• Aucun résultat trouvé

Statistical inversion method for binary asteroids orbit determination

N/A
N/A
Protected

Academic year: 2021

Partager "Statistical inversion method for binary asteroids orbit determination"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01103904

https://hal.archives-ouvertes.fr/hal-01103904

Submitted on 15 Jan 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Statistical inversion method for binary asteroids orbit determination

Irina Kovalenko„ Daniel Hestroffer, A. Doressoundiram, Nicolai Emelyanov, Radu Stoica

To cite this version:

Irina Kovalenko„ Daniel Hestroffer, A. Doressoundiram, Nicolai Emelyanov, Radu Stoica. Statistical inversion method for binary asteroids orbit determination. Journées systèmes de référence spatio-temporels, Sep 2014, St Petersburg, Russia. �hal-01103904�

(2)

Introduction

We focus on the study of binary asteroids, which are common in the Solar system from its inner to its outer regions. These objects provide fundamental physical parameters such as mass and density, and hence clues on the early Solar System, or other processes that are affecting asteroid over time. The present method of orbit computation for resolved binaries is based on Markov Chain Monte-Carlo statistical inversion technique. Particularly, we use the Metropolis-Hasting algorithm with Thiele-Innes equation for sampling the orbital elements and system mass through the sampling of observations. The method requires a minimum of four observations, made at the same tangent plane; it is of particular interest for orbit determination over short arcs or with sparse data. The observations are sampled within their observational errors with an assumed distribution. The sampling yields the whole region of possible orbits, including the one that is most probable.

Statistical inversion method for binary

asteroids orbit determination

I.Kovalenko, D. Hestroffer, A. Doressoundiram, N. Emelyanov, R. Stoica ikovalenko@imcce.fr (IMCCE - LESIA, Paris Observatory)

Orbit determination

References

1) R. Palacios 1958 AJ 63, 395 2) D. Oszkiewicz et al. 2013 ,SF2A 237

The astrometric observations are related to

the theoretical positions through the

observational equation:

𝝋 = 𝜓 𝑿 + 𝜀

• Observations: 𝝋 = 𝜌1, 𝜃1; … ; 𝜌N, 𝜃N

• Sky-plane position: 𝜓 𝑿

• Orbital elements + system’s mass: 𝑿 = (𝑎, 𝑒, 𝑖 , Ω, 𝜔, 𝑀, 𝑚𝑠𝑦𝑠)

• Observational errors: 𝜀 = (𝜀 𝛼1, 𝜀𝛿1; … ; 𝜀 𝛼𝑁, 𝜀𝛿𝑁)

𝑝 𝑋 𝜑 =

𝑝 𝜑 𝑋 𝑝 𝑋

𝑝(𝜑)

Markov Chain Monte-Carlo method

𝑝 𝑋 𝜑 ∝ 𝑝 𝜑 𝑋 𝑝 𝑋

Where • 𝑝(𝑋) ∝ 𝑑𝑒𝑡Λ−1 • 𝑝 𝝋 𝑿 = 𝑝𝜀(observational error p. d. f. ) = exp[− 1 2 𝝋 − 𝜓 𝑿 𝑇 Λ−1 𝝋 − 𝜓 𝑿 ]

N observations

𝑺 = 𝜌1, 𝜃1; 𝜌2, 𝜃2; 𝜌3, 𝜃3; 𝜌4 Select a random set of 4

observations

The Metropolis–Hastings algorithm will be used for sampling the parameters 𝑿.

For each t iteration:

𝑺′- proposal set of observations

𝑺𝑡- last accepted set of observations

p𝑡(𝑺′; 𝑆𝑡)- proposal density

𝛼𝑖′ ∝ 𝐺 𝛼𝑖𝑡, 𝜎(𝛼𝑖) , 𝛿𝑖′ ∝ 𝐺 𝛿𝑖𝑡, 𝜎(𝛿𝑖)

Orbit 𝑿′+ monitor the fit to all observations

𝑎 = 𝑝 𝑋

|𝜑 |𝐽𝑡|

𝑝 𝑋t|𝜑 |𝐽′| 𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑛𝑐𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

[2] 𝐽′ and 𝐽𝑡 - the determinants of Jacobians from coordinates to

orbital parameters 𝐽 = det 𝜕𝑆 𝜕𝑋

𝑿𝑡+1 = 𝑿′ 𝑿𝒕+𝟏 = 𝑿′, with probability 𝑎

or 𝑿𝒕+𝟏 = 𝑿𝒕 ,with probability 1 − 𝑎

Thiele – Innes method [1]:

𝑡𝑖 − 𝑡𝑗 − Δ𝑖𝑗 𝑐 = 1 𝜇 [ 𝐸𝑖 − 𝐸𝑗 − sin (𝐸𝑖 − 𝐸𝑗)] 𝑖, 𝑗 = 1, 2, 3,4 Δ𝑖𝑗 = 𝜌𝑖𝜌𝑗sin (𝜃𝑗 − 𝜃𝑖) => 𝑿 = (𝑎, 𝑒 𝑖 , 𝜔, Ω, 𝑀, 𝑇) 𝐼𝑓 𝑎 ≥ 1 𝐼𝑓 𝑎 < 1

This process is repeated until the stationary a posteriori density is reached.

z, km

x, km y, km

Acknowledgements

This work is supported by the Labex ESEP (ANR N° 2011-LABX-030).

The algorithm is run for a large number of iterations until the entire possible orbital-element space is mapped

Références

Documents relatifs

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex Unité de recherche INRIA Rhône-Alpes, 655, avenue de l’Europe, 38330 MONTBONNOT ST

Figure 5: Convergence speed for near-surface application test case: steepest descent (red), l-BFGS (green), Gauss-Newton (blue), Newton (purple).. Figure 6: Near-surface test

Probabilities of errors for the single decoder: (solid) Probability of false negative, (dashed) Probability of false positive, [Down] Average number of caught colluders for the

Table 3 presents the results for these cases with an a priori spectral index equal to the real value α = 1.1 (case IIIa), and without any a priori value on any parameter (case IIIb)

Comparison between MLE (CATS) and a Bayesian Monte Carlo Markov Chain method, which estimates simultaneously all parameters and their uncertainties.. Noise in GPS Position Time

– MCMC yields Up component velocity uncertainties which are around [1.7,4.6] times larger than from CATS, and within the millimetre per year range

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des