• Aucun résultat trouvé

Construction of simple, stable and convergent high order schemes for steady first order Hamilton Jacobi equations.

N/A
N/A
Protected

Academic year: 2021

Partager "Construction of simple, stable and convergent high order schemes for steady first order Hamilton Jacobi equations."

Copied!
37
0
0

Texte intégral

(1)Construction of simple, stable and convergent high order schemes for steady first order Hamilton Jacobi equations. Remi Abgrall. To cite this version: Remi Abgrall. Construction of simple, stable and convergent high order schemes for steady first order Hamilton Jacobi equations.. [Research Report] RR-6055, INRIA. 2006, pp.34. �inria-00114888v4�. HAL Id: inria-00114888 https://hal.inria.fr/inria-00114888v4 Submitted on 7 Dec 2006. HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés..

(2) INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE. Construction of simple, stable and convergent high order schemes for steady first order Hamilton Jacobi equations R. Abgrall. N° 6055 Décembre 2006. ISSN 0249-6399. apport de recherche. ISRN INRIA/RR--6055--FR+ENG. Thème NUM.

(3)

(4) 

(5)   !"#$ %'&( *)+'-,),$!

(6) #(  *,./+01! 23+#5476 *38

(7) #( 29:/;=<> ?!@+A> B EC DGFH*IKJMLONPN Q(RTSUWVXZY\[^]7_a`cbedfSUWVgb+haiTUWjgkmlonpiTVgb qrkfsuteVdvb._cwxZyzxZ{T{Tyzl}| ~.€{T{Os€kmd+TV!kmVMwvRTVkvwvRTV‚hOƒ

(8) „† †‡†‡E]‰ˆZjMwVU'ŠTkfV!‹€ € †„!]^Œ€Œ'{€Ž€Vgb ∗. 5

(9) ‘g’“1”T•€’€–˜— V5cV™†Vyzs€{˜™€Vgkm`šb›lzUW{TyœV€yœŽ†s€kfl}dfRTUždfR1d'{ŸVgkmUWlœdfbBdfsEws†hbedfkmiŸw;dws†UW{€wdg  RlœŽ†R †s kfTVk'bfwvRTVgU>VMb'¡¢s€kWbedfVg€T`¤£Ÿkfb›d>s†kfTVkW¥ZuUWlzy}dfs€h§¦††ws€ŠlVgnpiudmlzs€hbg¨©Q(RTVuyzŽ€s€kflœdmRTU"kfVyzlœVMbs†h dfRTVŠTyœVghclzhTŽ˜su¡\E£kvbedWs€kvcVgk>bfwvRTVUWVuhª¤ws€UW{€wd>RlœŽ†R@s€kvcVgk>bfwvRTVUWV†¨«Q(RTVŠTyœVghclzhTŽšlzb ws€hTiw;dfVgšlœh©bmiwvR˜¬(­`®dfR1d!dfRTVbmwvRVUWV¯lzb°¡¢s†kmU¯€yœyz`±RTlzŽ€R˜s€kvcVgkB†wwiTkfudmV†¨Wx0ws€ha™€VgkmŽ†VhwV {kmsasu¡\lzb>Ž€lz™€Vgh¨ — V{Tkms1™alocVb›Vg™€Vkvuy%haiTUWVkflzwguy(lœyzyzibedfkfudmlzs€hb'dfR1d¯cVUWs†hbedfkfudmVdmRTVV²OVMw;dmlz™€V †wwiTkf†w`su¡rdfRTVWbmwvRTVgUWV€¨Q(RTV>haiTUWVkflzwguy

(10) V|TuUW{TyzVgb\ibmVdfkmlouhTŽ†iTyoukZihbedfkmiŸw;dmikmVM±UWVgbmRTVgbg KŠTicd s†iTk°U>VdmRTsc¤U¯­`ŠOV¯u{T{yœlzVg±dmssudmRVk°³plzh¤su¡UWVMb›RTVMb¨_cV™€Vgkf€ylzUW{TyzVUWVhpdfudmlzs€h¤kmVgUW€km³cb\ukfV €yzbms>Ž€lz™€Vh ¨ ´®µp¶K·f¸¹ “1º

(11) ‘€– ¥ZuUWlzy}dfs€h»¦p€ws†ŠTlBVgnpiudmlzs€h BRTlzŽ€R¼s€kvcVgkhaiTUWVgkmlow€ybmwvRTVgUWVgbg °ihbedfkmiŸw;dmikmVM UWVMb›RTVMb¨. ã ÃÆäuÁ›ÐĽ!¾f¿Ä¾fÃÆÏ;¿PÚpÀ­ÁeÒuÂ.Þ;Þ?¾f¿ÄßÃÆå;Ågæ(ÇMțçTÉ%¾vÊ

(12) ÌÆÈeË­Ú­ËMØeÈÌÆÃÆÅgáKÇ­ÈeÁeÍ­ÈeÈÖÉÑBÍ­¾vÈ.Ú­ÎKÍ\Ï;ÜèÐÄÚ­ÍMÉÄÈm¿Ä¾và ¿ÄÇgÇMц¿*ҟ٠ӟڭÐÔÏvà ÛÕÔÈeÈÖÐÄ¿+ÉÄà ×g¿ÝØe¾vÊÃÆÐÔÈrÌÆÊ

(13) Í­Ë­ÈGË­é1ÌÆà ÐÄѾvÚ­Ù ØeÚ­È Ã ÛÈeÐÄÉÄà ¿PÁZÎKÏ;ÐÔͭț¾vÇMÑ'ÜÝÒTÞvß­àZáKÏ;Ç­ÐÔÉ?Í­È+Ìâ¾ ∗. Unité de recherche INRIA Futurs Parc Club Orsay Université, ZAC des Vignes, 4, rue Jacques Monod, 91893 ORSAY Cedex (France) Téléphone : +33 1 72 92 59 00 — Télécopie : +33 1 60 19 66 08.

(14) 

(15)   !"#$ %'&( *)+'-,),$!

(16) #(  *,./+01! 23+#5476 *38

(17) #( 29:/;=<> ?!@+A> B  ‘   – XZs€ib*cjg™€Vyzs€{{Ÿs†hb

(18) iThTV?U>jdmRTsccV?dfkmSMb

(19) bmlzU>{yœV(npiTlc{ŸVgkmUWVd*cV+ws€hb›dmkfiTlzkmV?cVgb*bfwvRTjU¯€b  s†kfckfVjgyœVg™€j EUWs€yzjgwiyœVws†U>{Ÿ€w;dfV€ ¨

(20)  uyzŽ€s†kmlœdmRTUWVkfV{Os†bmVbmiTk>yzšws†UŠTlzh€lzbms€h«   iTh§bmwvRTjgU¯ s†kfckfVjgyœVg™€jbfuhŸb{Tkfs€{kmlzjdfj5cVb›df€ŠTlzyœlœdmjVh«hs€kfU>V L VdW   iTh§bmwvRTjgU¯±ci@{kmVgU>lzVk's€kvckfV b›df€ŠTyœV†¨ VbfwvRTjU¯kmjMb›iy}dvuhpd!Vgb›d!¡¢s€kfU>VgyœyzVUWVgh†d   s€kvckfVWjyzV™€j†¨ \h˜Ts€hThTVWiThV¯{TkmVgiT™€V¯cV L ws€ha™€VgkmŽ†VhwV€¨ ˆ\VgbV|c{ŸjgkmlzVhwVgbWhaiTUWjkflon†iVgb¯lzyœyzib›dmkfVhpdyo˜U>jdmRTsccVEVd5ws†hc£kfUWV®yœVMb¯kmjMb›iy}dv1dfb dfRTjs†kmlonpiTVgbg¨ –  npi1dflœs†hE   ¥Z€U>lzyœdms€hš¦††ws†ŠTlci¤{TkfVUWlœVgkZs†kfckfV€ KbfwvRTjU¯€bZhaiTUWjkflznpiTVMbZ   s€kvckfV ¹ ’M‘ · •   ‘® jgyœVg™€j† cUW€lœyzyouŽ€VMb?hTs€hbedfkmiŸw;dmikmjMb¨ ∞. ∞.

(21) Œ. 

(22)     

(23)  "!$#%&$'". º 

(24) •u-’ , ¹ +.) — Vws†hb›locVgkdfRTV0/?€iwvRa`˜{Tkms†ŠTyzVU21¯£hŸ ()*+ ’“ ¹  ws€hpdmlzhaiTs€iŸb¡¢ihw;dflœs†hs†hdmRTV!s†{ŸVghbmiTŠbmVd Ω ⊂ R  bmiwvRdmRud d. u ∈ C 0 (Ω).  rdmRVbm{€wV5s€¡. ¨ lzhdfRTV°™plobfws†bmlœde`WbmVhŸb›V†¨98Öh 354 ¨ 4-6   (x, s, p) ∈ Ω × R × R 7→ H(x, s, p) lob?iThTlœ¡¢s€kfUWyœ`ws€hpdmlzhaiTs€ibg¨ :?V¡¢s€kfV°Ž†s€lzhTŽ>¡¢iTkmdmRTVgkg TyzVd.iŸb+ŠTkflœV;`kfV™alœVg¬ dfRTVhTs€dmlzs€hsu¡*™plobfws†bmlœde`5b›s†yœiTdmlzs€h¡¢s€k 3<4 ¨ 4-6 > ¨ =Ts€k €ha`®¡¢iThwdmlzs€h z   ¬?Vws€hŸb›locVkBdfRTViT{{ŸVgkb›VgUWl@?cws€hpdflœhaiTs†ib 3 i¨ b¨ w 6 uhšyzs1¬%Vgkb›VgU>lA?aws€hpdmlzhaiTs€iŸb 3 yĨ bg¨ w 6 Vha™€Vgyœs†{ŸVMb%s€¡ ¬+lœdmRkfVgbm{ŸVMw;d(dms¯€yœy3dfRTV!™1ukflz€ŠTyzVgbg¨

(25) Q(RTVg`€kmVBcV£ŸhTVgŠa` z uhŸ z (x) = lim inf z(y). z (x) = lim sup z(y) =s€yzyœs1¬+lzhTŽCB 4D  c¬?V!lzh†dfkmscciŸwV°dmRTVB¡¢ihw;dflœs†h G H(x, u, Du) = 0 x ∈ Ω ⊂ Rd u=g x ∈ ∂Ω. 354 476. d. ∗. ∗. x→y. Q(RVBws€UW{Ticdv1dflœs†hs€¡ G €h. G(x, s, p) = G∗. . x→y. H(x, s, p) x ∈ Ω s − g(x) x ∈ ∂Ω.. lob(Vg€bm`5€h5¬?VBR­™€VE1. lœ¡ x ∈ Ω 354 ¨Æ‹ 6 l}¡ x ∈ ∂Ω l}¡ x ∈ ∂Ω x yœscw€yœyz`šŠŸs†iThcVM˜iT{T{OVkWb›VgU>l?ws†h†dflœhaiTs†ibB¡¢iThŸw;dmlzs€h cV£hTVg˜s†h lzb>™alzbfwspb›lœde`¤bmiTŠGF bms€yzicdflœs†h®su¡ 3<4 ¨ 4-6 lœ¡%uhŸ®s€hTyz`l}¡e O¡¢s†k°€hp` φ ∈ C (Ω)  Klœ¡ x u∈ Ω lzb°yzscw€yΩU¯1|clzUiTU s€¡ u − φ   dfRTVh 3<4 ¨ Œ 6 G (x , u(x ), Dφ(x )) ≤ 0. _clœUWlzyz€kmyz`€  u  Kyzscw€yœyz`ŠOs€ihcVg OyP¨ b¨ wu¨Z¡¢iThw;dflœs†hEcV£hTVgEs€h Ω lob\5™alzbfwspb›lœde`bmiT{OVHk FÝbms€yzicdmlzs€h®s€¡ 3<4 ¨ 4-6 lœ¡*€hs€hTyz`lœ¡e c¡¢s€k.€hp`  Tlœ¡ x ∈ Ω lob.>yœscw€y3UWlœhTlzUiU8su¡ u − φ  cdmRTVgh φ ∈ C (Ω) 3<4 ¨ I 6 G (x , u(x ), Dφ(x )) ≥ 0. x¼™alobmws†bml}de`bms€yzicdflœs†hlob+b›lzUiy}dvuhTVgs€ibmyœ`>bmiTJŠ ?5€h>bmiT{OVHk FÝbms€yzicdflœs†h5su¡ 3<4 ¨ 4-6 ¨ Q(Rlzb+wguhŠŸV!Ž†VhTVgkf€yœlLKVMdfs>s€dmRTVgk(de`a{ŸVMb(su¡*ŠŸs†iThT€km`5ws€hTl}dflœs†hb+b›iŸwvR†b+X.ViUW€hTh TVdfw€¨ YZhcVgkBb›df€hT€kf±†bmbmiTUW{cdflœs†hbZs†h±dfRTVWs€{OVh¤bmiTŠbmVd   uh  Ks€hTVWw€hE{Tkfs1™€VV|clzb›dmVghwV €h¤iThTlon†iVhTVMbmb°su¡%dmRTV¯™alobmws†bml}de`®bms€yzicdmlzs€hŸb\s€¡ 354 ¨ 4-6  bmVCV ΩB 4D gM¨ 8Öh¤{ŸHukmdmlowiTyoukM KdmRTlobBlob°dmkfiTVWl}¡?dmRTV ¥\uUWlzy}dfs€hTlouh H lob.ws€ha™€V|lœh p ∈ R uhlœ¡ ∂Ω yzlz{bmwvRl}d Kws€hpdflœhaiTs†ib¨ 8Öh5dmRTlob?{u{OVkM p¬%VB€bfb›iU>VZdmRud 3<4 ¨ 4-6 R€b(ihTlznpiTVghTVgbfb%{Tkmlzhwlœ{TyzV€ pdfR1d(lzb(€hp`¯bmiTJŠ ?cb›s†yœicdflœs†h u €huha`5bmiT{ŸVg5k ?cb›s†yœiTdmlzs€h v su¡ 354 ¨ 4-6 bf1dflzb›¡¢` ∗.  G∗ (x, s, p) = G∗ (x, s, p) = H(x, s, p)      G∗ (x, s, p) = min(H(x, s, p), s − g(x))      ∗ G (x, s, p) = max(H(x, s, p), s − g(x)) 1. ∗. 0. 1. ∗. 0. 0. 0. 0. 0. 0. 0. d. ∀x ∈ Ω,. NON. Ú$P"Q;å;æ;æ. u(x) ≤ v(x)..

(26)  I. H!$. Q(Rkms†iTŽ€RTs†icd3dmRVr{u{OVkM ­¬%Vrws€hbmlocVk

(27) ?¡ÔuUWlœyz`°su¡TkfVŽ€iyz€kKdmkflz€hTŽ€iTyo1dflœs†hbg¨Q(RTVrdfkmlouhTŽ†iTyo1dmlzs€hŸb € kmVcVghTsudfVg§Ša` T   h lob>dmRTV®U¯u|alzUiU clouUWVdfVk¯su¡°dmRVVgyœVgUWVhpdfb K   j = 1, · · · , n uhŸ lzb%dfRTV!b›Vd(s€¡ ™€Vgk›dflzwVgb?su¡ ¨*Q(RV\¡Ô€UWlœyz`su¡ dmkflz€hTŽ€iTyo1dflœs†hb%lzb+€yzbms'†bmbmiTUWVgdmsWŠŸV {x } bmR€{ŸV°kmVgŽ€iTyoukM udfR1d+lob%dmRTVgkmV°V|clobed+ws†hTbedvuhpdfb C uh C bmiwvRdfR1d?dmRVBTlz€U>VdmVgk%s€¡ K bf1dflzb›¡¢` 354 ¨Æ‡ 6 clouU (K ) ≤ C h ∀j = 1, · · · , n . C h≤ =s€kWEŽ†lœ™†Vh©dfkmlouhŽ€iTyo1dflœs†h 

(28) dmRTV®bms€yzicdmlzs€h«s€¡ 3<4 ¨ 476 lzbWu{{Tkms­|clzU¯1dmVM˜s€h§®¡ÔuUWlzyœ`©s€¡\cVgŽ€kfVV5s€¡ ¡¢kfVVMcs€U cVghTsudfVgŠa` Σ = {σ } ¨ZQ`a{Tlow€yœyz`€ lœh±VM€wvRVyzVUWVgh†d  Ÿ¬%Vws€hbmlocVkZ¯¡ÔuUWlœyz` s€¡{Ÿs†lœhpdvbGdmRŸ1d?€kmVZiThTlob›s†yœ™1uhpdr¡¢s†k?bms€UWV.lzhpdmVgkm{Os€yo1dflœs†hb›{†wVMb*dmRud?€kmVZKTV£hTVM¯yo1dmVgklzh¯dmRVZdfV|adg  de`a{Tlow€yœyz`!b›iŠb›Vdfb

(29) su¡ P (K)  ­dmRTV+bmVd*su¡T{Os€yz`ahTs€UWlouyob s€¡ŸcVŽ†kmVgV k ∈ N ¨*Q(RTV(b›Vd Σ lzb dmRTV+ws€yzyœVMw;dmlzs€h s€¡dfRTVgbmV?TVŽ€kfVVMb

(30) su¡¡¢kfVVMcs€U¨

(31) Q(RTlzb*VghuŠyœVMb dfs!cV£hV€ 1¡¢kfs€U {u }  €€h'lzhpdmVgkm{Os€youhpd u dmRŸ1dG¬%V †bmbmiTUWV.dfs'ŠOVBws€hpdflœhaiTs†ib¨*Q(RTlob?lzb%s€hTyz`¯{Os†bfb›lzŠTyzVZiThTVk+ws†hbedfkf€lœhpdvbrs€h5dmRTVBcVgŽ€kfVVgb%su¡3¡¢kfVVMcs€U  V|TuUW{TyzVgb€kmV+Ž†lœ™†Vh¯lzhb›VMw;dflœs†h I¨Æ‹a9¨ 8Ýd%lobhTs€dhTVMwVgbfbfukf``€Vdrdms'Ž€s!lzhUWs€kfVZcVdfulzyob¨. †bedM €¡¢s†k%uha`   cVhsudmV°dfRTVb›Vd.su¡

(32) l}dvb+hTVlzŽ€RaŠOs€kvb¨ σ V — VukfV5lzh†dfVkfVgb›dmVM«lzhªws†hb›dmkfiw;dflœhTŽ¤RTlzŽ€R@s†kfTVk'ws€ha™€VgkmŽ†Vhpd'bfwvRTVUWVMb¡¢s†k 3<4 ¨ 4-6 ¨˜dfR1d¯lob' ¡¢ihw;dflœs†huy H ¬+RTlowvR±lzb\cV£ŸhTVg¡¢s†k°€ha` σ ∈ Σ  ObmiwvRdfR1d\dmRTV>u{T{Tkfs­|clœU¯udmlzs€h u ' u(σ ) su¡ u ud σ bmudmlobe£VMb a¡¢s†k i = 1, · · · , n   3<4 ¨ „ 6 H(σ , u , {u , j ∈ V }) = 0. lzb5dmRTVšb›Vds€¡hTVlzŽ€ŠOs€kvbs€¡ ¨ Q(RTlob¥\uUWlzy}dfs€hTlouh RŸ€b¯dfs@ŠOV¤ws€hbmlzb›dmVghpd5lœh dmRTV 8Öh 354 ¨ „ 6   UWVMuhTlzhTŽs€V¡ˆZV£hTlœdmlzs€h 4 ¨ 4  †dfRTlob%ŠkmlzhTŽ†b%uhσ lzUW{Tyzlzwl}d+cV{OVhŸcVhw`W¬+l}dfR5kfVgbm{ŸVMw;ddfsdfRTVZUWVgbmR cuhŸ lzh{ukmdmlowiyz€k?lzh h ¨ =s€k(dfVgwvRThTlow€y3kmVM€bms€hb?s†hTyœ`† c¬%V!hVVgdfs>V|admVhŸ5dfRTVcV£hTlœdmlzs€hsu¡

(33) dmRTVbfwvRTVgU>V°dfsuha`{Os€lzh†d s€¡ Ω ¨+Q(RTlobZwguhŠOVcs€hV€b+¡¢s†yœyzs1¬.bg¨ — Vws†hb›locVgkZ¯b›iŠOclz™alzbmlzs€hsu¡ Ω su ¡ ›ws€hpdmkfs€y3™†s€yziTUWVg

(34) b C   bmiwvR¯dfR1d(uha`¯ws€hpdfkms†yT™€s†yœiTUWV°ws€hpdvulzhbrs†hTV\€h¯s€hyœ`Ws€hV\cVgŽ€kfVV.s€¡3¡¢kmVgVgcs†U auhŸ Ω ws€ha=™€Vg∪kfbmVyz`€C c€hp`cVŽ†kmVgV°s€¡¡¢kfVVMcs€U8lzb.ws€hpdf€lœhVglœhs†hTVuhs€hyœ`s€hTVws€hpdmkfs€yK™€s†yœiU>V†¨x+¡èdfVkZ ws€ha™€VghTlzVhpd+hpiUŠOVkflœhTŽŸ c¬%Vwguh®€bfbmiTUWV ¨ — Vwguhuyob›s¯†bmbmiTUWVBdmRudZW{Tkfs€{OVkmde`5b›lzUWlœyouk dfs 354 ¨ ‡ 6 uyob›sWRTs†yz¡¢s€k.dmRTlob(¡ÔuUWlzyœ`su¡rws†hpσdmkfs€∈yK™€Cs†yœiTUWV†¨%x¼{Os†bfb›lzŠTyzVws€hŸbedfkmiwdmlzs€hsu¡Gb›iŸwvRws€hpdmkfs€y ™†s€yziTUWVlob.Ž€lz™€Vgh®Ša` Gs†kms†hTs %clz€Ž€kvuU bmVV BƋ D ¡¢s€k\V|TuUW{TyzV€¨ZQ(RV!¡¢iThwdmlzs€h€y H lzb\V|admVghcVM s†h Ω Ša`¯dmRVB¡¢s€yzyœs1¬+lzhTCŽ 1Gl}¡ x ∈ Ω  Ÿws€hŸb›locVk σ ∈ Σ bmiwvR5dfR1d x ∈ C uh¬?Vb›Vd h. j. h. i j=1,··· ,ns. 1. 1. j. e. 2. j. 2. e. l l=1,··· ,nΣ. k. h. i σi ∈Σ. i. i. j. j. j. Σ. i. i. i. j. i. i. j. nΣ j=1 j. i. i. h. σ. H(x, uh (x), uh ) = H(σi , ui , {uj , j ∈ Vi }).. Q(RV5u{T{kms­|clzUWudmlzs€h©bfwvRTVUWV 3<4 ¨ „ 6 hTVgVgTbdms±ŠOVws€hbmlobedfVhpd¬+lœdmR 3<4 ¨ 4-6 ¨ — V¡¢s†yœyzs1¬ :?€kmyzVgb €h_as€iTŽpuhTloclob B Œ D cV£ŸhTl}dflœs†h 1  "!$#%!'&H/%s€hbmlzb›df€hpd+¥\uUWlzy}dfs€hTlouhb)(*#'+ !-, # !$#>#   !$M@# $' &!$' H  /. !*0$1, '  # '"#.  $ ! !'32 #"  # <  $G'32E 52G' #%&$' 687 x∈Ω φ ∈ C (Ω) 4 C 3<4 :¨ 9 6 lim sup H(y, φ(y) + ξ, φ + ξ) ≤ G (x, φ(x), Dφ(x)) ∞ b. ∞ ∗. !'32. h→0,y→x,ξ→0. lim inf. ρ→0,y→x,ξ→0. H(y, φ(y) + ξ, φ + ξ) ≥ G∗ (x, φ(x), Dφ(x)).. 3<4. ¨; 6. Ü< N ÜèÊ.

(35) ‡. 

(36)     

(37)  "!$#%&$'" !-, # !#. +. 7 σ∈Σ. 7. H σ∈Ω. 

(38) #%H$'  : , $'  # ' #>  7 .O '  . φ.  @' !$. 4 $'" # !'"#  !2$& '"# 687 .O"!$# .  . H(σ, φ(σ), φ) = H(σ, φσ, Dφ(σ)).. X.s€dmVBdmRŸ1d.lœ¡ H lob(¬%VMu³ayœ`ws€hbmlobedfVhpdg  H lob+bedfkms†hTŽ€yz`5ws†hbmlzb›dmVgh†dM¨   !$# &e[®s€hTs€dms†hTV¯¥ZuUWlzy}dfs€hTlouhŸb (*# +  ! ,0# !# σi. . 7 ∈Σ. ui ≤ vj. 7.!$'2 !$'$,. 7 s∈R. H.  $'$# $'   7 .O"!$#   . H(σi , s, {uj }j∈Vi ) ≥ H(σi , s, {vj }j∈Vi ).. Q(RVkfV!V|clzb›dfb.UW€ha`5haiTUWVkflzwguy bfwvRTVgU>VMb.cVg™€sudfVgdmsdmRTVkfVgbms€yzicdflœs†hs€¡ 3<4 ¨ 4-6  ¤V|TuUW{TyzVgbZukfV Ž†lœ™†VhŠp`kmV¡¢VkfVhwVgb B I ‡c Ÿ„c 39p $; D  c¬+RVkfV\dfRTV!{Tkfs€ŠTyzVU 354 ¨ 476 lob+clzkmVMw;dfyœ`¯dv€wv³ayzVg3¨ \hVnpiTlœdmVb›df€hT€kf©¬(­`šsu¡Zws†hb›dmkfiw;dflœhTŽ¤bmwvRTVgUWV¡¢s€k 354 ¨ 476 lobdfs¤ws€hbmlzTVk'dmRTViThb›dmVg†c` {kms†ŠTyœVgU ∂v + H(x, v(x), Du) = 0 x ∈ Ω ⊂ Rd , t > 0 ∂t v(x, t) = g(x, t) x ∈ ∂Ω, t > 0 v(x, 0) = v0 (x) x ∈ Ω, t = 0.. 354. ¨ . 6. ¡¢s†k%bms€UWV\bmiTlœdf€ŠTyœV\lœhl}dflz€yOws€hclœdmlzs€h u b›iwvRWdfR1d?dmRV\bms€yzicdmlzs€hs€¡ 354 ¨ 476 lobs†Šcdf€lœhVg¯€bdmRVZyzlœUWlœdg  ¬+RVh t → +∞ su¡*dfRTVbms€yzicdmlzs€h®s€¡ 3<4 ¨ 6 ¨.Q(RTVkfV!lzb\¯¬+RTs†yœV!lzhcib›dmkf`su¡GhaiTUWVkflzwguy bfwvRTVUWVMb(¡¢s€k 3<4 ¨ 6 ¨ \UWlœd›dflœhTŽWdfRTV!ŠOs€iThukf`5ws†hclœdmlzs€hb+€h5lzhdmRTVglœk.bmlzU>{yœVMbed+¡¢s†kmU admRV`€kmVBs€¡ dmRVBde`p{OV 0 . . un+1 = uni − ∆tH(σi , uni , {unj , j ∈ Vi }) i. +¬ lœdmR u = u (σ ) ¨¼xZyœs†hTŽ˜dmRVgbmV±yœlzhTVMb (s€hV®UW­`§npiTsudfVdmRTV±¬?s€kf³@s€¡MB T ?„c  4 D €huUWs€hŽ U¯€hp`5sudmRVkvb B 4E4   4 ‹ D ¡¢s€k /?€k›dfVgbmlz€hUWVMb›RTVMb.uhŸ B 4 Œc  4 IT  4 ‡a  4 „ D ¡¢s†k.iThb›dmkfiw;dfiTkfVgU>VMb›RVgbg¨Q s dfRTVWŠŸVMbed!s€¡s€iTkB³ahTs1¬+yzVgcŽ†V€ OdmRV>s†hTyz`±ws€ha™†VkfŽ€VhŸwVkfVgbmiTyœdfbg 3¬+l}dfR¤Vgkmkfs€k°Vgb›dmlzU¯1dmVMb €kmV¡¢s€k°£kvbed s†kfTVkbfwvRTVUWVgbg *b›VgV B   4 9p  4 ; D ¡¢s†k'b›dmkfiw;dfiTkmVMšU>VMb›RVgb€h B 4 Œ D ¡¢s€kihbedfkmiŸw;dmikmVM˜U>VMb›RVgbg¨x Ž†VhTVgkf€y UWVdfRTsc®¡¢s†kZ{Tkfs1™alœhTŽws€ha™†VkfŽ€VhŸwV€ Ÿ¬+l}dfRTs€iTd°Vgkmkfs€k.VMbedflœU¯udmVgbg Klzb\Ž€lz™€Vgh®lœh B Œ D ¨Bx.yzy

(39) dmRTVMb›V ws€hb›dmkfiwdmlzs€hbWukfV®bedfkms†hTŽ€yz`«kfVyo1dfVg@dms˜dmRV±cl}²KVkfVhpd¯dfVgwvRThTlonpiTVgb¯dmRudR­™€VŠOVVh cVg™alzbmVg@¡¢s€k ws€hb›dmkfiwdmlzhTŽ'RlœŽ†Rs†kfTVk+€wgwiTkv1dfV€  °scciThTs1™¯de`a{OV€ bfwvRTVgU>VMb?¡¢s€k.ws€hbmVkf™11dmlzs€hyz­¬.bg¨ ¥ZVkfV€ KbedvukmdmlzhTŽ¡¢kfs€U 5Tl}²KVkfVhpd!ws€hŸbedfkmiwdmlzs€h O¬?VV|c{Tyoulzh±RTs1¬»lœd°lob\{ŸspbmbmlœŠyœV!dfsws€hb›dmkfiwd   .ws†ha™€VkfŽ€Vghpdg RlœŽ†R§s†kfTVk€wgwiTkv1dfV±bmwvRVUWVgb>¡¢s†k¯dmRTVE{Tkms†ŠTyzVU 3<4 ¨ 4-6 ¨ — VEuyob›s©bmRTs1¬ V|TuUW{TyzVgb3¡¢s†k ¬+RTlowvRBdmRV%ws†UW{Ticdfudmlzs€h€y†b›dmVghwlzy€lobdfRTVUWspbed {Os†bfbmlœŠTyzVws€UW{€wdg¨ \iTkws€hb›dmkfiw;dflœs†h kfVyzlzVgb+s†hdfRTVŠTyzVhŸclœhŽsu¡rWyzs1¬ s†kfcVgk.€wgwiTkv1dfVbmwvRTVgUWVuh¯RTlzŽ€Rs†kfcVgkZb›dfuŠyœVbfwvRTVUWV†¨?Q(RTV b›dmkfiwdmiTkfVsu¡*dfRTVŠTyzVhŸclœhŽ5{€kf€U>VdmVgk+lzb°uh€yœJ` KgVgb›sdmRud\RTlzŽ€R®s†kfcVgkZ€wgwiTkv€w`5lob.s†Šcdf€lœhTVM±€b ¬?Vyzy†b\5ws€ha™†VkfŽ€VhŸwVB{Tkfsps€¡e¨ZQ(RTVMb›V>bmwvRTVgUWVgbZ€kmVsu¡rws†iTkfbmVhTs€d\UWs€hsudms†hTV€ ŸŠTicdBUWs€hTs€dms€hlzwl}de` {kmVMb›Vgkm™alzhTŽ¨YZ{Bdms+s€ik³ahTs1¬+yœVMcŽ€V† lœd lobKdmRTVr£kfb›d3dmlzUWVr¬+RTVgkmVGŠOsudfR!{Tkms†{ŸVgk›dflœVMbw€h!b›lzUiTyœdf€hTVs†ibmyœ` ŠOV¯€wvRTlzV™†Vg3¨ — V¯uyobmsb›dmic`±dmRTVW{Tkv€wdmlowuy*lzUW{TyœVgUWVhpdfudmlzs€hEs€¡dfRTV¯bmwvRTVgUWV€ uhŸ¤cVgUWs€hb›dmkv1dfV lœdfb.V²KVgw;dflœ™†VhTVMbmb(s†hs€hTV!clzUWVhbmlœs†huy€hde¬%s F݁TlœUWVhŸb›lzs€h€yKV|TuUW{TyzVgbg¨ 8ÖhdmRTlob+{€{ŸVgkg c¬?VB¡¢scwib s†h@iThŸbedfkmiwdmiTkfVg@dmkflouhTŽ†iTyz€kde`a{OVU>VMb›RVgbg¨ 8Ýd¯lzbWwyœVMukWRTs1¬?V™€VgkdfR1dWdfRTVUW€lœhªkmVMb›iy}d¯su¡\dmRTV 0 i. 0. i. . . NON. Ú$P"Q;å;æ;æ. .

(40) „. . H!$. {Ÿu{OVk 3 lĨ V€¨

(41) dmRV(¡¢s€kfUsu¡KdfRTVZbfwvRTVUWV+uh>dfRTV.ws†ha™€VkfŽ€VghwV?{Tkfsasu¡ 6 wguhWŠOV.ibmVg>lœhBUWs†kmV(Ž€VghTVkvuy ws€hpdmV|adg¨ Q(RVZbedfkmiŸw;dmikmV+s€¡OdfRTlob{€{ŸVgkrlobGdmRV+¡¢s€yzyœs1¬+lzhTŽ1*¬?V(£kfb›d%b›df€k›drŠa`W!Ž€VghTVkvuyTcVgkmlz™11dflœs†h¯su¡KdmRTV bfwvRTVgU>V†¨ — VWTlzbfwibfb°lœh˜cVdfulzy

(42) dmRTV¯b›dmkfiw;dfiTkfV's€¡dmRV'ŠTyzVhŸclœhŽ{ŸukvuUWVdfVkM¨ — V>dmRVhš{Tkms1™alocV' ws€ha™€VgkmŽ†VhwV\{kmsasu¡e¨(Q(RTVhV|ad\bmVgw;dflœs†h®lzb\cV™†sudfVgdms5bmRTs1¬+lzhTŽ¯b›s†UWVV|TuUW{TyzVgb.su¡rbmwvRVUWVgbg uhŸ ¬?V€yzbms5clobmwibfb.dfRTV{Tkv€wdmlow€y lzU>{yœVgU>Vghpdf1dflœs†h±su¡GdfRTV'bfwvRTVgU>V†¨\Q(RTV'yz†bed°b›VMw;dmlzs€hElzb°cV™†sudfVgdms haiTUWVgkmlow€yOV|TuUW{TyzVgbg¨ ¹  ’  µ ‘M •  µ  µ ‘ ) — VW£kvbedTlzbfwibfb°dmRVbmwvRTVgUWV'¡¢s†kBdmRTV¯UWVMb›R˜{Os€lzh†dvb!lzh ) µ $“ ,T”T-’ , ¹ +  dfRTV!s€{OVhbmVd Ω ¨rQ(RTVBŠOs€iThukf`5ws†hclœdmlzs€hb+€kmV!clobmwibfb›VMud?dfRTV!VhŸs€¡ dfRTlzbZb›VMw;dmlzs€h ¨ — Vrws†hbmlzcVgk H := H (σ , u , {u } ) (U>s†hTsudfs€hTVrws€hbmlobedfVhpd¥ZuUWlzy}dfs€hTlouh!€h H := RTlzŽ€Rs†kfTVkws€hŸb›lobedfVhpd?¥\uUWlzy}dfs€hTlouh¨ :?`WRTlœŽ†R5s†kfcVgk¬?VZUWVg€h¯dmRŸ1d%lœ¡ u H (σ , u , {u } lob+Wb›UWsasudfR®b›s†yœicdflœs†h) s€¡ 3<4 ¨ 476  TdmRTVgh 3 ‹c¨ 476 H (σ , u , {u } ) = O(h ) ¡¢s†k k > 1 XZV|ad.¬?VBws€hbmlocVk?¡¢s€k.bms€UWV ` ∈ R dmRTVB¡¢s†yœyzs1¬+lœhŽ>¥\uUWlœyœdms†hTlouh 3 ‹c¨Æ‹ 6 H(σ , u , {u } ) = ` H (σ , u , {u } ) + (1 − ` )H (σ , u , {u } ) + ε(h) — V!R­™†VZdfRTVb›lzUW{TyzV!yœVgU>U¯>¬+RTlowvR{Tkmsas€¡lob(lœUWUWVgclo1dfV€ . 

(43)  #%!$#  H !$'2 H !$H # $'  :, '  # '"# 7 H 2E ' 52  , 3 ‹T¨ ‹ 6  . !*0$1, '  # '"#  — V'†bmbmiTUWVdfR1d ε(h) = O(h ) ¨ 8ÖhEs€kvcVkZdmsTV£hTV `  K¬%V'lœhpdmkfscciwVdmRVkv1dmlzs r := €hkmVg¬+kmlœdmVMb 3 ‹c¨Æ‹ 6 †b   3 ‹c¨ Œ 6 ) + ε(h) H(σ , u , {u } ) = ` + (1 − ` )r H (σ , u {u } €hwvRTsas†bmV ` b›iŸwvR5dfR1d 3 ‹c¨ I 6 ` + (1 − ` )r ≥ ε (h). ¬+RVkfV ε (h) ε(h) = o(1) ¨±Q(RTV5yzscwibsu¡(dmRV5{Os€lzh†dvb (r, `) dfR1d'bf1dflzb›¡¢`˜ws€hŸcl}dflœs†h 3 ‹c¨ I 6 yœlzVgb ŠOVde¬?VVghdmRTV!de¬?s¯ŠTkvuhwvRVgb(su¡*dfRTVRa`a{ŸVgkmŠOs€yo ` + (1 − `)r = 0 clob›{Tyo­`€VMlœh =

(44) lzŽ€iTkfV'‹c¨ 4 ¨?Q(RVh  ¬?V!w€hkfV¬+kfl}dfV

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55) `

(56)

(57)

(58)

(59)

(60) 3 ‹c¨Æ‡ 6

(61) H(x, t, {u }

(62)

(63) + 1 − `

(64)

(65) H (x, t, {u }

(66) +

(67) ε(h)

(68) . ) )

(69)

(70)

(71) r

(72)

(73)

(74)

(75)

(76) _clœhwV ε(h) = O(h ) €hl}¡ ` ∈ [0, 1]  clœ¡dfRTVkfV!V|clobedvb C > 0 bmiwvRdmRud

(77)

(78)

(79) `

(80) 3 ‹c¨ „ 6

(81)

(82) ≤C

(83)

(84) H. M i. i. i. M. i. i. j j∈Vi. H. i. H i. j j∈Vi. i. j j∈Vi. i. . M. i. M. i. i. i. k. j j∈Vi. j j∈Vi. H. i. i. i. j j∈Vi. H. k. i. i. i. j j∈Vi. i. i. i. 0. i. M. i. i. i. HH i HM i. j j∈Vi. 0. i. −1. M. j j∈Vi. j j∈Vi. k. r. Ü< N ÜèÊ.

(85) 9. 

(86)     

(87)  "!$#%&$'". `. r.   

(88)  . ` + (1 − `)r = 0 . dfRTVhdfRTVbmwvRVUWV!cV£hVgŠa`¯dmRTV¥\uUWlzy}dfs€hTlouh 3 T‹ ¨ ‹ 6 bf1dflzb›£VMb. H(σi , ui , {uj }j∈Vi ) = O(hk ). ¡¢s†k.uha`5bmUWsps€dmRb›s†yœiTdmlzs€hsu¡ 3<4 ¨ 476 ¨ _clœhwVdfRTV5dvuhTŽ†Vhpd>ud>s†kmlzŽ€lzh©su¡ZdmRTVRa`p{OVkfŠOs€yo lob  * bms€yzicdflœs†hs€¡ dmRV!{Tkms†ŠTyzVU 3 ‹c¨ „ 6 lob ` = max(` , ε (h)) ¬+{(r,RTVkf`)V ∈ R , ` + (1 − `)r = 0} −1  l}¡ 3 ‹c¨:9 6 0  Vyob›rV†¨≥ 0 ` = min 1, α|r| ¡¢s†k.uha` α ≥ 1 ¨ — V(R­™€V(uh>€TTl}dflœs†huycws†hb›dmkvulzh†d*s€h ` O¨ 8Ýdrws€UWVgb¡¢kfs€U»dfRTV(l}dfVkv1dmlz™€V(bfwvRTVUWV%dmRud*lob*hTVgVgcVM dfs¯ws€UW{TiTdmVBdmRVb›s†yœicdflœs†hs€¡ 2. ∗. 0. ∗. H(σi , ui , {uj }j∈Vi ) = 0. ¬+RVkfV H lob.cV£ŸhTVgŠa` 3 T‹ ¨ ‹ 6 ¨ Ö8 hdmRTlob+{€{ŸVgkg c¬?V!VUW{Tyzs1`WdmRVB¡¢s€yzyœs1¬+lzhTŽWV|c{Tyzlzwl}dZbfwvRTVgU>V ¡¢s€k n ≥ 1 3 c‹ ¨ ; 6 ) = u − ∆tH(x , t, u , {u } u u = u (M ) YZ{dfs\s†iTk ³ahTs1¬+yzVgcŽ†V€ 1uyzyp£kvbed

(89) s€kvcVkU>s†hTsudfs€hTV?¥Z€U>lzyœdms€hlz€hbbf1dflzb›¡¢`uh L b›df€ŠTlœyzlœde`Bws€hTl}dflœs†h ihcVk.Wws€hb›dmkvulzhpd(s†h5dfRTVBdmlzUWVbedfV{su¡dmRTVBde`a{OV 3 ‹c¨ 6 ∆t ≤ Ch n+1 i 0 i. n i. 0. i. n i. n j j∈Vi. i. ∞. . NON. Ú$P"Q;å;æ;æ.

(90) ;. . H!$. ¬+RVkfV lob.¯ws†hbedvuhpd(dmRudZcV{OVhŸTb+s€hyœ`s€h € h  ThTs€d.s€h dmRV!UWu|clœU'iTU-clouUWVdmVk+s€¡ dfRTV!UWVgCbmRVgyœVgUWVhpdfbg¨ =Tkfs€U 3 ‹c¨ ; 6   3 ‹c¨ Œ 6 €h 3 ‹c¨ uI 6 ¬?V uyoHb›s>R­™†V h 0.    M n ` + (1 − ` )r H (σ , u , {u } ) + ε(h) un+1 = u − ∆t i i i i i j j∈Vi i i. bms>dmRud+dmRTV!bfwvRTVUWV!lob Öhs†kfcVgk?dmsWR­™€V 8. ∆t. L∞. bedvuŠTyzV!l}¡.  ∆t `i + (1 − `i )ri ≤ Ch.. hsud+dmsas¯bmUW€yœyP c¬?Vws€hŸb›locVk. C0 > 0. uh. (ri , `i ). €h. 0 ≤ `i ≤ 1. bmiwvRdmRud. 0 ≤ `i + (1 − `i )ri ≤ C 0 .. Q(RlzblœUW{Os†bmVgb€h«€TTl}dflœs†huyws€hTl}dflœs†h©s€hTyz`E¡¢s†k ¨®Q(RTVkfV5€kmV¯U¯uha`¤¬?­`cb!s€¡(lzUW{Ÿspb›lzhTŽ dfRTlob!ws€hŸbedfkf€lœhpdBlœh©ws†h1teiThwdmlzs€hš¬+l}dfR 3 ‹c¨ I 6 ¨ =Ts€k!bmrlœUW>{Tyzlo0wlœde`EkfVg€bms€hŸb KŽ€lz™€Vghšws€hb›df€hpdfb α ≥ 1   uh β > 0  T¬%V!wvRTsaspb›V\dmRTVB¡¢s†yœyzs1¬+lzhTŽ¡¢s†kmU8¡¢s€k ` α >0  l}¡ r ≤ 0 min(1, α |r|)  3 ‹c¨ 4 6 l}¡ 0 ≤ r ≤ β 0 ` =  V o y › b † V ¨  min(1, α (r − β)) Q(RV>Ž†kf€{TREs€¡(bmiwvRš5¡¢ihw;dflœs†h ¡¢s†k C = 1 lzb!clobm{Tyz­`†VgEs€h =lzŽ€ikmV‹T¨ ‹a¨ — lœdmR ` TV£hTVM˜€bBlzh i. −. ∗. +. −. ∗. +. `. β.         . 3. ‹c¨ 4 6  cdmRVkfV°V|clzb›dfb C bmiwvRdmRŸ1d(¡¢s€k. `(r) .     

(91)    . 0. 0 < ∆tC 0 h. dfRTVbfwvRTVUWV!cV£ŸhTVgŠa` 3 T‹ ¨ ; 6   3 ‹c¨ Œ 6 uhŸ 3 c‹ ¨ I 6 lzb. r. L∞. ŠOs€ihcVg¨. 3. ‹c¨ 4 4 6. Ü< N ÜèÊ.

(92) 

(93)     

(94)  "!$#%&$'" . ZdfRTVk.wvRs€lowVgb(€kmVB{Os†bfb›lzŠTyzVBbmiwvR€b |r| 1 + |r|. l∗ = ϕ(r) :=. s†k(U>s†kmVBŽ†VhTVgkf€yœyz`. l∗ = ϕ(ψ(r)). ¬+lœdmR ≥ r uh ψ (0) = 1 ¨¯x.h˜V|T€U>{yœVWlob ψ(r) = r + r ¨Q(RVgbmV>{Os†bfbmlœŠTlzyzl}dflœVMbBR­™€V>hTsud ŠOVVghψ(r) V|c{Tyzs€kfVg3¨ _clœhwVVMn†iŸ1dmlzs€h 354 ¨ 4-6 csaVgb\hTsudBcV{OVhŸ±s€h±dmlzU>V† KŠŸs†iThT€km`®ws†hclœdmlzs€hb\UiŸbed°ŠŸVWb›{OVgwl}£ŸVg3  s€dmRTVgkm¬+lobmV'dfRTV¯{Tkfs€ŠTyzVU lzbU>VMuhTlzhTŽ†yœVMbmbg¨¥.VgkmV¯¬?VW¡¢s€yzyœs1¬dmRTVdmVgwvRhTlznpiTVTVgbfwkflœŠOVgšlzh B 4 D ¨ 8Öh s†kfTVk3dfs\bmlœUW{Tyzl}¡¢`BdfRTVrdfV|adg 1¬?Vws€hbmlzTVk s†hTyz`\£Ÿkfb›ds†kfcVgk €wgwiTkv1dfVclobmwkmVdmlobmudmlzs€h!s€¡pdfRTV?ŠŸs†iThT€km` ws€hTl}dflœs†hb¨ — Vws†hbmlzcVgk+WŠŸs†iThT€km`¯haiTUWVkflowuy¥\uUWlzy}dfs€hTlouh dmRŸ1d.lob.ws†hb›lob›dfuhpd(¬+l}dfR±>ŠŸs†iThT€km` ¥\uUWlzy}dfs€hTlouh H ¨ 8Ýd.lob.cV£hTVg¡¢s†k x ∈ ∂Ω   s ∈ R €h Hp ∈ R uhŸ€yzbms¯bmudmlobe£VMb 0. 2. . b. b. ∀x ∈ ∂Ω, s ∈ R, p ∈ Rd ,. Q(RV°kfVgbmiTyœdmlzhTŽ¯bmwvRVUWVBlzb *1 £Ÿh {u } lœ¡ σ ∈ Ω, ` H σ , u , {u }. Hb (x, s, p) ≤ H(x, s, p).. bmiwvR5dfR1d. j j=1,··· ,nΣ. i. M. i. i. i. j j∈Vi. . d.  + (1 − `i )HH σi ui , {uj }j∈Vi + ε(h) = 0. ‹c¨ ‹€ 6. 3 4. 3 ‹T¨ 4 ‹1Š 6 œl ¡ σ ∈ ∂Ω, max H σ , u , {u } , u − g(σ ) = 0. Q(RVb›s†yœicdflœs†hsu¡ 3 ‹T¨ 4 ‹ 6 lob+hTs€dZuh®Vg†b›`df€bm³K¨.=s€yzyœs1¬+lzhTŽ¯bedvuhukvdfVgwvRThTlonpiTVgbg ¬?Vws†UW{TicdmV lœd5€b'dfRTV®yœlzUWl}d¬+RVh n → +∞    # J @ # E #  %s€¡ {u }   n ∈ N cV£hTVgªŠa` uh u = u (x ) l}¡ σ ∈ Ω, u = u − ∆t` H σ , u , {u }  + (1 − ` )H σ u , {u }  b. i. i. i. j j∈Vi. . 0 i. 0. i. i. n j j=1,··· ,nΣ. i. n+1 i. i. n i. i. M. i. i. i. j j∈Vi. + ε(h). H. . i i. j j∈Vi. ‹T¨ Œ€ 6. 3 4. œl ¡ σ ∈ ∂Ω, max  u − u + H σ , u , {u } , u − g(x ) = 0. 3 ‹T¨ 4 ŒuŠ 6 ∆t 8Öh 3 ‹c¨ 4 ‹ 6 uhŸ 3 ‹c¨ 4 Œ 6   lob+cV£hTVgŠa` 3 ‹c¨ 4 6 ¨ 8Öh˜dfRTV¯¡¢s†yœyzs1¬+lœhŽ  `¬?V¯V|adfVhšdfRTV5cV£hTlœdmlzs€h©su¡ dms±€hp` †b!¬%V5R­™€V¯cs†hTVW¡¢s€kdmRTV ¥\uUWlzy}dfs€hTlouh™alz'dmRV!V|c{Tyzlzwl}dZcVg{ŸVghT€hw`s€¡dfRTV!kv1dm`lzs r lzh xx¨ ∈ Ω i. NON. Ú$P"Q;å;æ;æ. n+1 i. n i. b. i. i. j j∈Vi. n+1 i. i.

(95) 4. .  ). ¹ +  µ “ µ + • µ “ ¹¹ ) — VcVghTsudfV°Ša` S dfRTV!s€{OVkv1dfs€k.    `(x)HM x, uh (x), uh + (1 − `(x))HH x, uh (x), uh + ε(h)      S(h, x, uh ) =     max Hb x, uh (x), uh , uh (x) − g(x) = 0. x ∈ ∂Ω.. l}¡. — V!R­™†V.   $ 

(96) #%!# + $'" %2E  #"    3 ‹T¨ 4 ‹ 6 !'32 !  G   M 7 H !$'2 !$H #%H$'  :, $'"  # '"#   HHM !H'32 Hb !$H

(97) b$'$# $'  ! A# '"&!$'" 57 7   H "b ≤ H '32$'  !H!$ #  `   '  #  [0, 1] !'32 !#  >  r=. HH (x, uh (x), uh ) , HM (x, uh (x), uh ). H!$. l}¡ x ∈ Ω. #"!$#. `(x) + (1 − `(x))r ≥ ε0 (h). .O" 

(98) #  !H!$ #  !$'32 0 !#  >   ε0(h)−1 ε(h) = o(1) 7 3 ‹T¨ 4 ‹ 6 @G#%&$' <ε (h) # !# !$#% >   L∞  $G'2 # !$# G'  $   " H E # ! G' &" ε(h) uh ' 7   "h "!$#%&$' 4    6 !$ !G' &" '   '     " ' #" >!$M:, uh 2E  ' 52  , 4    6 '   

(99)  - !:, G'  $M:, # #  $@G#%&$' 5 4    6 '  Ω 

(100)   !$#  '    '"#%&!$ '  H 52$& '"# 'M#" $H      # !# #"    3 ‹T¨ 4 ‹ 6 "! >! G' &" @G# &' .OJ&    G'32 52 ' ∞ G'"  1, '   'H!E #%& !$. ! GL!$#%&$' 57 #"  $AG# &'  L  . L-*0$h#  A # 7 .O" '   # !$' 52  , !$' # H!$#% 0  "  7 <C#" # H!#     3 ‹c¨ 4 Œ 6 $ J!$ 3 ‹c¨ 4 Œ 6 687 lœ¡b›iŸwvR yœlzUWl}dV|clzb›dfb8  C " n →! +∞ @M# E #& 57 #" ∞  G'32 $  H4  #     $'32# &' 3 ‹c¨ 4 46 7  G##  E # '  < #" @M#  M'$# ! #  L&!$ # !$#  '"#  ! H-< ¨B qrkmsas€¡su¡GQ(RTVgs€kfVU ŒT¨ 4D . . . . — V!{TkfscwVVM†b(lœh B 4D r¨ Q(RTVb›VMnpiTVhwV u lob(ŠŸs†iThcVMb›sW¬?VBwguhcV£ŸhTV €h u(x) = lim inf u (y) u(x) = lim sup u (y) Q(RV`'€kmV+cV£hTVM's†h Ω ŠOVgw€ibmV u RŸ€b*ŠOs€iThbGlœhŸcV{OVhTVhpdsu¡ h ¨ — V.b›Rs1¬«dmRŸ1dGdmRV+¡¢iThwdmlzs€hb uh ukfV!kmVMb›{OVgwdmlz™€Vgyœ`b›iTGŠ ?uh®bmiT{OVHk FÝbms€yzicdflœs†hb+su¡ 3<4 ¨ 476 ¨ — V{kmscwVgVglzh®de¬%s¯{Ÿukmdf

(101) b 1%£kvbed u ¬?V!ws†hub›locVgk%dfRTVw†b›VBs€¡*€hlzhpdmVkflzs€k({Ÿs†lœhpdM cdmRTVghdmRTVwg€bmV°s€¡

(102) >ŠOs€iThukf`{Ÿs†lœhpdM¨  !$  5!$' '"# &$ '"#  8Öh±¡Ô€wdg K¬?V>bmRTs1¬¼£kvbed\dmRud°lœ¡ x ∈ Ω lzb°yzscwuy*U¯1|clzUiTU s€¡ ¡¢s†k.b›s†UWV φ ∈ C (Ω)  TdmRTVgh u−φ 3 ŒT¨ 476 H(x , ϕ(x )Dϕ(x )) ≤ 0, ¬+RlœyzVBl}¡ x ∈ Ω lob.>yzsawguy3UWlzhTlœU'iTU8s€¡ u − φ   3 ŒT¨Æ‹ 6 H(x , ϕ(x )Dϕ(x )) ≥ 0 h. h. y→x,h→0. y→x,h→0. h. h. 0. b ∞. 0. 0. 0. 0. 0. 0. 0. Ü< N ÜèÊ.

(103) 4E4. 

(104)     

(105)  "!$#%&$'". Qs\bmRTs1¬˜dfRTV%lzhTVMn†iŸuyzl}de` 3 Œ¨ ‹ 6  1¬?V%kfV{OVgud9:(ukfyzVgb €h'_cs€iTŽpuhTloclob ­ukfŽ€iTUWVgh†dvb gdmRV%lzhTVgnpi€yœlœde` ŒT¨Æ‹ 6 ol bBs€ŠcdvulzhTVg¤lœh¤dmRVbm€U>V>¬(­`€¨ — VWU¯­`E€bfbmiTUWVdfR1d x lzb!b›dmkflzwdBUWlzhTlzUiTU  u(x ) =   s€iTdfbmlzcV!s€¡ B(x , r)  Ÿ¬+RTVkfV r lob+bmiwvR5dfR1d φ(x ) φ ≤ 2 inf ||u || lœh u(x) − φ(x) ≥ u(x ) − φ(x ) = 0 B(x , r). Q(RVkfV'V|alob›dfbBb›VMnpiTVhwVgb h uh y ∈ Ω bmiwvR±dfR1d n → +∞   h → 0   y → x   u (y ) →  €uh lob*ZŽ†yœs†ŠuyaUWlzhTlœU'iTU‚s€¡ −φ ¨ — V+cVghTsudfV?Ša` ξ dmRV?npi€h†dfl}de` u (y )−φ(y ) ¨ u(x ) — V!R­™†V ξ y→ 0   u (y) ≥ φ(y) + ξ ulœh B(x ¨ , r)  ˆ\V£ŸhTlœhŽ r = H y , u (y ), u   ¬%VBŽ€Vd 3. 0. 0. h. h ∞. 0. n. 0. n. n. h. n. n. n. 0. hn. hn. n. n. n. 0. h. yn , uh (yn ), uh.   0 = `(yn )HhMn yn , uh (yn ), uh + (1 − `(yn ))HH yn , uh (yn ), uh + ε(hn )   = `(yn ) + (1 − `(yn ))rn HM yn , uh (yn ), uh + ε(hn ). ¬?VBR­™€VBbmlœhwV ŠOVgwguibmV. hn H hn M H hn. 0. n. hn. n. _clœhwV. 0. n. n. n. 0. 0. 0≤. 3. ŒT¨ Œ 6. ε(hn ) ε(hn ) ≤ 0 = o(1) `(yn ) + (1 − `(yn ))rn ε (hn ). `(yn ) + (1 − `(yn ))r ≥ ε0 (h) > 0. ¨G¬%VBŽ†Vd.uyzylzh€yœy. ε(hn ) = o(1). `(yn ) + (1 − `(yn ))rn. lob°UWs€hTs€dms€hV2€h.  c¬?VBŽ€Vd. HM ε0 (h) > 0 0 `(yn ) + (1 − `(yn ))rn > ε (hn ) > 0. ¨!¥ZVhwV€ 3lœ¡¬%V>clz™plocV'dmRTV>yo€b›d°VMn†iŸuyzl}de`su¡ 3 Œ ¨ Œ 6 Ša` ŒT¨. 3 I 6. 0 ≤ HhMn (yn , uh (yn ), uh ) + o(1).. €b›dg cibmlzhTŽ>dmRTV!UWs€hsudms†hTlowlœde`su¡. HhMn.  ¬%VBVhŸi{dfs.  0 ≤ HhMn yn , φ(yn ) + ξn , φ + ξn + o(1).. XZsudfV\dfR1d.lzh{€bfbmlœhTŽ'¡¢kfs€U 3 TŒ ¨ I 6 dms 3 TŒ ¨Æ‡ 6  ¬%VBR­™†V\ibmVgdfRTV!iThTlœ¡¢s€kfU8ws†hpdmlzhpil}de`s€¡ H ¨ Q(Raib 0 ≤ lim sup HM (yn , φ(yn ) + ξn , φ + ξn n. ≤ H(x0 , ϕ(x0 ), Dϕ(x0 )). . 3. ŒT¨Æ‡ 6. Q(Rlzb(bmRTs1¬.b%dmRud lob+'bmiT{OVk<?abms€yzicdmlzs€h5su¡ 3<4 ¨ 4-6 ¨rQ(RVBbfuUWVBukfŽ€iTUWVgh†dvb%€{T{TyzlœVMdfs u bmRTs1¬ dfR1d lœd.lob+>bmiTŠGFÖbms€yzicdmlzs€uhsu¡ 354 ¨ 4-6 lzh Ω ¨ NON. Ú$P"Q;å;æ;æ.

(106) 4. ‹. . .  G'32E!$ ,M"$'"# BX.s1¬. !$  C5 !. dfR1d+¡¢s†k.  T€h€ha` x ∈ ∂Ω lim sup. ϕ ∈ Cb∞. ¬%V¯ws€hbmlzTVkBdmRVWwg€bmVWsu¡   (Ω). x0 ∈ ∂Ω. H!$. ¨WQ(RV'£Ÿkfb›d!kmVgUW€km³®lob. S(h, x, ϕ + ξ) = max(H(x,ϕ(x), Dϕ),. h→0,y→x,ξ→0. max(Hb (x, ϕ(x), Dϕ(x)), ϕ(x) − g(x))). lim inf. h→0,y→x,ξ→0. dfRTVh. S(h, x, ϕ + ξ) = min(H(x,ϕ(x), Dϕ),. Q(RV.{Tkfsps€¡Ÿ¡¢s†kbmRTs1¬+lœhŽBdmRudl}¡ x. ¬+RlœyzVBl}¡ x. lzb!yœscwguyTU¯1|clzUiTU su¡ u − φ ¡¢s†kb›s†UWV ∈ ∂Ω.  . max(Hb (x, ϕ(x), Dϕ(x)), ϕ(x) − g(x))). 0. b φ ∈ C∞ (Ω). lob.>yzsawguy3UWlzhTlœU'iTU8s€¡ u − φ  . ŒT¨ „ 6. 3. min(H(x0 , ϕ(x0 )Dϕ(x0 )), max(Hb (x0 , ϕ(x0 ), Dϕ(x0 )), ϕ(x0 ) − g(x0 ))) ≤ 0,. TŒ ¨:9 6 wguhVg†b›lzyœ`5ŠŸV!s†Šcdf€lœhTVM5Ša`5ws€U'ŠTlœhlœhTŽ>dfRTVbm€UWVB€kmŽ†iTUWVhpdfb(€hdfRTs†bmV!su¡>B 4 D  Q(RTVs†kmVgU-‹c¨Æ‹c¨ _clœhwV S lob(UWs€hTs€dms†hTV€ c¬?VBŽ€Vd 0. ∈Ω. max(H(x0 , ϕ(x0 )Dϕ(x0 )), max(Hb (x0 , ϕ(x0 ), Dϕ(x0 )), ϕ(x0 ) − g(x0 ))) ≥ 0. 3. . 0 ≤ lim sup S(hn , yn , φ(yn ) + ξn ) ≤ n. lim sup. S(h, y, ϕ + ξ). h→0,y→x,ξ→0. = max(H(x0 , ϕ(x0 ), Dϕ(x0 )), max(Hb (x0 , ϕ(x0 ), Dϕ(x0 )), F (x, ϕ(x0 ), Dϕ(x0 ))).. XZs1¬¬%V+R­™†V+dms'wvRTVgwv³dmRuddmRVZws†hclœdmlzs€h 3 Œ¨ „ 6 3 kfVgbm{¨ 3 Œ¨ 9 6<6 lzUW{TyzlœVMbrdfRTVZbmiT{ŸVgk<FÖbms€yzicdmlzs€h 3 kfVgbm{¨ bmiTGŠ FÖbms€yzicdmlzs€h 6 ws€hclœdmlzs€h ¨ ¶  ) O¨ 8Ý¡ F (x , u(x ), Dφ(x ) ≤ 0  MdfRTVkfVrlob hTs€dmRTlzhTŽ+dfs.{Tkfs1™€V†¨ — V?€bfb›iU>V *+ µ 

(107) ” &,Ԓ  • ¨ — V!R­™€VBVlœdmRVk F (x , u(x ), Dφ(x ) > 0 3 ŒT¨ ; 6 H(x , ϕ(x ), Dϕ(x )) ≤ 0 s†k 0. 0. 0. 0. 0. 0. 0. 0. 0. Öh>dfRTVZbmVgws†hWw†max(H b›V† u¬%V+RŸ(x­™€V(, u(x hTVgwVg),bfbmDφ(x €kmlzyz` 3 ŒT),¨ ; F6  †(x€h,>u(xlœh¯ŠO),sudfDφ(x Rw€bmVg))b

(108) df≤RTV.0.lzhTVgnpi€yœlœde`RTs†yzb¨ ¶  )  ¨ 8Ý¡ F (x , u(x ), Dφ(x ) ≥ 0  OdmRTVgkmV>lzb\hTs€dmRTlzhTŽdms5{kms1™†V€¨BxZbfb›iTUWV *+ µ 

(109) ” &,Ԓ  •  adfRTVh¬?V°U'ib›d.R­™€V°VlœdmRTVgk H(x , u(x ), Dφ(x )) ≥ 0 s€k F (x , u(x ), Dφ(x ) < 0 b. 8. 0. 0. 0. 0. _clœhwV. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. max(H (x , u(x ), Dφ(x ), F (x , u(x ), Dφ(x ))) ≥ 0. a   m d  R lzb+lzhTVMn†iŸuyzl}de`lzUW{TyzlœVMb H ≥ 0  Tb›s>dfR1d F <0 b. 0. 0. 0. 0. 0. 0. b. Dφ(x )) ≥ H (x , u(x ), Dφ(x )) ≥ 0. Q(Raibg clzhŠOsudfR®w€H(x bmVgbg a¬%, u(x V!Ž†Vd ),H(x  c¬+RlzwvRlob(¬+R1d.¬?VB¬?€h†dfVg3¨ , u(x ), Dφ(x )) ≥ 0 0. 0. 0. 0. b. 0. 0. 0. 0. 0. Ü< N ÜèÊ.

(110) 4. 

(111)     

(112)  "!$#%&$'". Œ.  ' @J &$' BxZyœyrdmRTlob!b›Rs1¬.b.dfR1d lob!bmiT{OVHk FÝbms€yzicdmlzs€hšuh u lzb!bmiTŠGFÖb›s†yœicdflœs†hEs€¡ 354 ¨ 4 6 ¨ Q(RVBb›dmkfs€hŽ>ihTlznpiTVghTVgbfb({TkflœhŸwlz{TyœVBVghuŠTuyzVgb?dfsws†hwyzicV†¨ 

(113)   #     ¹ ,ĕ µ¼¹. ”+º. . 7. '   . MJ # "! .  *2 7. 7. 32. !'32. 2.  0 k ε(h) ε(h) = O(hk ) ` = !$O(h ) ! ε7 (h) "$&   $ $! ' ' 0 −1 0 k+1 ε (h)  $ε(h) = o(1) ε(h) ε (h) ε(h) = Ch ε(h) =  !' $'" # !$' &# 0 C' 0 h#k" '"G & !!E@& C C !$#%&$'"

(114) "      !   "  ' 0 #"!$#

(115)    C#  ε (h) = 0  '. $,. . . 0      ¹ + ‘7,ԑg’ µ + • ' :, M  H.  57. .. 57 .. ¶§¹  H )  " H75 2 7 

(116) '$#> !*0 !$' , J  < #  $'  # ' , < H  !# #    -. 57 '  !$#% >  3 ‹c¨ 4-6 7#MJ #  '  # !'"#  H O) ”    µ ‘ ¹ ‘g •  µ  µ ‘'” + º  “­”•u’-,ĕ€”  ,    µ  µ + ’g”c’7, ¹ +) O)&() ,¢“1‘’ ¹ “­º µ “ +   µ “$,ĕ€” %‘g•  µ  µ ‘ ) — V!ws€hŸb›locVk?de¬?s'³alzhTb(s€¡ £kvbed(s€kvcVgk(bfwvRTVgU>VMb  dfRTV °scciThs1™¤bfwvRTVUWVuhŸšdmRTV 1| =TkflœVMckmlowvRbbfwvRTVgU>V†¨ — VkfVgwguyzyrŠTkflœV;`±dfRTVlzk'ws€hb›dmkfiw;dflœs†h RVkfV€¨ — V(cVgbfwkflœŠOVrdfRTVlzk*ws€hŸbedfkmiwdmlzs€h!¡¢s†k VgyœVgU>Vghpdfbg uuhdmRTV?cVŽ†kmVgVgbs€¡T¡¢kfVVgTs€U»ukfVGdmRV%™†VkmdmlowVgb s€¡(dmRTVMb›VVgyœVgUWVhpdfbg¨®Q s±U¯€³€VWdmRVdmV|ad'b›lzUW{TyzVkM ¬?VlzU>{yœlowlœdmyz`©€bfb›iTUWVWdfR1d'dmRTVVgyœVgUWVhpdfb'ukfV dfkmlouhŽ€yzVgb?lœh±‹€ˆ TŠicd+dmRTlob+lob+uŠbms€yzicdfVyz`hTsud+VMbmbmVhpdmlouyP¨ *2$G'  !$M@# '"&!' 8Ý¡ H = H + H ¬+RTVgkmV H 3 kfVgbm{¨ H 6 lzb?ws†ha™€V| 3 kfVgbm{¨Gws†hw­™†V 6   dfRTVh¬?V!b›Vd 3 I¨ 476 H (p , · · · , p ) = inf max sup [p · (y − q) − H (y) − H (q)] ¬+RVkfV Ω   l = 1, · · · , k €kmV°dfRTVuhTŽ†iTyouk.bmVgw;dfs€kvb+cV£ŸhTVgŠa`dfRTVBdmkflz€hTŽ€yzVgb T , · · · , T 1d.hTsccV   €h ukfV!dmRTV VŽ†VhTkmV!dfkf€hb›¡¢s€kfUWb.su¡ H uhŸ H ¨ — VR­™†VcVhTs€dmVMŠp` x · y dmRTV M H Tsud+{TkfsaTiw;d.s€H¡ x uhŸ y ¨ 8Ý¡ lob(dfRTVb›U¯€yœyzVgb›d.kf†clzib+su¡

(117) dmRVwlzkfwyœVMb+su¡GwVgh†dfVk ws€hpdvulzhTVglzh  Tl}¡ uh €kmV lz{hbmwvRl}d KZws†hbedvuhpdfbr¡¢s€k H uh H  pdmRTVgh¯dmRTV°bmwvRVUWMVZlobrUWs€hsudms†hTV.{Tkf∪s1™alzTTVg>dmRŸ1LddfRTV.dflœUWLV b›dmVg{bf1dflzb›£VMb H. H. . H. . . 1. G h. i. ∗ 1. l. 1. ki. 2. 1. 2. ∗ 1. i. q∈R2 0≤l≤ki y∈−Ωl +q. 1. ∗ 2. ∗ 2. 1. 1. ki i=1 j. i. 1. ki. 2. 1. 2. 2. ∆t 1 (L1 + L2 ) ≤ , h 2. s†hTV!w€hws€hbmiTyœd B 4 Œ D ¡¢s€k+UWs€kfV!cVdvulzyzbg¨ 8ÖhUWs†b›d?s€¡¤dfRTVBhaiTUWVkflzwguyKV|TuUW{TyzVgb?ŠOVyzs1¬! pdmRTV!¥Z€UWlœyœdms†hTlz€h5lob+ws†hp™†V|3 ab›s 3 IŸ¨ 4-6 ŠOVgws€UWVgb bmlzU>{yœVgk 3 I¨Æ‹ 6 H (p , · · · , p ) = max sup [p · y − H (y).] — V±cVghTsudfV®Šp` H dmRTV±dmVkfU sup [p · y − H (y)] ¬+RTVkfVdmRTV¤uhTŽ†iTyz€kb›VMw;dfs€k Ω lzbdmRTV bmVgwdms†k?s€¡ T b›VgVh¡¢kfs€U0dfRTV!™€Vgk›dfV| M ¨ G h. T. 

(118)  

(119) # . 1. ki. y∈−Ωl. sup. Ú$P"Q;å;æ;æ. i. . pi · y −. ∗ 1. i. ∗ 1.    '"# !$#%&$' 5 # J  !$M@# '"&!'  . y∈−Ωl. NON. 0≤l≤ki y∈−Ωl. H1∗ (y). . . . ,. l. !  ,   #  M  ! @"!$#%&$' 5.

(120) . 4I. H!$.     +   #  '  520# 0' # &!@7 G #  !  !$  '  !$#%   !@"  + G h H#i" := #  '  !*0 C !  7     #    ' #& M<M  H H 7(σ  i ,!u@"!i $, # u h)$ !     '"##   H! 2$& '"# < #  &  ) .   @' !$ "' # % !$' # 7.  !$@"!# >$ !E   # C5 #  M   '"##  M"!$'"#%# , uh. .O"  7.  #" . 7. # . σi Ω l. HiT. := sup y∈−Ωl. . pi · y −. H1∗ (y). .  # 

(121)   # $

(122) 5

(123) #"   '"# !

(124) '  GH.   . σi. θli. Ωl. K.  

(125)      

(126)    . O!  & 52$& 

(127). ¬+RVkfV.  !$M@# $'"&!'. .   . .  . 3.   .   . K. . \¥.VgkmVB¬?VBbmVd. ¯) − HhLF (DuΩ1 , · · · , DuΩki ) = H(U. Ch. . kmVMb›{ ¨ D 6 lzb+¯wlœkvwyzV 3 c lobm³ 6 s€¡

(128) wVhpdmVgk h. b= U. R. Dh. Mi.  h. I. σi . [u(M ) − u(Mi )]dl,. ¨ Œ€ 6. 3I. uhkv€clzib h  . Du dxdy. Ch. ,. €h  lob(yz€kmŽ†Vk?dmR€h€ha` lz{bfwvRTl}dK!ws€hŸbedvuhpd+su¡ H clz™alzTVgŠa` 2π ¨ x clœ²OVgkmVgh†d?™€Vgkfbmlœs†h¯su¡3dfRTV 1| =TkflœVMckflzwvRb¥ZuUWlzy}dfs€hTlouh  †dfR1d?lzb%UWs€hTs€dms†hTV.iThTVk%dmRTVBbm€UWV ws€hb›dmkvulzhpdg alob(dmRTVB¡¢s†yœyzs1¬+lzhTŽ 1 HhLF (DuΩ1 , · · ·. , DuΩki ) =. Z. πh2. H(Du) Dh. πh2.  − h. I. Ch. [u(M ) − u(Mi )]dl.. ¨ ŒuŠ 6. 3I. Ü< N ÜèÊ.

(129) 4. 

(130)     

(131)  "!$#%&$'". ‡. Q(Rlzb(™†Vkvb›lzs€hwuhŠOV!kmVg¬+kmlœd›dfVh®€b HhLF (DuΩ1 , · · · , DuΩki ) =. X. X ~nil−1/2 + ~nil+1/2 θli tan θli H(DuΩil ) + ε · DuΩil . 2π 2. (Q RV'™†Vgw;dfs€k ~n lob.dfRTV>iThTlœdB™†Vgwdms€k\su¡rdfRTV>VgcŽ†VdfR1d!b›Vg{ukv1dfVgb.dmRTVWuhTŽ†iTyouk\bmVgwdms†kfb Ω uhŸ  dmRTV€hTŽ€yzV lob(dmRVuhTŽ†yœVBs€¡dfRTVuhŽ€iTyouk.bmVgwdms€k.ud σ  ŸbmVV

(132) =

(133) lzŽ€iTkfV I¨Æ‹a¨%Q(RTV!{ŸukvuUWVdfVk ε Ω lob?dmRVbm€U>V!†b(lœhθ dmRV!{TkmVg™alœs†ib?™€Vkvbmlœs†h¨ 0≤l≤ki. 0≤l≤ki. l. l+1/2 i l. l+1. i. σi Ωi+1 ~ni+1/2 Ωi.         

(134)        

(135)    .    .  . Ωi. .  . . .  .   .  . ~ ni+1/2. .     .     . x dfRTlzkf™€Vgkfbmlœs†h a¬+RTlowvRlob?dmRV!s€hTV!¬?VBR­™€V°ibmVglœhdmRVb›lzUiTyo1dflœs†hbg clzb HLF (DuΩ1 , · · · , DuΩki ) =. X. T 3Mi. |T |H(Du|T ) + α X. X. Mj ∈T. (ui − uj ).  ß Þ;¾ . . ¨ Œ€w 6. 3I. |T |. € h α ≥ h max ||D H|| ¬+RTVgkmV h lzb?dfRTV!youkfŽ€Vgb›d(VgcŽ†V°s€¡ T ¨ Q(RV>U¯€lœh©clœ²OVgkmVghwVWŠOVde¬?VVgh¤dfRTVgbmV¯clœ²OVgkmVgh†d!¡¢s†kmU'iTyo€b°lzb!dmRud 3 I¨ Œ€ 6 uh 3 IŸ¨ Œ€Š 6 ukfV>lzhGF dfkmlzhbmlzwBlzhdmRV'bmVhbmV!Ž€lz™€Vghlzh B 4 Œ D ¬+RTlœyzV 3 I¨ Œ€w 6 lob.hsudg¨ :?`5dfRTV¬(­`€ cdfRTVbfuUWVlob(dmkfiTV!¡¢s†k 3 IŸ¨ 4 6 ¨ ¥ZVhwV€ €¡¢s€yzyœs1¬+lzhTŽBdmRVZbm€UWV+kmV¡¢VkfVhwV€  3 I¨ Œ€ 6 uh 3 I¨ ŒuŠ 6 €kmV.ws€ha™€VgkmŽ†Vhpdruh'dmRV.Vkfkms†kGVgb›dmlzU¯1dmV lob O(h ) ¨ =s€k 3 IŸ¨ Œ†w 6  bmiwvRE€h±Vkfkms†kZVMbedflœU¯1dfVlobZhsud!­™­€lœyouŠyœV 3 1dByœVM€b›d\¬+RTVgh®¡¢s€yzyzs1¬+lœhTŽ5dmRTV dfVgwvRThlznpiTVBsu¡ B 4 Œ D  TŠTicd.lœd.lob+ws€ha™†VkfŽ€Vhpd 1

(136) dmRTlob+lob.Wb›lzUW{TyœV€{T{Tyzlzwg1dflœs†h5su¡ B Œ D ¨ Q(RVE€c™1€h†dvuŽ†Vs€¡ 3 IŸ¨ Œ†w 6 s1™†VkWdmRVEsudfRTVkde¬%s©™†Vkvb›lzs€hbWloblœdfbb›lzUW{Tyzlzwl}de`§lœh wscclœhŽ¨»xZb 3 I¨ ŒuŠ 6  ¬%VWhTVgVg±dmsU¯u³€V>yœsas€{¤s1™€VgkZdfRTVWVyzVUWVhpdgM ¨ =Ts†k°VM€wvR±VgyœVgUWVhpdg ¬?VWws€UW{TiTdmV Du   α T 3Mi. T. p. p. T. 1/2. |T. NON. Ú$P"Q;å;æ;æ.

(137) 4. „. . H!$. €hV™1uyzi1dfV°¡¢s€k+Vg†wvRTVŽ€kfVVBs€¡ ¡¢kfVVgTs€U lzhdmRTV!VgyœVgU>Vghpdg  |T |H(Du|T ) + α(ui − uj ).. (Q RV°haiTUWVgkmlow€y¥ZuUWlzy}dfs€hTlouhlob(dmRTV€kmlœdmRU>VdmlowB­™€VkvuŽ†VZs€¡ dmRVgbmVn†iŸuhpdmlœdmlzVgbg¨ Q(RVclzbfbmlœ{udmlzs€h©UWVgwvRŸuhTlob›U¯bBlobU'iwvR©b›lzUW{TyœVgkdfRuhš¡¢s€k 3 IŸ¨ Œ€Š 6 ¨ /%s€hbmlocVkflœhŽ 3 I¨ Œ€ 6  

(138) dmRTV yzsas€{R†b(dmsŠOVwgukfkmlzVgs€icd\s1™€Vk(VM€wvR®cVŽ†kmVgV!su¡

(139) ¡¢kmVgVgcs†U¨?Q(RTVgh¡¢s€k.VM€wvRsu¡*dfRTVU ¬?V!hTVgVgdms U¯€³€V¯yœsas†{¤s1™†Vk!lœdfb!hTVglœŽ†RaŠŸs†kfbg¨ 8ÖhšdmRTVwg€bmV¯su¡ 3 IŸ¨ Œ†w 6  dmRTVwscclœhŽ®lzb M"  bmlœUW{TyzVkM dfRTlzblzb ¬+Ra`¬?VB{TkfV¡¢Vk 3 I¨ Œ€w 6 ¨ O) ) ,  ¹ “1º µ “ ”  , ¢’ ¹ + ,Ԕ + ‘ ) Q(RTVkfVGukfVGU¯uha`.¡¢s†kmU¯uyzyz`.RTlzŽ€RBs€kvcVk3haiTUWVgkmlow€y€¥Z€U>lzy F dfs€hTlouhŸb MŠTicd lœd lob3UWs€kfVrcl ¯wiTyœddms.ws€hb›dmkfiw;d b›df€ŠTyzVruhBRTlzŽ€RBs†kfcVgk¥Z€U>lzyœdms€hlz€hb9¨ =Ts†k3V|TuUW{TyzV€  lœ¡rclobmwkmVdmV L ?pyzlz³€Vb›dfuŠlœyzl}de`{Tkfs€{OVkmde`5lob.b›s†iTŽ€RpdM s€hV!R€b(dfskfVguyzLl KVBdmRŸ1d.dfRTVkfVlob+hTshudmiTkvuy ws€iThpdfVkf{ukmds€h©dfRTVws€hpdflœhaiTs†ibbmlzTV5ŠOVgw€ibmV5su¡+dfRTVh1dfiTkmV5su¡.dfRTV5™alobmws†bml}de`˜b›s†yœiTdmlzs€hb 1¯dmRTV dfVgb›d+¡¢iThwdmlzs€hb\ukfV°hsud.lzh†dfVŽ†kfudmVgŠa`5{€k›d.†b(¡¢s€k.b›df€hTukvRp`a{OVkfŠŸs†yœlowB{Tkfs€ŠTyzVU¯bg¨Q(RTV!hudmiTkvuy ?ayœlz³€V.b›df€ŠTlœyzlœde`'{Tkfs€{OVkmde`RŸ€bGdfsŠOVZ¬+kfl}dmdmVh5s€h  €dfRTlobw€ibmVgbbms€UWV.cl wiTyœdmlzVgbdmRŸ1d%U¯­`>ŠŸV L s1™†Vkvws†U>V† Tb›VgV!¡¢s€kZV|TuUW{TyzV B 4 I D uhUWs†kmV!kfVgwVhpDu dmyz` BƋu D ¨ 8Öh®dfRTV!¡¢s€yzyzs1¬+lœhTŽŸ ¬?VB£kvbed\ws€hbmlocVkZ ¡¢s†kmU¯€yœyz`RTlzŽ€RWs€kvcVgkrbmwvRTVgUWV(dmRudu{T{OVg€kfb

(140) dfsŠŸV.b›df€ŠTyzV.€bGyzs€hTŽ!†bGhTsbmlœhTŽ†iTyoukfl}de`s€¡ Du u{T{OVg€kg¨ 8Ýd¯lob>lœhªdmRTV®bm{Tlzkmlœd>s€¡ZdfRTV  X ?pyzlz³€VbmwvRTVgUWVs€¡ B „c ‹ 4D €h B 4 Œ D ¨§x2bmVgws€h@V|TuUW{TyzVlzbWuyobms ws€hbmlocVkfVg¡¢s€yzyzs1¬+lœhT0Ž B 4 ‡ D ¨ZQ(RVbmwvRVUWVlobZUWs€kfVws†UW{€wdg OŠTicd\s†hTyz`†Tu{cdfVgdfsRTs€UWs†Ž€VhVs€iŸb ¥\uUWlzy}dfs€hTlouhbg¨G¥.s1¬?V™†VkM †¬?VB{Tkms†{Ÿspb›V°uh !2 7 V|admVhŸb›lzs€hdms>dmRV°lzhTRTs†UWs€Ž€VghTVs†ib?w€bmV°lœhdmRlzb {Ÿu{OVkM¨  $# !$#%&$'" 8ÖhWdmRTlob%{ukvuŽ†kf€{TR 1¬?VZws†hb›locVgkrVyzVUWVhpdvbGdmRŸ1d%€kmV.lzUW{Tyzlzwl}dfyœ`'dmRTs†iTŽ€Rpd%†bGdfkmlouGh F Ž†iTyouk+VyzVUWVgh†dvb ŸŠTicd.dfRTlob.kfVgb›dmkflzwdmlzs€hlzbZhTsud.VMbmbmVhpdmlouyP¨ — V!£kvb›dZ{TkfVgwlobmV\dfRTV!de`a{OVsu¡Glzh†dfVkf{Ÿs†yz€hpd 3 kmVMws†hbedfkmiŸw;dmlzs€h 6 s€¡ ¬%Vws€hbmlzTVk(lœhdfRTV!V|TuUW{TyzVgbg¨ {u } Q¬?s®³plzhTbsu¡. €Ž€kvuhTŽ†Vde`a{OVlzh†dfVkf{Ÿs†yz€hpdfb€kmVws€hbmlzTVkfVg3¨®_alzhwV¯dfRTVkfV¯lobhTsE€UŠTlzŽ€il}de` ¬+RVh˜¬%Vws€hbmlocVkŽ†lœ™†VhšlœhpdfVkf{Ÿs†yzudmlzs€h  u kfV{kmVMb›Vgh†dvb°dmRTV5lœhpdmVgkm{Os€yo1dflœs†h¤s€¡%dfRTV5ws€hpdmlzhaiTs€ib ¡¢ihw;dflœs†h u ¨ 8Öh dmRTV¤£kvbedw†b›V† .lœh Vg†wvR dmkflz€hTŽ€yzV  ZdmRTV˜bms€yzicdmlzs€h lobu{T{Tkfs­|clœU¯udmVgŠa` ª{Ÿs†yœ`ahTs†U>louy s€¡ZcVŽ†kmVgV r  GdfRTVlzk¯b›Vd'lob P (T ) ¨š¥ZVhwV€ GTdfRTVbms€yzicdflœs†h«lzb>cVMbmwkmlzŠŸVM«Ša` cVŽ†kmVgVgbs€¡ ¡¢kfVVMcs€U¨ 8Ýd!lzb!³ahTs1¬+hEdmRud!dmRTV¯{Os€lzhpdfb!s€¡ T ¬+RTlowvR¤Š€km`cwVhpdmkflzw>wsas†kfclzhudmVgbB€kmV ( , , ) ¬+lœdmR {Ÿspb›lœdmlz™€V°lzh†dfVŽ†Vkvb%€h i + j + k = r €kmV\iThTlob›s†yœ™1€h†dM¨  |TuUW{TyzVgb%¡¢s€k r = 1   2 €kmV°clob›{Tyo­`€VM i, j, k s†Ch =

(141) lzŽ€iTkfV I¨ Œc¨rQ(RTVcVgŽ€kfVVMb%s€¡ ¡¢kfVVMcs€U σ lzhdfRTV!UWVgbmRlzb?dfRTVws†yœyzVgwdmlzs€hsu¡

(142) dmRTVMb›VBhTVg¬ {Os€lzhpdfbg¨ ZdfRTVkWwvRTs†lzwVgb€kmV{ŸspbmbmlzŠTyœVb›iŸwvR@€bdmRTVlzh†dfVkf{Ÿs†yz€hpdfb>cV£hVg«lzh BƋ€‹ D ¨©Q(RTVb›lzUW{TyzVgb›d'VJ| F €UW{TyœVlzb\cVgbfwkflœŠOVg lzhEuha`dfkmlouhŽ€yzV€ Ša`dmRTV'cVŽ†kmVgVgb+s€¡

(143) ¡¢kfVVMcs€U ws†hbmlzb›dmlzhTŽ¯su¡*dfRTs†bmVsu¡*dfRTV P lzhpdmVgkm{Os€yo1dflœs†h5{Tyzib?dmRVBwVhpdmkfs€los€¡ dfRTV°dmkflz€hTŽ€yzV€ cbmVV =

(144) lœŽ†iTkmV I¨ IT¨rˆ\VhTs€dmlzhTŽWŠa`¯™€Vgw dmRVBbmVd+s€¡ ¡¢ihw;dflœs†hbZs€¡GdmRTVde`a{ŸV λb ¬+RTVkfV λ ∈ R  dfRTV'lzhpdmVgkm{Os€yo1dflœs†h±b›{†wVlob Pe (T ) = P (T(b)) L ™€Vgwd (b) ¨ Q(RV°ŠiTŠTŠTyzV!¡¢iThwdmlzs€hlob Tlœ¡ {Λ } cVhTs€dmVMb?dmRTV!Š€km`cwVhpdmkflzw°wsas†kfclzhudmVgb(lzh T   b = Λ Λ Λ ¨ Q(Rlzb!lzhpdmVgkm{Os€yo1dflœs†h˜bm{†wV¯lob!ibmVg˜lzh¤dfRTV¯de¬?s±clzU>Vghbmlœs†huyrV|TuUW{TyzVgbg¨ 8Ýd`alzVyoTbdfRTlœkvšs€kvcVk †wwiTkfudmV°lœhpdfVkf{Ÿs†yzudmlzs€h T€h5Vgh1tes1`cb?dmRTVB¡¢s†yœyzs1¬+lzhTŽ>npi†ckv1dmikmV°kmVgyzudmlzs€h Z X 3 I¨ I 6 ω f (x ) f (x)dx = |T | 2. 2.

(145). i i=1,··· ,nΣ. h. (r+1)(r+2) 2 i j r r. k. k r. 2. 2. j j=1,3. 1. j. T. 2. 2. 3. j. j. Ü< N ÜèÊ.

(146) 4. 

(147)     

(148)  "!$#%&$'". 1. 1. 6. 4. 2. 3. 2. ¬+lœdmR ω = ¡¢s€k j = 1, . . . , 3   ω €hsudmRVk+V|T€U>{yœVMb¨ 1 20. 3. 5. r=1. r=2.   . j. 9. . . j. =. .     . 

(149)  . 2 15.  . r = 1 r = 2 . ¡¢s†k j = 4, . . . , 6 uh. ω7 =. 9 20. ¨G_cVV ÆB ‹€‹ D ¡¢s†krUWs€kfV+cVdvulzyzb. 3. 6. 5 7.     . .          . 2. 4. 1. .         .  

(150).     .           .  . .  . .  .   . . — V\TVgbfwkflœŠOV.dfRTVZŠ†b›lobG¡¢ihw;dflœs†hb%¡¢s€k P (T )   P (T ) uhŸ Pe (T ) ¨ — V.¡¢s†yœyzs1¬§dmRTV°hTsudv1dflœs†hbrs€¡

(151) lzŽ€iTkfV I¨ Œ'€hCI¨ IT¨  ”T‘ µ P (T ) ¨ — V!R­™€V N = Λ ¨ • •†”T‘ µ (T ) ¨ — V+R­™†V N = Λ (2Λ −1) uhŸ'bmlœUWlzyz€k*¡¢s€kfUiTyoZ¡¢s€k i = 2, 3 N = 4Λ Λ • €hb›P lzUWlœyouk(¡¢s†kmU'iTyz¡¢s€k i = 5, 6 ¨ T ” ‘  µ ¹  Pe (T ) ¨GQ(RTV°Š€bmlobr¡¢iThŸw;dmlzs€hŸb%€kmV N = Λ (2Λ ) + 3b €hbmlœUWlzyz€k¡¢s†kmU'iTyz!¡¢s€k  • uhŸbmlœUWlzyz€k(¡¢s€kfUiTyo'¡¢s€k i = 5, 6 N = 27b ¨ i = 2, 3 N = 4Λ Λ − 12b 1. =. 1. i. 2. 1. 2. NON. Ú$P"Q;å;æ;æ. 4. 2. 2. i. 1. 1. 1. 1. 3. 1. 1. 7. 4. 1. 4.

(152) 4. ;. . H!$. Q(RVGUW€lœh!clœ²KVkfVhwVrŠŸVde¬%VgVh°dmRVrŠ€bmlobO¡¢iThw;dflœs†hbs€¡ P (T ) €h\dmRTspb›VGs€¡ Pe (T ) lzb3dmRud Z N dx = ¡¢s†k σ = 1, 2, 3 lœh P (T ) ¬+RTlzyzV Z N dx > 0 ¡¢s€k€hp` σ lzh Pe (T ) ¨Q(RTlobBŠŸVgR­™alœs†kB{Tyz­`cbBuh 0 lzUW{Ÿs†k›dvuhpd+kms†yœVBlzh5dfRTV!hTV|pd.{ŸukvuŽ€kvu{R¨ ZdfRTVk(de`a{OVgb(s€¡ uŽ€kvuhŽ€VZlzhpdmVgkm{Os€youhpdfb(ws€iTyoR­™€V°ŠŸVgVh®ws†hbmlzcVgkmVM3¨ O) )&()   &, µ ‘M •  µ  µ ‘ ) /%s€hŸb›locVk%uha`'cVgŽ€kfVV+s€¡O¡¢kfVVMcs€U ¨ 8Ýd%ŠOVyzs€hTŽpb*dms bmV™†VkvuyOdmkflouhTŽ†yœVMb T  c{ŸspbmbmlzŠTyœ`5s€hTyz`5s†hTVBl}¡ r ≥ 3 ¨%ˆZVghTsudfV!Šp` V dmRTV!yzlzb›d.su¡

(153) dmRVgbmσVBdmkflz€hTŽ€yzVgbg¨ — V TV£hTVBdfRTV!RTlzŽ€Rs€kvcVk+¥\uUWlœyœdms†hTlouh€b 3 I¨Æ‡ 6 H := H (Du , T ∈ V ) ¬+RVkfV H lzb¯€hp`©s€¡ZdfRTVyœs1¬-s€kvcVkW¥Z€U>lzyœdms€hlz€hb¯cV£ŸhTVg§uŠOs1™€VŠa` 3 IŸ¨ 4 6   3 I¨Æ‹ 6   3 I¨ Œ€ 6 s€k 3 I¨ ŒuŠ 6 ¨ ZdfRTVk.RlœŽ†R®s€kvcVk.¥\uUWlœyœdms†hTlouhbg bmiwvR®€b(dfRTVRTlzŽ€Rs€kvcVgkZwVgh†dfkf€y3s€hTV!s€¡ B ‹€Œc  4 „ D ws†iTyo RŸ­™€V°ŠŸVgVh®ws†hb›locVgkmVM3¨ 8Öh«dmRTV™€Vgkm`šVg€kmyz`šTkfu¡èd'su¡+dfRTlob'¬?s€kf³K  3 I¨Æ‡ 6 R€b'ŠŸVgVhªlœUW{TyzVUWVhpdfVg«€h©dfVgb›dmVg¨ — Vcs hsudB{TkmVMb›Vghpd\dfRTVWkmVMb›iTyœdfb°RTVgkmV† 3U¯ulzhTyœ`®ŠOVgwguibmV>¬%V>¬?€hpd\dfsb›dmkfVgbfb\s€h¤bmlzU>{yœlowlœde`E€bm{OVgw;dBsu¡?s€iTk TVkflœ™11dflœs†h¨ 8Öh!dfRTV%wg€bmVrsu¡  X 

(154) —  X @de`a{ŸV?bmwvRTVgUWV€ MdmRTV%kmVMws†hbedfkmiŸw;dmlzs€h!b›dmVg{lzb ™€Vgkm`°ws€UW{TyzV|3  VMb›{OVgwlz€yœyz`W¡¢s€k+ihbedfkmiŸw;dmikmVM5UWVgbmRTVMb¨ 8ÖhdmRTV!hV|ad.b›VMw;dmlzs€h  c¬%VB{TkfVgbmVhpd.>UiwvRb›lzUW{TyzVk(UWVdmRsa ¡¢s†k.ws†hbedfkmiŸw;dmlzhTŽ>RTlzŽ€Rs€kvcVk+bfwvRTVUWVB¬+RTlowvRR€b(yzVgib(dfsW€ŠuhŸcs€hdmRTV  X ‚s€hTV†¨ O) ) )  ¹   ”T•u’W‘g •  µ  µ ‘ +  µ “ ,ĕ€”  ”  , ¢’ ¹ + ,Ԕ + ‘ ) 8Öh5dfRTlzbZb›VMw;dmlzs€h  a¡¢s€k+uha`¯dfkmlouGh F Ž†yœV† admRTV!lzhpdmVgkm{Os€youhpd u ŠOVyzs€hŽ†b?dms P (T ) s€k P^ ¨  !# &'  — V¡¢s€yzyœs1¬ B 4 ‡ D 1?lœh®dfRTV'wg€bmVsu¡r(T€h±) RTs€UWs†Ž€VhVs€iŸb+¥ZuUWlzy}dfs€hTlouh®s€¡cVŽ†kmVgV k lœh  c¡¢s†k+V|TuUW{TyzV p 2. 2. σ. T. 2. 2. σ. T. σ. H σ. M. h Tk. k. σ. M. h. 1. 2. . ¬+lœdmR. H(x, u, p) ≡ H(p) − f (x) H(p) =. ¬?V!w€hyzsas€³5ud. 1 Dp H(p) · p, k. †b+Wws€ha™†Vgw;dflœs†h5{Tkfs€ŠyœVgU ¬+l}dfR®b›s†iTkfwVZdfVkfU . H(x, Du) = 0. ¨ „ 6 ¬+RVkfV ~λ = D H(Du) ¨ Q(RVh>¬%V+ws†hbmlzcVgk*dmRTV(iThŸbedfVg€T`{Tkfs€ŠTyzVU‚†bmbmscwlo1dfVg!dfsBdmRTlob*Vgnpiudmlzs€h 3 ¬+lœdmRTs†icdGdmRV+ŠŸs†iThJF €km`ws€hTl}dflœs†hb 6   ~λ · Du = f (x). 1 k. 3I. p. ∂u 1 + Hp (Du) · Du = f (x) ∂t p. Ü< N ÜèÊ.

(155) 4. 

(156)     

(157)  "!$#%&$'". . lP¨ V€¨rWws†hp™†Vgwdmlzs€hJ?ayœlz³€V\{Tkms†ŠTyzVU ¬+RTlowvRlzb.€{T{Tkfs­|clœU¯1dfVg3 a™alodfRTV_cYZq U>VdmRTsc ÆB ‹$I D  T€b . Z.  ∂u ω + H(x, Du) dx + ∂t Ω×[tn ,tn+1 ]. Z.   ∂ω ∂u + DH · Dω τ + H(x, Du) = 0. ∂t ∂t. ¬+RVkfV ω lobBuha`®yzlœhTVMukBws†UŠTlzh1dflœs†hEs€¡rdmRTVWŠ†b›lob\¡¢iThwdmlzs€hb Q(RV°{Os†bmlœdmlz™€VBkmVMuy3haiTU'ŠŸVgk τ lob?de`a{Tlowuyzyz`5wvRTs†bmVh€b τ=. XZsudflzwlœhTŽ>dfR1d. . Ω×[tn ,tn+1 ]. 2 ∆t. 2. +. . 2|Dp H| h. 3 I:¨ 9 6 + ¬ } l f d R z y z l T h g V €  ° k z l ± h f d lœUWV†¨ N (x)ϕ(t) ϕ σ. 2 −1/2. .. ω(x, tn+1 ) − ω(x, tn ) ∂ω = , ∂t ∆t. iŸb›lzhTŽ 3 IŸ¨ I 6 ¬%V€{T{Tyz`U¯€bfb(yœiTUW{TlzhTŽ¯uhŸŽ†Vd. un+1 − unσ σ + Hσ (σ, uσ , uξ ξ∈Vσ ) = 0 ∆t. ¬+lœdmR Hσ (σ, uσ , uξ ξ∈Vσ ) := Z. H(σ, Duh )Nσ dx Ω. +h. Z . !−1 ! Z  Dp H(σ, Duh ) h

(158)

(159)

(160)

(161) Nσ dx

(162)

(163) Dp H(σ, Duh )

(164)

(165) · DNσ H(σ, Du )dx Ω. ¨ ; 6 8Öh 3 IŸ¨ ; 6   lob

(166) dmRTV(U¯1|clzUiTU‚Tlz€U>VdmVgkGsu¡TdfRTV(dmkflz€hTŽ€yzVs€¡dfRTV(U>VMb›R ¨ Q(RTV+¥\uUWlœyœdms†hTlouh 3 I¨ ; 6 ¬+lzyœy ŠOV°ib›VM¯¡¢hs†k 3<4 ¨ 4-6  c¬+RVh H lzb?RTs†UWs€Ž€VghTVs†ibrlzh p = Du ¨G[®scclœ£Ÿwg1dmlzs€hŸb¡¢s†kdfRTVBlœhRTs€UWs€Ž†VhTVgs€ib wg€bmV\lob.ws€hbmlzTVkfVgyo1dfVkM¨ — VrR­™†V*dmRTV%b›lzUW{TyœV VUWU¯(¬+RTlowvRw€h°VM€bmlœyz`ZŠOVrŽ†VhTVgkf€yœlLKVMZdfs+sudfRTVk3de`a{OVgb su¡clœhpdfVkf{Ÿs†yz€h†dvb¨ Ω. 3I. . .O H. 

(167)  # !#   G  C 1 !$'2 $'" %2E  #" ' # % !$' #' P1(T ) $  P^ 2 A' !$ G' #%&$'" !$H      H 52   .!-,H$ #   $G'32E!$&  579H  !# &' 3 I ; 6 2  ' !M(T ')  # !'"#  !$M@# $'"&!' ' #"

(168)  !$'"'     '  , 2E '"#%&$'     ! H-< 8 = h. ¨ ¨ Ý¡ u lzb(yzlœhVgukM  u = u ¨ Ts€k.€ha`5cVŽ†kmVgV\s€¡¡¢kfVVMcs€U σ  T¬%VBR­™†V Z. NON. Ú$P"Q;å;æ;æ. H(σ, Duh )Nσ dx Ω. ! Z. Ω. Nσ dx. !−1. = H(σ, Du(σ)).. Ÿ¨ † 6. 3I. .

Références

Documents relatifs

La loi du 29 juillet 1998 relative à la lutte contre les exclu- sions comporte un chapitre concernant les « Mesures d’urgence contre le saturnisme infantile dans le code de

Finally, the proposed migration-cost aware ACO-based algorithm outperforms FFD and Sercon in the number of released PMs and requires less migrations than FFD and V-MAN when used in

L’objectif de cette étude visait (1) la reconstitution de l’alimentation de 33 sujets du site de la nécropole de l’Ilot de la Boucherie à Amiens (III-Vème siècles ap JC)

One of the main improvement that must be made is the ability to speak with the companions in natural language. The current system features a set of vocal commands, for

Developing an extremely high impe­ dance, the condenser mike needs amplification close to the mike , (studio versions f rom the early thirties on actually included

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The present study aimed to compare couples based on their dyadic AEE and examine whether they differ on the intensity of pain reported by the women, and

Les crustae sont taillées dans un calcaire marmoréen blanc, à gros grains, identique à celui des crustae du pourtour de la salle S; approximativement carrés ou