• Aucun résultat trouvé

Band gap modulation of bilayer graphene by single and dual molecular doping: A van der Waals density-functional study

N/A
N/A
Protected

Academic year: 2021

Partager "Band gap modulation of bilayer graphene by single and dual molecular doping: A van der Waals density-functional study"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-01969523

https://hal.insa-toulouse.fr/hal-01969523

Submitted on 14 Jan 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Band gap modulation of bilayer graphene by single and

dual molecular doping: A van der Waals

density-functional study

Tao Hu, I.C. Gerber

To cite this version:

Tao Hu, I.C. Gerber. Band gap modulation of bilayer graphene by single and dual molecular doping:

A van der Waals density-functional study. Chemical Physics Letters, Elsevier, 2014, 616-617, pp.75-80.

�10.1016/j.cplett.2014.10.034�. �hal-01969523�

(2)

ContentslistsavailableatScienceDirect

Chemical

Physics

Letters

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / c p l e t t

Editor’s

choice

Band

gap

modulation

of

bilayer

graphene

by

single

and

dual

molecular

doping:

A

van

der

Waals

density-functional

study

Tao

Hu

a,b

,

Iann

C.

Gerber

a,∗

aUniversitédeToulouse;INSA,UPS,CNRS;LPCNO135avenuedeRangueil,F-31077Toulouse,France bDepartmentofPhysics,PukyongNationalUniversity,Busan608-737,SouthKorea

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received5August2014 Infinalform15October2014 Availableonline22October2014

a

b

s

t

r

a

c

t

Densityfunctionalcalculationsincludinglong-rangedispersioneffectsdemonstratethatnon-covalent dopingwithanelectrondonoracceptorcoupleofmoleculescanopenanenergygapinabilayergraphene. Thebandgapmodulationcanbecontrollednotonlybythechoiceofadsorbedmolecules(n-dopant versusp-dopant)butalsobytheirconcentration.Adeepanalysisofthechargetransferrevealsthat chargeredistributioninbilayergrapheneisthekeyissueforgapopening,duetotheinducedinversion symmetrybreaking.Thedualmolecularnon-covalentdopingmodecanachievetheopeningofagapup to138meV.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Graphenehasuniqueelectronictransport[1,2],mechanical[3],

andoptical[4]propertiesthatexhibitextraordinarypotentialfor

nanoelectronicapplications[5–8].However,pristinegraphene,in

themonolayer(MLG)orbilayer(BLG)states,isagaplesssemimetal,

thus limitingits applicationsin electronicnano-devices.

There-fore, considerable efforts have been made to open band gaps

inMLGor BLG.Boththeoreticaland experimentalstudieshave

demonstratedthatabandgapcanappearintheBernal-stacking

(AB-stacking) BLG, by breaking inversion symmetry [9–15], by

applyinganexternalelectricfieldforinstance[16–18],by

break-ingin-planesymmetry[19],byapplyingdifferenthomogeneous

strainstothetwolayers[20]orbyvaryingtheinterlayerspacing

[21].Moleculardopingisalsoanalternativebyprovoking

asym-metricchargedistributioningraphenelayers.Inanon-covalent

dopingprocessof graphene,thecarrierconcentration,which is

akeyfeatureforelectronics,canbecontrolledbythe

concentra-tionof theadsorbedmolecules, withoutintroducing significant

latticedeformation[22–25].Currently,graphenegrowthprocess

onlyallowsmoleculardopantstobeabsorbedonthetopsideof

thegraphenelayers,althoughintercalationcannotbecompletely

excluded.Thebottomlayeris usuallydopedbytraditional

sub-strates[26]orbyspecificallymodifiedones[27],seeRefs.[28–30]

forBLGcases.

∗ Correspondingauthor.

E-mailaddress:igerber@insa-toulouse.fr(I.C.Gerber).

Theoreticallyspeaking,toyieldaccuratedescriptionof

inter-layerdistances,tocorrectlydescribethenon-covalentinteraction

betweengraphenelayersandchargetransfercomplexesinthe

den-sityfunctionaltheory(DFT)frameworkitismandatorytoinclude

nonlocaleffects[31].InprevioustheoreticalreportsonBLGdoping,

vanderWaalsforcesarenotexplicitlytakenintoaccount[12,32],

sincetraditionalexchange-correlationfunctionalsmissedthem.In

thisworkwehaveusedthesocalledvanderWaalsdensity

func-tional(vdW-DF)[33–35],whichhasbeensuccessfullyappliedon

layered[36,37]aswellasonsomemolecularsystems[38].

Inthisstudy,wereportthedopingofaBernal-stackingBLGby

severalorganicelectrondonoracceptormoleculesasfunctionof

theiradsorptionmodes.Ifonetypeofmolecule(acceptorordonor)

isadsorbedonasinglesideoftheBLG,itcorrespondstoasingle

moleculedopingmode.Whenatthesametime,topandbottom

layersarein interactionwitha n-dopantandp-dopant,

respec-tively,thishypotheticalsituationiscalleddualmoleculesdoping

modethroughoutthearticle.Despiteanyexperimentalresultson

thisspecificsettinghavenotbeenyetreportedintheliterature,

onecouldimagineathree-stepsproceduretorealizeit.By

choos-ing firstan appropriate moleculeor atoms (donoror acceptor)

thatcaneasilyintercalatebetweengraphenelayersorbetweena

graphenelayerandthesubstrate[39],andthenbysoftwashing,

somedopantsshouldstillremainboundonthedownsideofthe

BLG,duetolargerbindingenergies.Finally,adopant’ssolutionwith

oppositecharactershouldbedeposited,totransferchargefrom/to

theuppergraphenelayer.Thissettingalsomimicsinasensethe

effectofanappliedperpendicularelectricfieldontheBLGby

creat-ingadipolemomentonanatomiclength-scale.Thisdirectlyrelates

toexperimentalworksofRefs.[26,27].

http://dx.doi.org/10.1016/j.cplett.2014.10.034 0009-2614/©2014ElsevierB.V.Allrightsreserved.

(3)

76 T.Hu,I.C.Gerber/ChemicalPhysicsLetters616–617(2014)75–80

ByusingDFTcalculations,wereportthatdualmoleculardoping

caninducetheopeningofasignificantbandgap.Itcanbecontrolled

aswellasthecarrierconcentration,inawiderrangebydualmode

doping.Asaconsequence,afine-tuningthroughthethreshold

volt-ageoftheelectronicconductionproperties,thatisacrucialissue

forelectronicsapplication,ispotentiallyachieved.

2. Method

WehavestudiedadopedBLGsystem,inAB-stackingonly,using

periodicboundaryconditionwithinthesupercellapproach,witha

vacuumregionlargerthan1.5nmtoavoidinteractionbetweenthe

periodicimages.Thecalculationshavebeenperformedusingthe

VASPcode[40]withtheProjectedAugmentedWave(PAW)[41]

pseudopotentials.ThevdW-DF[42]functionalisusedfor

corre-lationandPBEforexchange[43].Anenergycutoffof400eVand

careaboutk-point samplinghave beentakento ensureenergy

convergencebelowfewmeV. Thek-pointgridsare3×3×1 for

largecellsand7×7×1forthesmallercells.Theconvergence

cri-terionfor calculationsisthat theforceoneachatomissmaller

than0.02eV ˚A−1.TheBaderChargeAnalysismethodisusedto

esti-matethechargetransfer, usingtheprogramof G.Henkelman’s

group[44].BLGismodeledeitherbyacellcontainingtwo(7×7)

monolayers(98carbonatomseachlayer)ortwo(4×4)monolayers

(32carbonatomseachlayer).Itallowstodiscussconcentration’s

effects,withthreepossibleconcentrations:onemoleculeper196

carbonatoms(0.51%)seeFig.1,onemoleculeper64carbonatoms

(1.56%)andonedonorandoneacceptormoleculeper196carbon

atoms(1%).Theseconcentrationscorrespondtostandard

experi-mentalsettingsofgraphenemoleculardoping[45],andallowto

avoidinteractionbetweenadsorbates withinperiodicboundary

conditions.Threeorganicmolecules,tetracyanoethylene(TCNE),

tetrathiafulvalene(TTF),tetrakis(dimethylamino)ethylene(TDAE),

areemployedasdopant.AsinRef.[24],wehaveinvestigatedall

thepossibleadsorptionsitesontheBLGmodels,intermsof

ener-geticandgeometricaspects.Theyareverysimilartothemonolayer

case,withverysmallenergydifferencesbetweenadsorptionsites.

Moreoverthechargetransfersfromthedifferentconfigurationsare

almostequal,asreportedinapreviousstudy[15].Thusonly

struc-tures,whichminimizethetotalenergy,aretakenintoconsideration

inthefollowing.

Fig.1. SchematicviewofthreemoleculesadsorbedonaBernalBLG.Foraneasier visualization,thecarbonatomsofthetwolayersofBLGareinbrown(upperlayer) andcyan(bottomlayer)respectively,whilemolecularcarbonatomsareinblack. Hydrogenatomsareingreen,nitrogeninblue.(Forinterpretationofthereferences tocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Fig.2. SchematicbandstructuremodelofdopedBLGclosetotheKpointshowing the“Mexicanhat”dispersion(redlines).Thedashedcurvesrepresentthequadratic dispersionofpristineBLG.TheblackdashedlinecorrespondstotheFermilevel.(For interpretationofthereferencestocolorinthisfigurelegend,thereaderisreferred tothewebversionofthisarticle.)

3. Resultsanddiscussion

3.1. ElectronicbandstructureofBLG

AccuratedescriptionofthebandstructureofpristineBLGisa

prerequisiteforadiscussionofdopedBLGelectronicstructures.In

theBernalstacking,pristineBLGbandstructurenearthespecial

KpointofthereducedBrillouinzone,showsaquadratic

disper-sion,seeFig.2.The␲,␲*statesandtwolowerenergybandsare

splitineachvalleybyinterlayercoupling[9,13],asinFig.3awhich

showstheDFTresults.Twobandsstandforthehighestoccupied

␲orbitalsandthelowestunoccupied␲orbitals(dashedblue).The

correspondingelectronandholeeffectivemassesarecalculatedto

be0.045m0and0.056m0.Thesevaluesagreeverywellwith

pre-viousDFTestimates[15],butoverestimateslightlyexperimental

ones[46]:0.041and0.036m0,respectively.Thebandsingreen

cor-respondtothetwonextlevels.WhentheBLGisdoped,agapatthe

DiracpointKcanappear(definedasEK)whereastheminimum

separationbetweenthebandsisEg.EDcanbedefinedastheenergy

differencebetweenthemiddleofthebandgapatKpointandthe

Fermilevelofthesystem.Thus,ED,EgandEKareequalto0for

pristineBLG.Meanwhile,adopedBLGwillpossessthe“Mexican

hat”dispersion,thebandgap(Eg)isnolongernull.Moreoverthe

energyleveloftheDiracpointcanbeshiftedduetochargetransfer.

3.2. Singlemoleculardoping

3.2.1. Electrondonormoleculedoping

BandstructuresinFig.3cindicatethatTTF’sadsorptiondoesn’t

affectelectronicstructureofBLGexceptanupshiftofFermilevel

withan ED value of251meV. Thisis in contradictionwiththe

reportedbandgapof80meV[15].Onecouldfirstattributethis

dis-crepancytoaconcentrationeffect,sincewehave1TTFmolecule

per98C atoms,when 72C atoms wereused inSamuels’ work.

Howeverwhentheconcentrationisincreased,weonlyobservea

largershiftoftheFermilevel,withoutgapopening.Sowemay

attributethis difference,tothedifferentcomputationalsettings

usedandpossiblytotheexchange-correlationfunctionalchoice.

TheHOMO-derivedstateoftheTTFmoleculehybridizeswithone

oflow-energybandsoftheformerDiraccrossingpoint.Thecharge

transferbetweentheTTFmoleculeandtheBLGissmall0.1and

0.02edependingontheconcentration,asshowninTable1.

Onecouldexpectthatastrongerelectrondonorshouldbeable

toopena gapin aBLG. SinceTDAEmoleculehasa low

ioniza-tionenergythatapproachesthoseofalkaliatoms[47,48]itshould

(4)

2 1 0 -1 -2 2 1 0 -1 -2 L L L L L L L L 2 1 0 -1 -2 2 1 0 -1 M K M K M K M K -2 Ε [ eV ] Ε [ eV ] Ε [ eV ] Ε [ eV ]

Fig.3. BandstructuresofapristineBLGandofdopedBLGswithmoleculesadsorbedononesideonly,calculatedusingvdW-DFfunctional,(a)PristineBLG(7×7),(b)TCNE dopedBLG(7×7),(c)TTFdopedBLG(7×7),(d)TDAEdopedBLG(7×7).(e)Fourzoom-infigures(AroundKpoint)correspondingto(a)–(d).Thedashedlinecorrespondto theFermilevel.

(5)

78 T.Hu,I.C.Gerber/ChemicalPhysicsLetters616–617(2014)75–80

Table1

Chargetransfer(e)ofmoleculesandeachlayerofBLG:apositivevaluemeansanincreaseoftheelectronicdensitywhenanegativeonecorrespondstoalossoftheconsidered subsystem.Bandgapsvalues(meV)andtheDiracpointenergylevelshifts(meV)foreachdopedBLGsystemsarealsoincluded.

0.51% 1.56%

TCNE TTF TDAE TCNE TTF TDAE

CTBottomlayer −0.18 0.03 0.13 −0.05 0.006 0.05

CTToplayer −0.28 0.07 0.24 −0.23 0.011 0.12

CTMolecule 0.46 −0.1 −0.37 0.28 −0.017 −0.17

Bandgap(Eg) 103 0 85 113 0 110

Diracpointenergylevel(ED) 151 −251 −315 284 −413 −592

Table2

Interlayerspacing(Å)ofdopedBLGandpristineBLG.

TTF/BLG TDAE/BLG TCNE/BLG BLG Exp.[50]

PBE vdW PBE vdW PBE vdW PBE vdW

Distance 4.16 3.43 4.15 3.43 4.11 3.60 3.98 3.41 3.35

does.Indeed,theTDAEmoleculedonates0.37etotheBLG.Clearly,

theaccumulationsofchargesineachlayerarenotidentical(see

Table1).TDAEtransfers0.24etothetoplayer,and0.13etothe

bot-tomlayer,thusinducingcarrierconcentrationof9.3×1012cm−2

and5.1×1012cm−2ontopandbottomlayerrespectively.These

resultsshowthatthen-typedopingbyTDAEmoleculesismore

effi-cientthanbyTTFones.Theelectronicbandstructuresarepresented

inFig.3d.Agap(85meV)isopenedinBLGwhenTDAEmolecules

areinvolved.ThegapattheDiracpointK(EK)is92meVandthe

Diracpointenergylevel(ED)isaround315meVbelowtheFermi

level.AdsorptionofTDAEmoleculeprovokeschargeredistribution

ingraphenelayer,whichproducesanelectrostaticfield

perpen-diculartographenesurfacethatbreaksthesymmetryofBernal

BLG.Thisleadstoformationofagapbetween␲and␲*states.By

increasingTDAE’sconcentration,chargetransferpercarbonatom,

definedasthetotalchargeobtainedbyBLGdividedbythetotal

numberofCatoms)isincreasedfrom0.0019to0.0027e.

Conse-quently,thebandgapisenlargedby25meV,EDbecomes−592meV

andEKisaround124meV.Thedopingeffectisenhancedbya

highercoverageofmolecules.

3.2.2. Electronacceptormoleculedoping

Theadsorptionofa TCNEmoleculedoesn’taffecttheatomic

structure of the BLG. Moreover the total charge of the TCNE

moleculeisalmostidenticalaswithonemoleculeadsorbedona

MLG[24].Asforthedonormoleculecase,chargecontributionsof

thetwolayersareasymmetric;theupperlayeralittlemorecharge

(0.28e)than thesecondone(0.18e).Thischarge redistribution

inducedbyTCNE’sadsorptionalsocausesabandgapopeningas

showninFig.3b.TheDiracpointenergylevel(ED)lies151meV

abovetheFermilevel,whichsuggeststhatthemolecularhas

effi-cientlyp-typedopedtheBLG.Abandgapopening(Eg)of103meVis

alsofound,whenEKis117meV.Ourresultsarecomparablewith

previouswork[15],inwhichitisreportedthatF2-HCNQobtains

0.51efromBLGandopensabandgapof118meV.Inthehigher

con-centrationcase,TCNEreceiveslesscharges,whileaveragecharge

contributionfromBLGincreases.ThelargervaluesofEg,ED,and

EK,113, 284and130meVrespectively, areaclear

manifesta-tionofastrongdopingeffect.Theworkfunctionincreasesfrom

4.9eV(lowconcentration)to5.1eV(highconcentration),whenthe

pristinevalueis4.25eV.

3.2.3. EffectsofvdWdispersioncorrections

GloballythechargetransferestimateswhenusingstandardPBE

asexchange-correlationfunctionalareveryclosetovdW-DFvalues

buttheBLG’selectronicstructureisverysensitivetotheinterlayer

spacing[49].SincePBEandvdW-DFprovidedifferentequilibrium

distancesbetweenthetwolayers,seeTable2,thebandstructures

ofBLGcalculatedwithPBEandvdW-DFfunctionalaredifferent.As

expectedtheinterlayerdistanceisoverestimatedwithPBE

func-tional,incomparisonwithexperimentalresults,whiletheinclusion

ofnonlocaleffectsinthefunctionalprovidesanacceptable

sepa-rationdespiteofalittleoverestimation.FortheTTF/BLGsystem,

noneofthetwobandstructurecalculationshaveagapopening.

ButtheFermilevelismoredownshifted(by50meV)inPBE.When

theTCNE moleculedopesthe BLG, The dopingis more

signifi-cantforvdW-DFthanforpurePBEcalculations.TheDiracenergy

level(ED)isaround151meVabovetheFermilevelinboth

func-tionals.ThecorrespondingEgis59meVforPBEcalculation,while

thegapislargerwhendispersioneffectsaretakenintoaccount.

EKare87and117meV,forPBEandvdW-DFestimates

respec-tively.Asalreadymentioned,differenttypeoffunctionalsprovide

Fig.4. (a)SideviewofTTF/BLG/TCNEsystemandthecorrespondingcharge trans-fers,(b)SideviewofTDAE/BLG/TCNEsystemandthecorrespondingchargetransfers. Thevaluesontheleftarechargetransferfromonesubsystemtoanother,andvalues ontherightarethechargepossessedbycorrespondinglayer.

(6)

L L M K L M K L Ε [ eV ] Ε [ eV ]

Fig.5.BandstructuresforTTF/BLG/TCNEsystem(a)andTDAE/BLG/TCNEsystem(b).(c)and(d)arezoom-infiguresaroundKpointneartheFermilevelfor(a)and(b), respectively.

distinctequilibriumgeometrieswhichdirectlyinfluencethe

elec-tronicstructureofthedopedBLG.

3.3. Dualmoleculardoping

If one side molecular doping succeeds to open a band gap

ina BLGit alsoshifts theFermi levelbeloworabovetheDirac

point depending onthe type of molecules absorbed. Moreover

theincreaseoftheadsorbate’sconcentrationenhancesthedoping,

withlargershiftsoftheFermilevel,andlargerbandgapsvalues.

Thusonecouldimaginetoadjustbandgapvalueswithmolecule’s

concentration.However,theincreaseofthebandgapislimiteddue

toachargetransfersaturationphenomenonalreadypresentatlow

concentration.Thesecondmajorproblemforpotentialapplications

isthattheFermilevelisnotlyinginthebandgap.Inthisrespect,

thedualmoleculesdopingshouldhelptocounterbalancetheFermi

levelshift.

Twotypesofconfigurationshavebeenaddressed:oneiswitha

TTFandaTCNEmoleculeadsorbedonthetopandthebottomof

theBLG.ThesecondoneusesTDAEandTCNEmoleculesasdopant.

Thecorrespondingsideviewsoftheoptimizedstructuresaswell

astheyieldedchargetransfersarepresentedinFig.4.Inthisdual

dopingmode,theTTFmoleculeprovidesasmallamountofcharge,

whiletheTCNEmoleculegets0.47efromtheBLG,Thiselectronic

densitymainlycomesfromtheclosestgraphenelayerbutalsofrom

theTTFmolecule.Indeedtheupperlayerisalmostneutral,when

theotheroneispositivelycharged.SincetheTDAEmoleculeisa

betterdonorthantheTTFspecies,0.43eisthustransferredtoBLG

isthesecondcase.AtthesametimetheTCNEmoleculereceives

0.51e. Theupperlayer,theoneclosertotheTDAEmolecule, is

nowpositivelycharged,whereasthesecondlayerisnownegatively

charged.Attheend,theBLGremainsalmostneutral,asofthecharge

hasbeenentirelytransferredfromtheTDAEtoTCNEmolecule,but

polarizingtheBLG.

Fig.5 presentshowdual dopingmodeaffects theelectronic

bandstructuresoftheBLG.IntheTTF/BLG/TCNEsystem,BLGis

p-typedoped(ED=72meV)duetoTCNE’sstrongerdopingability,

withabandgapof138meV.Thisvalueisalreadylargerthanthe

oneobtainedinthesingledopingmodeatthelargest

concentra-tion.Moreimportantly,theenergyleveloftheDiracpointisnow

shiftedbackinthevicinityoftheFermilevel.Ifastrongdonorlike

TDAEisusedthentheFermilevelisnowlocatedatthemaximum

ofthehighestvalenceband,theBLGbecomesasemi-conductor

withabandgapof100meV.Theelectronandholeeffectivemasses

aredrasticallychangedduetothegapopening,withvaluesbeing

0.22m0fortheelectronand1.23m0forthehole.Thisresultproves

thatideallyonecouldimagethataflexiblebandgaptuningcanbe

realizedbyadjustingtopandbottommolecule’sconcentration.

4. Conclusion

Insummary,moleculardopingprovokesanasymmetrycharge

distribution in graphene layers, which in turn, causes a band

gapopeninginAB-stackingBLG.Byincreasingtheconcentration,

dopingismoreefficient:largershiftsoftheFermilevelandlarger

bandgapvaluesareobtained.Controllingmolecule’s

concentra-tionaswellastheadsorptionmodescanmodulatetheBLGband

gaps.Wehaveshownthatdualdopingmodemodulatetheband

gapvalueinaflexiblewayandtunetheDiracpointenergy

(7)

80 T.Hu,I.C.Gerber/ChemicalPhysicsLetters616–617(2014)75–80

usingstandard xc-functionalsare certainly underestimated and

moreaccuratevaluesshouldbeobtainedeitherbyusinghybrid

functionalsorGW calculations,butthisstudyliketheone

pub-lishedinRef.[15]providefirstproofsoftheconceptofdualdoping

mode.

Acknowledgements

ThisworkwassupportedbyGENCI-CINES,GENCI-IDRISthrough

theprojectx2012096357andprojectx2013096649.Theauthors

wouldliketothanktheCALculenMIdi-Pyrénées(CALMIP,grant

2012/2013-P0812) for generous allocations of computer time.

Finally,T.HuwouldliketothankCSC-INSAprogramforfinancial

supportofhisPh.D.study

References

[1]K.S.Novoselov,Science306(2004)666.

[2]A.H.CastroNeto,F.Guinea,N.M.R.Peres,K.S.Novoselov,A.K.Geim,Rev.Mod. Phys.81(2009)109.

[3]C.Lee,X.Wei,J.W.Kysar,J.Hone,Science321(2008)385.

[4]F.Wang,Y.Zhang,C.Tian,C.Girit,A.Zettl,M.Crommie,Y.R.Shen,Science320 (2008)206.

[5]Y.-M.Lin,A.Valdes-Garcia,etal.,Science332(2011)1294. [6]M.Liu,etal.,Nature474(2011)64.

[7]Y.Zhang,etal.,Nature459(2009)820.

[8]F.Xia,T.Mueller,Y.Lin,A.Valdes-Garcia,P.Avouris,Nat.Nanotechnol.4(2009) 839.

[9]E.McCann,Phys.Rev.B:Condens.Matter74(2006)161403. [10]E.McCann,V.I.Fal’ko,Phys.Rev.Lett.96(2006)086805. [11]W.Zhang,etal.,ACSNano5(2011)7517.

[12]X.Tian,J.Xu,X.Wang,J.Phys.Chem.B114(2010)11377.

[13]T.Ohta,A.Bostwick,T.Seyller,K.Horn,E.Rotenberg,Science313(2006)951. [14]W.J.Yu,L.Liao,S.H.Chae,Y.H.Lee,X.Duan,NanoLett.11(2011)4759. [15]A.J.Samuels,J.D.Carey,ACSNano7(2013)2790,130227104203005. [16]E.V.Castro,etal.,Phys.Rev.Lett.99(2007)216802.

[17]Z.Q.Li,etal.,Phys.Rev.Lett.102(2009)037403.

[18]S.B.Kumar,J.Guo,Appl.Phys.Lett.98(2011)222101.

[19]X.Blase,A.Rubio,S.G.Louie,M.L.Cohen,Phys.Rev.B:Condens.Matter51 (1995)6868.

[20]S.-M.Choi,S.-H.Jhi,Y.-W.Son,NanoLett.10(2010)3486. [21]Y.Guo,W.Guo,C.Chen,Appl.Phys.Lett.92(2008)243101.

[22]Y.-H.Zhang,K.-G.Zhou,K.-F.Xie,J.Zeng,H.-L.Zhang,Y.Peng,Nanotechnology 21(2010)065201.

[23]Y.H.Lu,W.Chen,Y.P.Feng,P.M.He,J.Phys.Chem.B113(2009)2. [24]T.Hu,I.C.Gerber,J.Phys.Chem.C117(2013)2411.

[25]L.Chen,L.Wang,Z.Shuai,D.Beljonne,J.Phys.Chem.Lett.4(2013)2158. [26]C.Coletti,etal.,Phys.Rev.B:Condens.Matter81(2010)235401. [27]J.Park,etal.,Adv.Mater.24(2012)407.

[28]J.W.Yang,G.Lee,J.S.Kim,K.S.Kim,J.Phys.Chem.Lett.2(2011)2577. [29]T.H.Wang,Y.F.Zhu,Q.Jiang,J.Phys.Chem.C117(2013)12873. [30]T.H.Wang,Y.F.Zhu,Q.Jiang,Carbon77(2014)431.

[31]J.Klimeˇs,D.R.Bowler,A.Michaelides,Phys.Rev.B:Condens.Matter83(2011) 195131.

[32]L.Liu,Z.Shen,Appl.Phys.Lett.95(2009)252104.

[33]M.Dion,H.Rydberg,E.Schröder,D.C.Langreth,B.I.Lundqvist,Phys.Rev.Lett. 92(2004)246401.

[34]K.Berland,etal.,J.Chem.Phys.140(2014)18A539.

[35]P.Hyldgaard,K.Berland,E.Schröder,Phys.Rev.B:Condens.Matter90(2014) 075148.

[36]T.Björkman,A.Gulans,A.V.Krasheninnikov,R.M.Nieminen,J.Phys.Condens. Matter24(2012)424218.

[37]T.Björkman,J.Chem.Phys.141(2014)074708.

[38]A.Puzder,M.Dion,D.C.Langreth,J.Chem.Phys.124(2006)164105. [39]U.Starke,S.Forti,K.v.Emtsev,C.Coletti,MRSBull.37(2012)1177. [40]G.Kresse,J.Hafner,Phys.Rev.B:Condens.Matter47(1993)558. [41]G.Kresse,D.Joubert,Phys.Rev.B:Condens.Matter59(1999)1758. [42]A.Gulans,M.J.Puska,R.M.Nieminen,Phys.Rev.B:Condens.Matter79(2009)

201105.

[43]J.P.Perdew,K.Burke,M.Ernzerhof,Phys.Rev.Lett.77(1996)3865. [44]W.Tang,E.Sanville,G.Henkelman,J.Phys.Condens.Matter21(2009)084204. [45]H.Kim,etal.,Appl.Phys.Lett.105(2014)011605.

[46]K.Zou,X.Hong,J.Zhu,Phys.Rev.B:Condens.Matter84(2011)085408. [47]M.R.Pederson,N.Laouini,J.Clust.Sci.10(1999)557.

[48]H.Bock,H.Borrmann,Z.Havlas,H.Oberhammer,K.Ruppert,A.Simon,Angew. Chem.Int.Ed.Engl.30(1991)1678.

[49]T.Ohta,A.Bostwick,J.L.McChesney,T.Seyller,K.Horn,E.Rotenberg,Phys.Rev. Lett.98(2007)206802.

Figure

Fig. 2. Schematic band structure model of doped BLG close to the K point showing the “Mexican hat” dispersion (red lines)
Fig. 3. Band structures of a pristine BLG and of doped BLGs with molecules adsorbed on one side only, calculated using vdW-DF functional, (a) Pristine BLG (7 × 7), (b) TCNE doped BLG (7 × 7), (c) TTF doped BLG (7 × 7), (d) TDAE doped BLG (7 × 7)
Fig. 4. (a) Side view of TTF/BLG/TCNE system and the corresponding charge trans- trans-fers, (b) Side view of TDAE/BLG/TCNE system and the corresponding charge transfers.
Fig. 5. Band structures for TTF/BLG/TCNE system (a) and TDAE/BLG/TCNE system (b). (c) and (d) are zoom-in figures around K point near the Fermi level for (a) and (b), respectively.

Références

Documents relatifs

In this regard, the inherent delocalization char- acteristic of low-dimensional metallic systems leads to a remarkably slow decay in the interac- tion energies between metallic

4.3 Collective van der Waals effects in molecular solids Molecular solids represent a diverse and challenging class of systems for applying different descriptions of vdW interactions

Our method relies on the summation of interatomic C 6 coefficients, derived from the electron density of a molecule or solid and accurate reference data for the free atoms.. The

Adsorption energy E ads as a function of vertical distance d for PTCDA on Cu(111), Ag(111) and Au(111) employing the DFT þ vdW surf method.. The distance d is evaluated with respect

Those students, both boys and girls, at all three grade levels who reported good school attachment reported having sexual intercourse fewer times than did those who had poor

In conclusion, we have introduced the vdW-MB model, which accurately captures the long-range many-body vdW energy in large molecular systems, to illustrate both the limitations of

ت ــــــــــــــــــــ ش ـــــــــــــــــــ ك ــــــــــــــــــــــــــــــــــــــ تار تو هقيفوت ىلع ةياهنو ةيادب هدحو لله ركشلاو دمحلا نإ هريسي هعبتن ملعلا

To do this, we program the col- lector and the mutators in RtIR, and prove that their parallel composition preserves an invariant on global execution states, using the soundness