-tionoftheoccurrenceofBabesiacanisvogeliindomesticdogsinSouthAfrica.

Vet.Parasitol.122,119–125.

Muhanguzi,D.,Matovu,E.,Waiswa,C.,2010.Prevalenceandcharacterizationof

Thei-leriaandBabesiaspeciesincattleunderdifferenthusbandrysystemsinWestern

Uganda.Int.J.Anim.Vet.Adv.2,51–58.

Nagore, D., Garcia-Sanmartin, J., Garcia-Perez, A.L., Juste, R.A., Hurtado, A., 2004.Identification,geneticdiversityandprevalenceofTheileriaandBabesia

species in sheep population from northern Spain. Int. J. Parasitol. 34,

1059–1067.

Neitz,W.O., Du Toit, P.J.,1932. Bovine anaplasmosis. Amethodof obtaining

purestrainsofAnaplasmamarginaleandA.centralebytransmissionthrough

antelopes.In:18thReportoftheDirectorofVeterinaryServicesandAnimal

Industry,Pretoria,UnionofSouthAfrica,pp.3–20.

Neitz,W.O.,1935.Bovineanaplasmosis.ThetransmissionofAnaplasmamarginale

toblackwildebeest(Connochaetesgnou).OnderstepoortJ.Vet.Res.Sc.An.Ind.

5,9–11.

Neitz,W.O.,1956.Aconsolidationofourknowledgeofthetransmissionoftick-borne

diseases.OnderstepoortJ.Vet.Res.27,115–163.

Nijhof,A.M.,Penzhorn,B.L.,Lynen,G.,Mollel,J.O.,Morkel,P.,Bekker,C.P.J., Jonge-jan,F.,2003.Babesiabicornissp.nov.andTheileriabicornissp.nov.:tick-borne

parasitesassociatedwithmortalityintheblackrhinoceros(Dicerosbicornis).J.

Clin.Microbiol.41,2249–2254.

Nijhof,A.M.,Pillary,V.,Steyl,J.,Prozesky,L.,Stoltsz,W.H.,Lawrence,J.A.,Penzhorn, B.L.,Jongejan,F.,2005.MolecularcharacterizationofTheileriaspecies

associ-atedwithmortalityinfourspeciesofAfricanantelopes.J.Clin.Microbiol.43,

5907–5911.

Norval,R.A.I.,1975.StudiesontheecologyofHaemaphysalissilaceaRobinson1912

(Acarina:Ixodidae).J.Parasitol.61,730–736.

Oosthuizen,M.C.,Zweygarth,E.,Collins,N.E.,Troskie,M.,Penzhorn,B.L.,2008.

Iden-tificationofanovelBabesiasp.fromasableantelope(HippotragusnigerHarris,

1838).J.Clin.Microbiol.46,2247–2251.

Oosthuizen,M.C.,Allsopp,B.A.,Troskie,M.,Collins,N.E.,Penzhorn,B.L.,2009.

Iden-tificationofnovelBabesiaandTheileriaspeciesinSouthAfricangiraffe(Giraffa

camelopardalis,Linnaeus,1758)androanantelope(Hippotragusequinus,

Des-marest1804).Vet.Parasitol.163,39–46.

Oura,C.A.L.,Bishop,R.P.,Wampande,E.M.,Lubega,G.W.,Tait,A.,2004.Application

ofreverselineblotassaytothestudyofhaemoparasitesincattleinUganda.Int.

J.Parasitol.34,603–613.

Pfitzer,S.,2009.Occurrenceoftick-bornehaemoparasitesinnyala(Tragelaphus

angasii)inKwaZulu-NatalandEasternCapeProvince,SouthAfrica.M.SC.Thesis.

UniversityofPretoria.

Pfitzer,S.,Oosthuizen,M.C.,Bosman,A.M.,Vorster,I.,Penzhorn,B.L.,2011.

Tick-borneparasitesinnyala(Tragelaphusangasii,Gray1849)fromKwaZulu-Natal,

SouthAfrica.Vet.Parasitol.176,126–131.

Pipano, E., 1994. Theileria annulata theileriosis. In: Coetzer, J.A.W.,

Thom-son, G.R., Tustin, R.C. (Eds.), Infectious Diseases of Livestock, with

Spe-cial Reference to Southern Africa. Oxford University Press, Oxford, UK,

pp.341–348.

Potgieter,F.T.,Els,H.J.,1977.Lightandelectronmicroscopicobservationsonthe

developmentofBabesiabigeminainlarvae,nymphaeandnon-repletefemales

ofBoophilusdecoloratus.OnderstepoortJ.Vet.Res.44,213–232.

Potgieter, F.T., 1981. Tick transmission of anaplasmosis in South Africa. In:

ProceedingsoftheInternationalConferenceonTickBiologyandControl,pp.

53–56.

Raup,D.M.,Crick,R.E.,1979.Measurementoffaunalsimilarityinpaleontology.J.

Paleontol.53,1213–1227.

Ros-Garcia,A.,M’Ghirbi,Y.,Bouattour,A.,Hurtado,A.,2011.FirstdetectionofBabesia

occultansinHyalommaticksfromTunisia.Parasitology138,578–582.

Schnittger,L.,Yin,H.,Qi,B.,Gubbels,M.J.,Beyer,D.,Niemann,S.,Jongejan,F.,Ahmed, J.S.,2004.SimultaneousdetectionanddifferentiationofTheileriaandBabesia

parasitesinfectingsmallruminantsbyreverselineblotting.Parasitol.Res.92,

189–196.

Schulz,K.,1940.ArickettsiosisnewtoSouthAfrica.OnderstepoortJ.Vet.Sc.An.Ind.

(11)

10 M.Berggoetzetal./TicksandTick-borneDiseasesxxx (2013) xxx–xxx

Scott,G.R.,1994.Lesser-knownrickettsiasinfectinglivestock.In:Coetzer,J.A.W.,

Thomson, G.R., Tustin, R.C. (Eds.), Infectious Diseases of Livestock, with

SpecialReferenceto SouthernAfrica.OxfordUniversity Press,Oxford,UK,

pp.371–377.

Skaug, H., Fournier, D., Nielsen, A., 2010. Glmm ADMB-package,

http://127.0.0.1:13596/library/glmmADMB/html/glmmADMB-package.html

Spitalska,E.,Riddell,M.,Heyne,H.,Sparagano,O.A.E.,2005.Prevalenceoftheileriosis

inredhartebeest(Alcelaphusbuselaphuscaama)inNamibia.Parasitol.Res.97,

77–79.

Steyl,J.C.A.,Prozesky,L.,Stoltsz,W.H.,Lawrence,J.A.,2012.Theileriosis

(Cytaux-zoonosis)inroanantelope(Hippotragusequinus):Fieldexposuretoinfection

and identification of potential vectors. Onderstepoort J. Vet. Res. 70,

1–8.

Swanson,S.J.,Neitzel,D.,Reed,K.D.,Belongia,E.A.,2006.Coinfectionsacquiredfrom

Ixodesticks.Clin.Microbiol.Rev.19,708–727.

Thomas,S.E.,Mason,T.E.,1981.IsolationandtransmissionofanunidentifiedBabesia

sp.infectiveforcattle.OnderstepoortJ.Vet.Res.48,155–158.

Tonetti,N.,Berggoetz,M.,Rühle,C.,Pretorius,A.M.,Gern,L.,2009.Ticksand

tick-bornepathogensfromwildlifeintheFreeStateprovince,SouthAfrica.J.Wildl.

Dis.45,437–446.

Tonnesen,M.H.,Penzhorn,B.L.,Bryson,N.R.,Stoltsz,W.H.,Masibigiri,T.,2004.

Dis-placementofBoophilusdecoloratusbyB.microplusintheSoutpansbergregion,

Limpopoprovince,SouthAfrica.Exp.Appl.Acarol.32,199–208.

Walker,J.B.,1991.Areviewoftheixodidticks(Acari,Ixodidae)occurringinSouthern

Africa.OnderstepoortJ.Vet.Res.58,81–105.

Walker,J.B.,Keirans,J.E.,Horak,I.G.(Eds.),2000.ThegenusRhipicephalus(Acari,

Ixodidae).CambridgeUniversityPress,Cambridge,UK.

Walker,A.R.,Bouattour,A.,Camicas,J.-L.,Estrada-Pe ˜na,A.,Horak,I.G.,Latif,A.A., Pegram,R.G.,Preston,P.M.(Eds.),2003.TicksofDomesticAnimalsinAfrica:a

GuidetoIdentificationofSpecies.,BioscienceReports,Edinburgh.

Yusufmia,S.B.A.S.,Collins,N.E.,Nkuna,R.,Troskie,M.,VandenBossche,P.,Penzhorn, B.L.,2010.OccurrenceofTheileriaparvaandotherhaemoprotozoaincattleatthe

edgeofHluhluwe-iMfoloziPark,KwaZulu-Natal,SouthAfrica.J.SouthAfrican

Références

Documents relatifs

Modeling variation in NSP serological incidence and reversion according to sites and seasons.— According to AIC selection, NSP spatial and temporal incidence rate variation was

Next, we used quantitative polymerase chain reaction (qPCR) to study the prevalence of renal in- fection at the time of sampling in 12 animal species. To our knowledge, this is the

Integrative models of the epidemiolo- gical process: the potential contribu- tion of mechanistic models in unders- tanding epidemiological dynamics As discussed in the

In this section, the clinical signs and lesions associated with SBV infection in domestic ruminants will be described and compared with those involving two

ricinus serpin; AamS6, Amblyomma americanum tick serine protease inhibitor 6; AamAV422, Amblyomma americanum AV422 protein; BmAP , Rhipicephalus (Boophilus) microplus

In both acini types, SIFamide-positive axons were found to be in direct contact with either basal epithelial cells or a single adlumenal myoepithelial cell in close proximity to

Analysing tick-borne pathogen composition and infec- tion rates at the scale of individual tick organs highlighted (i) some pathogen location results which contrasted with

In the 2DE maps, the spot distribution of the head and thorax salivary glands showed different protein expression patterns, evidencing a lower number of soluble proteins in the