• Aucun résultat trouvé

Measure concentration, functional inequalities, and curvature of metric measure spaces

N/A
N/A
Protected

Academic year: 2022

Partager "Measure concentration, functional inequalities, and curvature of metric measure spaces"

Copied!
169
0
0

Texte intégral

(1)

Measure concentration, functional inequalities, and curvature of metric measure spaces

M. Ledoux, Institut de Math´ematiques de Toulouse, France

Luminy, March 2008

(2)

circleof ideas

between analysis, geometry and probability theory

concentration of measure phenomenon

geometric, measure/information theoretic, functional inequalities

curvature of metric measure spaces

theory of optimal transportation

(3)

circleof ideas

between analysis, geometry and probability theory

concentration of measure phenomenon

geometric, measure/information theoretic, functional inequalities

curvature of metric measure spaces

theory of optimal transportation

(4)

circleof ideas

between analysis, geometry and probability theory

concentration of measure phenomenon

geometric, measure/information theoretic, functional inequalities

curvature of metric measure spaces

theory of optimal transportation

(5)

circleof ideas

between analysis, geometry and probability theory

concentration of measure phenomenon

geometric, measure/information theoretic, functional inequalities

curvature of metric measure spaces

theory of optimal transportation

(6)

circleof ideas

between analysis, geometry and probability theory

concentration of measure phenomenon

geometric, measure/information theoretic, functional inequalities

curvature of metric measure spaces

theory of optimal transportation

(7)

concentration of measure phenomenon

V. Milman 1970

Dvoretzky’s theorem onspherical sections of convex bodies inhigh dimension

for allε >0, there exists δ(ε)>0such that for every convex body K in Rn, there is a subspace F of Rnwith dim(F)≥δ(ε) logn and anellipsoidE in F such that

Milman’s idea : find F random using aconcentration property ofspherical measures in high dimension

(8)

concentration of measure phenomenon

V. Milman 1970

Dvoretzky’s theorem onspherical sections of convex bodies inhigh dimension

for allε >0, there exists δ(ε)>0such that for every convex body K in Rn, there is a subspace F of Rnwith dim(F)≥δ(ε) logn and anellipsoidE in F such that

Milman’s idea : find F random using aconcentration property ofspherical measures in high dimension

(9)

concentration of measure phenomenon

V. Milman 1970

Dvoretzky’s theorem onspherical sections of convex bodies inhigh dimension

for allε >0, there exists δ(ε)>0such that for every convex body K in Rn, there is a subspace F of Rnwith dim(F)≥δ(ε) logn and anellipsoidE in F such that

Milman’s idea : find F random using aconcentration property ofspherical measures in high dimension

(10)

concentration of measure phenomenon

V. Milman 1970

Dvoretzky’s theorem onspherical sections of convex bodies inhigh dimension

for allε >0, there exists δ(ε)>0such that for every convex body K in Rn,

there is a subspace F of Rnwith dim(F)≥δ(ε) logn and anellipsoidE in F such that

Milman’s idea : find F random using aconcentration property ofspherical measures in high dimension

(11)

concentration of measure phenomenon

V. Milman 1970

Dvoretzky’s theorem onspherical sections of convex bodies inhigh dimension

for allε >0, there exists δ(ε)>0such that for every convex body K in Rn, there is a subspace F of Rnwith dim(F)≥δ(ε) logn and anellipsoidE in F

such that

Milman’s idea : find F random using aconcentration property ofspherical measures in high dimension

(12)

concentration of measure phenomenon

V. Milman 1970

Dvoretzky’s theorem onspherical sections of convex bodies inhigh dimension

for allε >0, there exists δ(ε)>0such that for every convex body K in Rn, there is a subspace F of Rnwith dim(F)≥δ(ε) logn and anellipsoidE in F such that

K ∩F

Milman’s idea : find F random using aconcentration property ofspherical measures in high dimension

(13)

concentration of measure phenomenon

V. Milman 1970

Dvoretzky’s theorem onspherical sections of convex bodies inhigh dimension

for allε >0, there exists δ(ε)>0such that for every convex body K in Rn, there is a subspace F of Rnwith dim(F)≥δ(ε) logn and anellipsoidE in F such that

(1−ε)E ⊂K ∩F ⊂(1 +ε)E

Milman’s idea : find F random using aconcentration property ofspherical measures in high dimension

(14)

concentration of measure phenomenon

V. Milman 1970

Dvoretzky’s theorem onspherical sections of convex bodies inhigh dimension

for allε >0, there exists δ(ε)>0such that for every convex body K in Rn, there is a subspace F of Rnwith dim(F)≥δ(ε) logn and anellipsoidE in F such that

(1−ε)E ⊂K ∩F ⊂(1 +ε)E

Milman’s idea : find F random

using aconcentration property ofspherical measures in high dimension

(15)

concentration of measure phenomenon

V. Milman 1970

Dvoretzky’s theorem onspherical sections of convex bodies inhigh dimension

for allε >0, there exists δ(ε)>0such that for every convex body K in Rn, there is a subspace F of Rnwith dim(F)≥δ(ε) logn and anellipsoidE in F such that

(1−ε)E ⊂K ∩F ⊂(1 +ε)E

Milman’s idea : find F random using aconcentration property ofspherical measures in high dimension

(16)

spherical concentration

isoperimetric inequalityon Sn⊂Rn+1

geodesic ballsare the extremal sets

if vol(A) ≥ vol(B), B geodesic ball

then vol(Ar) ≥ vol(Br), r >0

normalized volume µ(·) = vol(·) vol(Sn)

(17)

spherical concentration

isoperimetric inequalityon Sn⊂Rn+1

geodesic ballsare the extremal sets

if vol(A) ≥ vol(B), B geodesic ball

then vol(Ar) ≥ vol(Br), r >0

normalized volume µ(·) = vol(·) vol(Sn)

(18)

spherical concentration

isoperimetric inequalityon Sn⊂Rn+1

geodesic ballsare the extremal sets

if vol(A) ≥ vol(B), B geodesic ball

then vol(Ar) ≥ vol(Br), r >0

normalized volume µ(·) = vol(·) vol(Sn)

(19)

spherical concentration

isoperimetric inequalityon Sn⊂Rn+1

geodesic ballsare the extremal sets

if vol(A) ≥ vol(B), B geodesic ball

then vol(Ar) ≥ vol(Br), r >0

normalized volume µ(·) = vol(·) vol(Sn)

(20)

spherical concentration

isoperimetric inequalityon Sn⊂Rn+1

geodesic ballsare the extremal sets

if vol(A) ≥ vol(B), B geodesic ball

then vol(Ar) ≥ vol(Br), r >0

normalized volume µ(·) = vol(·) vol(Sn)

(21)

spherical concentration

isoperimetric inequalityon Sn⊂Rn+1

geodesic ballsare the extremal sets

if vol(A) ≥ vol(B), B geodesic ball

then vol(Ar) ≥ vol(Br), r >0

normalized volume µ(·) = vol(·) vol(Sn)

(22)

if µ(A) ≥ 1 2

(B half-sphere)

then, for all r >0,

µ(Ar) ≥ µ(Br) ≥ 1−e−(n−1)r2/2

r∼ 1

√n (n→ ∞)

µ(Ar) ≈ 1

(23)

if µ(A) ≥ 1

2 (B half-sphere)

then, for all r >0,

µ(Ar) ≥ µ(Br) ≥ 1−e−(n−1)r2/2

r∼ 1

√n (n→ ∞)

µ(Ar) ≈ 1

(24)

if µ(A) ≥ 1

2 (B half-sphere)

then, for all r >0,

µ(Ar) ≥ µ(Br)

≥ 1−e−(n−1)r2/2

r∼ 1

√n (n→ ∞)

µ(Ar) ≈ 1

(25)

if µ(A) ≥ 1

2 (B half-sphere)

then, for all r >0,

µ(Ar) ≥ µ(Br) ≥ 1−e−(n−1)r2/2

r∼ 1

√n (n→ ∞)

µ(Ar) ≈ 1

(26)

if µ(A) ≥ 1

2 (B half-sphere)

then, for all r >0,

µ(Ar) ≥ µ(Br) ≥ 1−e−(n−1)r2/2

r∼ 1

√n (n→ ∞)

µ(Ar) ≈ 1

(27)

if µ(A) ≥ 1

2 (B half-sphere)

then, for all r >0,

µ(Ar) ≥ µ(Br) ≥ 1−e−(n−1)r2/2

r∼ 1

√n (n→ ∞)

µ(Ar) ≈ 1

(28)

application byV. Milman

m (normalized) Haar measure on On+1

m {T ∈ On+1;Tx ∈A}

= µ(A), x ∈Rn+1,A⊂Sn k · k gauge of K

showthat for dim(E)≥δ(ε) logn

mn

T ∈ On+1; |z|

1 +ε ≤ kTzk ≤ |z|

1−ε, z ∈Eo

> 0

F =ImT|E, E=T(BE)

(29)

application byV. Milman

m (normalized) Haar measure on On+1

m {T ∈ On+1;Tx ∈A}

= µ(A), x ∈Rn+1,A⊂Sn k · k gauge of K

showthat for dim(E)≥δ(ε) logn

mn

T ∈ On+1; |z|

1 +ε ≤ kTzk ≤ |z|

1−ε, z ∈Eo

≈ 1

F =ImT|E, E=T(BE)

(30)

framework for measure concentration

metric measure space(X,d, µ)

(X,d) metric space

µ Borel measureonX, µ(X) = 1

concentration function

α(r) =α(X,d,µ)(r) = sup

1−µ(Ar);µ(A)≥1/2 , r >0

Ar =

x ∈X;d(x,A)<r

µ uniform on Sn⊂Rn+1 : α(r) ≤ e−(n−1)r2/2, r >0

(31)

framework for measure concentration

metric measure space(X,d, µ) (X,d) metric space

µ Borel measureonX, µ(X) = 1

concentration function

α(r) =α(X,d,µ)(r) = sup

1−µ(Ar);µ(A)≥1/2 , r >0

Ar =

x ∈X;d(x,A)<r

µ uniform on Sn⊂Rn+1 : α(r) ≤ e−(n−1)r2/2, r >0

(32)

framework for measure concentration

metric measure space(X,d, µ) (X,d) metric space

µ Borel measureonX, µ(X) = 1

concentration function

α(r) =α(X,d,µ)(r) = sup

1−µ(Ar);µ(A)≥1/2 , r >0

Ar =

x ∈X;d(x,A)<r

µ uniform on Sn⊂Rn+1 : α(r) ≤ e−(n−1)r2/2, r >0

(33)

framework for measure concentration

metric measure space(X,d, µ) (X,d) metric space

µ Borel measureonX, µ(X) = 1

concentration function

α(r) =α(X,d,µ)(r) = sup

1−µ(Ar);µ(A)≥1/2 , r >0

Ar =

x ∈X;d(x,A)<r

µ uniform on Sn⊂Rn+1 : α(r) ≤ e−(n−1)r2/2, r >0

(34)

framework for measure concentration

metric measure space(X,d, µ) (X,d) metric space

µ Borel measureonX, µ(X) = 1

concentration function

α(r) =α(X,d,µ)(r) = sup

1−µ(Ar);µ(A)≥1/2 , r >0

Ar =

x ∈X;d(x,A)<r

µ uniform on Sn⊂Rn+1 : α(r) ≤ e−(n−1)r2/2, r >0

(35)

framework for measure concentration

metric measure space(X,d, µ) (X,d) metric space

µ Borel measureonX, µ(X) = 1

concentration function

α(r) =α(X,d,µ)(r) = sup

1−µ(Ar);µ(A)≥1/2 , r >0

Ar =

x ∈X;d(x,A)<r µ uniform on Sn⊂Rn+1 :

α(r) ≤ e−(n−1)r2/2, r >0

(36)

framework for measure concentration

metric measure space(X,d, µ) (X,d) metric space

µ Borel measureonX, µ(X) = 1

concentration function

α(r) =α(X,d,µ)(r) = sup

1−µ(Ar);µ(A)≥1/2 , r >0

Ar =

x ∈X;d(x,A)<r

µ uniform on Sn⊂Rn+1 : α(r) ≤ e−(n−1)r2/2, r >0

(37)

equivalent formulation on functions

F :X →R 1- Lipschitz m=mF median of F for µ

µ(F ≤m), µ(F ≥m) ≥ 1 2

A={F ≤m} =⇒ Ar ⊂ {F <m+r}

µ

|F −m|<r ≥ 1−2α(r), r >0

(38)

equivalent formulation on functions

F :X →R 1- Lipschitz

m=mF median of F for µ µ(F ≤m), µ(F ≥m) ≥ 1

2

A={F ≤m} =⇒ Ar ⊂ {F <m+r}

µ

|F −m|<r ≥ 1−2α(r), r >0

(39)

equivalent formulation on functions

F :X →R 1- Lipschitz m=mF median of F for µ

µ(F ≤m), µ(F ≥m) ≥ 1 2

A={F ≤m} =⇒ Ar ⊂ {F <m+r}

µ

|F −m|<r ≥ 1−2α(r), r >0

(40)

equivalent formulation on functions

F :X →R 1- Lipschitz m=mF median of F for µ

µ(F ≤m), µ(F ≥m) ≥ 1 2

A={F ≤m} =⇒ Ar ⊂ {F <m+r}

µ

|F −m|<r ≥ 1−2α(r), r >0

(41)

equivalent formulation on functions

F :X →R 1- Lipschitz m=mF median of F for µ

µ(F ≤m), µ(F ≥m) ≥ 1 2

A={F ≤m} =⇒ Ar ⊂ {F <m+r}

µ

|F −m|<r ≥ 1−2α(r), r >0

(42)

dual description : observable diameter(M. Gromov)

κ >0 (κ= 10−10)

PartDiamµ(X,d)

= inf

D ≥0,∃A⊂X,Diam(A)≤D, µ(A)≥1−κ

ObsDiamµ(X,d) = sup

F 1−Lip

PartDiamµF(R)

F :µ→µF

(43)

dual description : observable diameter(M. Gromov)

κ >0 (κ= 10−10)

PartDiamµ(X,d)

= inf

D ≥0,∃A⊂X,Diam(A)≤D, µ(A)≥1−κ

ObsDiamµ(X,d) = sup

F 1−Lip

PartDiamµF(R)

F :µ→µF

(44)

dual description : observable diameter(M. Gromov)

κ >0 (κ= 10−10)

PartDiamµ(X,d)

= inf

D ≥0,∃A⊂X,Diam(A)≤D, µ(A)≥1−κ

ObsDiamµ(X,d) = sup

F 1−Lip

PartDiamµF(R)

F :µ→µF

(45)

dual description : observable diameter(M. Gromov)

κ >0 (κ= 10−10)

PartDiamµ(X,d)

= inf

D ≥0,∃A⊂X,Diam(A)≤D, µ(A)≥1−κ

ObsDiamµ(X,d) = sup

F 1−Lip

PartDiamµF(R)

F :µ→µF

(46)

ObsDiamµ(X,d) = sup

F 1−Lip

PartDiamµF(R)

µ stateon the configuration space (X,d)

F :X →R observable

yielding thetomographic image µF on R

µF ]m−r,m+r[

|F −m|<r ≥ 1−2α(r)

ObsDiamµ(X,d) ∼ α−1(κ)

ObsDiam(Sn) = O 1

√n

(47)

ObsDiamµ(X,d) = sup

F 1−Lip

PartDiamµF(R)

µ stateon the configuration space (X,d)

F :X →R observable

yielding thetomographic image µF on R

µF ]m−r,m+r[

|F −m|<r ≥ 1−2α(r)

ObsDiamµ(X,d) ∼ α−1(κ)

ObsDiam(Sn) = O 1

√n

(48)

ObsDiamµ(X,d) = sup

F 1−Lip

PartDiamµF(R)

µ stateon the configuration space (X,d)

F :X →R observable

yielding thetomographic image µF on R

µF ]m−r,m+r[

|F −m|<r ≥ 1−2α(r)

ObsDiamµ(X,d) ∼ α−1(κ)

ObsDiam(Sn) = O 1

√n

(49)

ObsDiamµ(X,d) = sup

F 1−Lip

PartDiamµF(R)

µ stateon the configuration space (X,d)

F :X →R observable

yielding thetomographic image µF on R

µF ]m−r,m+r[

|F −m|<r ≥ 1−2α(r)

ObsDiamµ(X,d) ∼ α−1(κ)

ObsDiam(Sn) = O 1

√n

(50)

ObsDiamµ(X,d) = sup

F 1−Lip

PartDiamµF(R)

µ stateon the configuration space (X,d)

F :X →R observable

yielding thetomographic image µF on R

µF ]m−r,m+r[

|F −m|<r ≥ 1−2α(r)

ObsDiamµ(X,d) ∼ α−1(κ)

ObsDiam(Sn) = O 1

√n

(51)

ObsDiamµ(X,d) = sup

F 1−Lip

PartDiamµF(R)

µ stateon the configuration space (X,d)

F :X →R observable

yielding thetomographic image µF on R

µF ]m−r,m+r[

|F −m|<r ≥ 1−2α(r)

ObsDiamµ(X,d) ∼ α−1(κ)

ObsDiam(Sn) = O 1

√n

(52)

measure concentration property

less restrictivethanisoperimetry, widely shared

variety of examples and tools

spectral methods

combinatorial tools

product measures(M. Talagrand 1995)

geometric, measure/information theoretic, functional inequalities

(53)

measure concentration property less restrictivethanisoperimetry, widely shared

variety of examples and tools

spectral methods

combinatorial tools

product measures(M. Talagrand 1995)

geometric, measure/information theoretic, functional inequalities

(54)

measure concentration property less restrictivethanisoperimetry, widely shared

variety of examples and tools

spectral methods

combinatorial tools

product measures(M. Talagrand 1995)

geometric, measure/information theoretic, functional inequalities

(55)

measure concentration property less restrictivethanisoperimetry, widely shared

variety of examples and tools

spectral methods

combinatorial tools

product measures(M. Talagrand 1995)

geometric, measure/information theoretic, functional inequalities

(56)

measure concentration property less restrictivethanisoperimetry, widely shared

variety of examples and tools

spectral methods

combinatorial tools

product measures(M. Talagrand 1995)

geometric, measure/information theoretic, functional inequalities

(57)

measure concentration property less restrictivethanisoperimetry, widely shared

variety of examples and tools

spectral methods

combinatorial tools

product measures

(M. Talagrand 1995)

geometric, measure/information theoretic, functional inequalities

(58)

measure concentration property less restrictivethanisoperimetry, widely shared

variety of examples and tools

spectral methods

combinatorial tools

product measures(M. Talagrand 1995)

geometric, measure/information theoretic, functional inequalities

(59)

measure concentration property less restrictivethanisoperimetry, widely shared

variety of examples and tools

spectral methods

combinatorial tools

product measures(M. Talagrand 1995)

geometric, measure/information theoretic, functional inequalities

(60)

measure concentration property less restrictive than isoperimetry, widely shared

variety of examples and tools

spectral methods

combinatorial tools

product measures(M. Talagrand 1995)

geometric, measure/information theoretic, functional inequalities

(61)

dimension free inequalities

model : Gaussian measure dγ(x) =e−|x|2/2 dx

(2π)k/2 on (Rk,| · |) concentration property

R ∼√ n

µ uniformon Snn → γ Gaussian Gauss space : curvature 1 dimension ∞

(62)

dimension free inequalities

model : Gaussian measure dγ(x) =e−|x|2/2 dx

(2π)k/2 on (Rk,| · |)

concentration property

R ∼√ n

µ uniformon Snn → γ Gaussian Gauss space : curvature 1 dimension ∞

(63)

dimension free inequalities

model : Gaussian measure dγ(x) =e−|x|2/2 dx

(2π)k/2 on (Rk,| · |) concentration property

R ∼√ n

µ uniformon Snn → γ Gaussian Gauss space : curvature 1 dimension ∞

(64)

dimension free inequalities

model : Gaussian measure dγ(x) =e−|x|2/2 dx

(2π)k/2 on (Rk,| · |) concentration property

Sn: α(r) ≤ e−(n−1)r2/2

R ∼√ n

µ uniformon Snn → γ Gaussian Gauss space : curvature 1 dimension ∞

(65)

dimension free inequalities

model : Gaussian measure dγ(x) =e−|x|2/2 dx

(2π)k/2 on (Rk,| · |) concentration property

SnR : α(r) ≤ e−(n−1)r2/2R2

R ∼√ n

µ uniformon Snn → γ Gaussian Gauss space : curvature 1 dimension ∞

(66)

dimension free inequalities

model : Gaussian measure dγ(x) =e−|x|2/2 dx

(2π)k/2 on (Rk,| · |) concentration property

SnR : α(r) ≤ e−(n−1)r2/2R2 R ∼√

n

µ uniformon Snn → γ Gaussian Gauss space : curvature 1 dimension ∞

(67)

dimension free inequalities

model : Gaussian measure dγ(x) =e−|x|2/2 dx

(2π)k/2 on (Rk,| · |) concentration property

SnR : α(r) ≤ e−(n−1)r2/2R2 R ∼√

n

µ uniformon Snn

→ γ Gaussian Gauss space : curvature 1 dimension ∞

(68)

dimension free inequalities

model : Gaussian measure dγ(x) =e−|x|2/2 dx

(2π)k/2 on (Rk,| · |) concentration property

SnR : α(r) ≤ e−(n−1)r2/2R2 R ∼√

n

µ uniformon Snn → γ Gaussian

Gauss space : curvature 1 dimension ∞

(69)

dimension free inequalities

model : Gaussian measure dγ(x) =e−|x|2/2 dx

(2π)k/2 on (Rk,| · |) concentration property

SnR : α(r) ≤ e−(n−1)r2/2R2 R ∼√

n

µ uniformon Snn → γ Gaussian Gauss space : curvature 1 dimension ∞

(70)

Gaussian concentration α(r) ≤ e−r2/2

if A⊂Rk, γ(A) ≥ 1 2 then γ(Ar) ≥ 1−e−r2/2, r >0

ObsDiamγ(Rk) = O(1)

independentof the dimension infinite dimensional analysis

(71)

Gaussian concentration α(r) ≤ e−r2/2

if A⊂Rk, γ(A) ≥ 1 2

then γ(Ar) ≥ 1−e−r2/2, r >0

ObsDiamγ(Rk) = O(1)

independentof the dimension infinite dimensional analysis

(72)

Gaussian concentration α(r) ≤ e−r2/2

if A⊂Rk, γ(A) ≥ 1 2 then γ(Ar) ≥ 1−e−r2/2, r >0

ObsDiamγ(Rk) = O(1)

independentof the dimension infinite dimensional analysis

(73)

Gaussian concentration α(r) ≤ e−r2/2

if A⊂Rk, γ(A) ≥ 1 2 then γ(Ar) ≥ 1−e−r2/2, r >0

ObsDiamγ(Rk) = O(1)

independentof the dimension infinite dimensional analysis

(74)

Gaussian concentration α(r) ≤ e−r2/2

if A⊂Rk, γ(A) ≥ 1 2 then γ(Ar) ≥ 1−e−r2/2, r >0

ObsDiamγ(Rk) = O(1)

independentof the dimension

infinite dimensional analysis

(75)

Gaussian concentration α(r) ≤ e−r2/2

if A⊂Rk, γ(A) ≥ 1 2 then γ(Ar) ≥ 1−e−r2/2, r >0

ObsDiamγ(Rk) = O(1)

independentof the dimension infinite dimensional analysis

(76)

triple description of Gaussian concentration α(r) ≤ e−r2/2

geometric

measure/information theoretic

functional

notion of curvaturein metric measure spaces

(PDEand calculus of variations viewpoint)

(77)

triple description of Gaussian concentration α(r) ≤ e−r2/2

geometric

measure/information theoretic

functional

notion of curvaturein metric measure spaces

(PDEand calculus of variations viewpoint)

(78)

triple description of Gaussian concentration α(r) ≤ e−r2/2

geometric

measure/information theoretic

functional

notion of curvaturein metric measure spaces

(PDEand calculus of variations viewpoint)

(79)

triple description of Gaussian concentration α(r) ≤ e−r2/2

geometric

measure/information theoretic

functional

notion of curvaturein metric measure spaces

(PDEand calculus of variations viewpoint)

(80)

triple description of Gaussian concentration α(r) ≤ e−r2/2

geometric

measure/information theoretic

functional

notion of curvaturein metric measure spaces

(PDEand calculus of variations viewpoint)

(81)

triple description of Gaussian concentration α(r) ≤ e−r2/2

geometric

measure/information theoretic

functional

notion of curvaturein metric measure spaces

(PDEand calculus of variations viewpoint)

(82)

geometric description : Brunn-Minkowski inequality

Pr´ekopa-Leindler theorem

θ∈[0,1], u,v,w :Rn→R+

if w θx+ (1−θ)y

≥ u(x)θv(y)1−θ, x,y ∈Rn

then Z

w dx ≥ Z

u dx θ Z

v dx 1−θ

u =χA,v=χB,multiplicative form ofBrunn-Minkowski voln θA+ (1−θ)B

≥ voln(A)θvoln(B)1−θ

(83)

geometric description : Brunn-Minkowski inequality Pr´ekopa-Leindler theorem

θ∈[0,1], u,v,w :Rn→R+

if w θx+ (1−θ)y

≥ u(x)θv(y)1−θ, x,y ∈Rn

then Z

w dx ≥ Z

u dx θ Z

v dx 1−θ

u =χA,v=χB,multiplicative form ofBrunn-Minkowski voln θA+ (1−θ)B

≥ voln(A)θvoln(B)1−θ

(84)

geometric description : Brunn-Minkowski inequality Pr´ekopa-Leindler theorem

θ∈[0,1], u,v,w :Rn→R+

if w θx+ (1−θ)y

≥ u(x)θv(y)1−θ, x,y ∈Rn

then Z

w dx ≥ Z

u dx θ Z

v dx 1−θ

u =χA,v=χB,multiplicative form ofBrunn-Minkowski voln θA+ (1−θ)B

≥ voln(A)θvoln(B)1−θ

(85)

geometric description : Brunn-Minkowski inequality Pr´ekopa-Leindler theorem

θ∈[0,1], u,v,w :Rn→R+

if w θx+ (1−θ)y

≥ u(x)θv(y)1−θ, x,y ∈Rn

then Z

w dx ≥ Z

u dx θ Z

v dx 1−θ

u =χA,v=χB,multiplicative form ofBrunn-Minkowski voln θA+ (1−θ)B

≥ voln(A)θvoln(B)1−θ

(86)

geometric description : Brunn-Minkowski inequality Pr´ekopa-Leindler theorem

θ∈[0,1], u,v,w :Rn→R+

if w θx+ (1−θ)y

≥ u(x)θv(y)1−θ, x,y ∈Rn

then Z

w dx ≥ Z

u dx θ Z

v dx 1−θ

u =χA,v=χB,multiplicative form ofBrunn-Minkowski voln θA+ (1−θ)B

≥ voln(A)θvoln(B)1−θ

(87)

geometric description : Brunn-Minkowski inequality Pr´ekopa-Leindler theorem

θ∈[0,1], u,v,w :Rn→R+

if w θx+ (1−θ)y

≥ u(x)θv(y)1−θ, x,y ∈Rn

then Z

w dx ≥ Z

u dx θ Z

v dx 1−θ

u =χA,v=χB,

multiplicative form ofBrunn-Minkowski voln θA+ (1−θ)B

≥ voln(A)θvoln(B)1−θ

(88)

geometric description : Brunn-Minkowski inequality Pr´ekopa-Leindler theorem

θ∈[0,1], u,v,w :Rn→R+

if w θx+ (1−θ)y

≥ u(x)θv(y)1−θ, x,y ∈Rn

then Z

w dx ≥ Z

u dx θ Z

v dx 1−θ

u =χA,v=χB,multiplicative form ofBrunn-Minkowski voln θA+ (1−θ)B

≥ voln(A)θvoln(B)1−θ

(89)

dx → dγ(x) =e−|x|2/2 dx (2π)n/2

then Z

w dγ ≥ Z

u dγ θ Z

v dγ 1−θ

choose θ= 1/2, w ≡1, v =χA, u =ed(·,A)2/4 Z

ed(·,A)2/4dγ ≤ 1 γ(A) γ(Ar) ≥ 1−2e−r2/4, γ(A) ≥ 1

2 extension : dµ=e−Vdx, V00≥c >0

(90)

dx → dγ(x) =e−|x|2/2 dx (2π)n/2 if w θx+ (1−θ)y

≥ u(x)θv(y)1−θ, x,y ∈Rn

then Z

w dγ ≥ Z

u dγ θ Z

v dγ 1−θ

choose θ= 1/2, w ≡1, v =χA, u =ed(·,A)2/4 Z

ed(·,A)2/4dγ ≤ 1 γ(A) γ(Ar) ≥ 1−2e−r2/4, γ(A) ≥ 1

2 extension : dµ=e−Vdx, V00≥c >0

(91)

dx → dγ(x) =e−|x|2/2 dx (2π)n/2 if w θx+ (1−θ)y

≥ e−θ(1−θ)|x−y|2/2u(x)θv(y)1−θ, x,y ∈Rn

then Z

w dγ ≥ Z

u dγ θ Z

v dγ 1−θ

choose θ= 1/2, w ≡1, v =χA, u =ed(·,A)2/4 Z

ed(·,A)2/4dγ ≤ 1 γ(A) γ(Ar) ≥ 1−2e−r2/4, γ(A) ≥ 1

2 extension : dµ=e−Vdx, V00≥c >0

(92)

dx → dγ(x) =e−|x|2/2 dx (2π)n/2 if w θx+ (1−θ)y

≥ e−θ(1−θ)|x−y|2/2u(x)θv(y)1−θ, x,y ∈Rn

then Z

w dγ ≥ Z

u dγ θ Z

v dγ 1−θ

choose θ= 1/2, w ≡1, v =χA, u =ed(·,A)2/4 Z

ed(·,A)2/4dγ ≤ 1 γ(A) γ(Ar) ≥ 1−2e−r2/4, γ(A) ≥ 1

2 extension : dµ=e−Vdx, V00≥c >0

(93)

dx → dγ(x) =e−|x|2/2 dx (2π)n/2 if w θx+ (1−θ)y

≥ e−θ(1−θ)|x−y|2/2u(x)θv(y)1−θ, x,y ∈Rn

then Z

w dγ ≥ Z

u dγ θ Z

v dγ 1−θ

choose θ= 1/2, w ≡1, v =χA,

u =ed(·,A)2/4 Z

ed(·,A)2/4dγ ≤ 1 γ(A) γ(Ar) ≥ 1−2e−r2/4, γ(A) ≥ 1

2 extension : dµ=e−Vdx, V00≥c >0

(94)

dx → dγ(x) =e−|x|2/2 dx (2π)n/2 if w θx+ (1−θ)y

≥ e−θ(1−θ)|x−y|2/2u(x)θv(y)1−θ, x,y ∈Rn

then Z

w dγ ≥ Z

u dγ θ Z

v dγ 1−θ

choose θ= 1/2, w ≡1, v =χA, u =ed(·,A)2/4

Z

ed(·,A)2/4dγ ≤ 1 γ(A) γ(Ar) ≥ 1−2e−r2/4, γ(A) ≥ 1

2 extension : dµ=e−Vdx, V00≥c >0

(95)

dx → dγ(x) =e−|x|2/2 dx (2π)n/2 if w θx+ (1−θ)y

≥ e−θ(1−θ)|x−y|2/2u(x)θv(y)1−θ, x,y ∈Rn

then Z

w dγ ≥ Z

u dγ θ Z

v dγ 1−θ

choose θ= 1/2, w ≡1, v =χA, u =ed(·,A)2/4 Z

ed(·,A)2/4dγ ≤ 1 γ(A)

γ(Ar) ≥ 1−2e−r2/4, γ(A) ≥ 1 2 extension : dµ=e−Vdx, V00≥c >0

(96)

dx → dγ(x) =e−|x|2/2 dx (2π)n/2 if w θx+ (1−θ)y

≥ e−θ(1−θ)|x−y|2/2u(x)θv(y)1−θ, x,y ∈Rn

then Z

w dγ ≥ Z

u dγ θ Z

v dγ 1−θ

choose θ= 1/2, w ≡1, v =χA, u =ed(·,A)2/4 Z

ed(·,A)2/4dγ ≤ 1 γ(A) γ(Ar) ≥ 1−2e−r2/4, γ(A) ≥ 1

2

extension : dµ=e−Vdx, V00≥c >0

(97)

dx → dγ(x) =e−|x|2/2 dx (2π)n/2 if w θx+ (1−θ)y

≥ e−θ(1−θ)|x−y|2/2u(x)θv(y)1−θ, x,y ∈Rn

then Z

w dγ ≥ Z

u dγ θ Z

v dγ 1−θ

choose θ= 1/2, w ≡1, v =χA, u =ed(·,A)2/4 Z

ed(·,A)2/4dγ ≤ 1 γ(A) γ(Ar) ≥ 1−2e−r2/4, γ(A) ≥ 1

2 extension : dµ=e−Vdx, V00≥c >0

(98)

measure/information theoretic description : transportation cost inequality

ν probability measure on Rn, ν << γ W2(ν, γ)2 ≤ H(ν|γ)

W2(ν, γ)2 = inf

ν←π→γ

Z Z 1

2|x−y|2dπ(x,y) Wasserstein distance

H(ν|γ) = Z

log dν dγ dν relative entropy M. Talagrand 1996

(99)

measure/information theoretic description : transportation cost inequality

ν probability measure on Rn, ν << γ W2(ν, γ)2 ≤ H(ν|γ)

W2(ν, γ)2 = inf

ν←π→γ

Z Z 1

2|x−y|2dπ(x,y) Wasserstein distance

H(ν|γ) = Z

log dν dγ dν relative entropy M. Talagrand 1996

(100)

measure/information theoretic description : transportation cost inequality

ν probability measure on Rn, ν << γ W2(ν, γ)2 ≤ H(ν|γ)

W2(ν, γ)2 = inf

ν←π→γ

Z Z 1

2|x−y|2dπ(x,y) Wasserstein distance

H(ν|γ) = Z

log dν dγ dν relative entropy M. Talagrand 1996

(101)

measure/information theoretic description : transportation cost inequality

ν probability measure on Rn, ν << γ W2(ν, γ)2 ≤ H(ν|γ)

W2(ν, γ)2 = inf

ν←π→γ

Z Z 1

2|x−y|2dπ(x,y) Wasserstein distance

H(ν|γ) = Z

log dν dγ dν relative entropy

M. Talagrand 1996

(102)

measure/information theoretic description : transportation cost inequality

ν probability measure on Rn, ν << γ W2(ν, γ)2 ≤ H(ν|γ)

W2(ν, γ)2 = inf

ν←π→γ

Z Z 1

2|x−y|2dπ(x,y) Wasserstein distance

H(ν|γ) = Z

log dν dγ dν relative entropy M. Talagrand 1996

(103)

concentrationvia the transportation cost inequality (K. Marton)

A,B⊂Rn, d(A,B)≥r>0 γA = γ(· |A), γB = γ(· |B)

W2A, γB) ≤ log 1

γ(A) 1/2

+ log 1

γ(B) 1/2

√r

2 ≤ W2A, γB) ≤ log 1

γ(A) 1/2

+

log 1 γ(B)

1/2

γ(A)≥1/2, B =complementof Ar

γ(Ar) ≥ 1−e−r2/4, r ≥r0

(104)

functional description : logarithmic Sobolev inequality

f ≥0 smooth, Z

f dγ = 1 Z

f logf dγ ≤ 1 2

Z |∇f|2 f dγ

Rf logf dγ = H(fdγ|dγ) entropy Z |∇f|2

f dγ Fisher information f →f2:

Z

f2logf2dγ ≤ 2 Z

|∇f|2

A. Stam 1959, L. Gross 1975

(105)

functional description : logarithmic Sobolev inequality

f ≥0 smooth, Z

f dγ = 1

Z

f logf dγ ≤ 1 2

Z |∇f|2 f dγ

Rf logf dγ = H(fdγ|dγ) entropy Z |∇f|2

f dγ Fisher information f →f2:

Z

f2logf2dγ ≤ 2 Z

|∇f|2

A. Stam 1959, L. Gross 1975

(106)

functional description : logarithmic Sobolev inequality

f ≥0 smooth, Z

f dγ = 1 Z

f logf dγ ≤ 1 2

Z |∇f|2 f dγ

Rf logf dγ = H(fdγ|dγ) entropy Z |∇f|2

f dγ Fisher information f →f2:

Z

f2logf2dγ ≤ 2 Z

|∇f|2

A. Stam 1959, L. Gross 1975

(107)

functional description : logarithmic Sobolev inequality

f ≥0 smooth, Z

f dγ = 1 Z

f logf dγ ≤ 1 2

Z |∇f|2 f dγ

Rf logf dγ = H(fdγ|dγ) entropy

Z |∇f|2

f dγ Fisher information f →f2:

Z

f2logf2dγ ≤ 2 Z

|∇f|2

A. Stam 1959, L. Gross 1975

(108)

functional description : logarithmic Sobolev inequality

f ≥0 smooth, Z

f dγ = 1 Z

f logf dγ ≤ 1 2

Z |∇f|2 f dγ

Rf logf dγ = H(fdγ|dγ) entropy Z |∇f|2

f dγ Fisher information

f →f2: Z

f2logf2dγ ≤ 2 Z

|∇f|2

A. Stam 1959, L. Gross 1975

(109)

functional description : logarithmic Sobolev inequality

f ≥0 smooth, Z

f dγ = 1 Z

f logf dγ ≤ 1 2

Z |∇f|2 f dγ

Rf logf dγ = H(fdγ|dγ) entropy Z |∇f|2

f dγ Fisher information f →f2:

Z

f2logf2dγ ≤ 2 Z

|∇f|2

A. Stam 1959, L. Gross 1975

(110)

functional description : logarithmic Sobolev inequality

f ≥0 smooth, Z

f dγ = 1 Z

f logf dγ ≤ 1 2

Z |∇f|2 f dγ

Rf logf dγ = H(fdγ|dγ) entropy Z |∇f|2

f dγ Fisher information f →f2:

Z

f2logf2dγ ≤ 2 Z

|∇f|2

A. Stam 1959, L. Gross 1975

(111)

concentrationvia the logarithmic Sobolev inequality(I. Herbst)

F :Rn→R 1-Lipschitz, R

F dγ = 0

f =eλF/R

eλFdγ, λ∈R differential inequalityon R

eλFdγ Z

eλFdγ ≤ eλ2/2, λ∈R γ {F <r}

≥ 1−e−r2/2, r >0

(112)

Brunn-Minkowski inequality

logarithmic Sobolev inequality

transportation cost inequality

(113)

hierarchy

Brunn-Minkowski inequality

logarithmic Sobolev inequality

transportation cost inequality

dimension free measure concentration

tools toestablish theseinequalities parametrisation methods

(114)

hierarchy

Brunn-Minkowski inequality

logarithmic Sobolev inequality

transportation cost inequality

dimension free measure concentration

tools toestablish theseinequalities parametrisation methods

(115)

hierarchy

Brunn-Minkowski inequality

logarithmic Sobolev inequality

transportation cost inequality

dimension free measure concentration

tools toestablish theseinequalities

parametrisation methods

(116)

hierarchy

Brunn-Minkowski inequality

logarithmic Sobolev inequality

transportation cost inequality

dimension free measure concentration

tools toestablish theseinequalities parametrisation methods

(117)

heat kernel parametrisation

logarithmic Sobolev inequality R

f logf dγ ≤ 12R |∇f|2 f dγ generator Lf = ∆f −x· ∇f, Pt=etL semigroup

γ invariant measure

d dt

Z

Ptf logPtf dγ = −1 2

Z |∇Ptf|2 Ptf dγ commutation |∇Ptf| ≤ e−tPt(|∇f|)

equivalent to a curvature condition

(118)

heat kernel parametrisation

logarithmic Sobolev inequality R

f logf dγ ≤ 12R |∇f|2 f

generator Lf = ∆f −x· ∇f, Pt=etL semigroup γ invariant measure

d dt

Z

Ptf logPtf dγ = −1 2

Z |∇Ptf|2 Ptf dγ commutation |∇Ptf| ≤ e−tPt(|∇f|)

equivalent to a curvature condition

(119)

heat kernel parametrisation

logarithmic Sobolev inequality R

f logf dγ ≤ 12R |∇f|2 f dγ generator Lf = ∆f −x· ∇f,

Pt=etL semigroup γ invariant measure

d dt

Z

Ptf logPtf dγ = −1 2

Z |∇Ptf|2 Ptf dγ commutation |∇Ptf| ≤ e−tPt(|∇f|)

equivalent to a curvature condition

(120)

heat kernel parametrisation

logarithmic Sobolev inequality R

f logf dγ ≤ 12R |∇f|2 f dγ generator Lf = ∆f −x· ∇f, Pt=etL semigroup

γ invariant measure

d dt

Z

Ptf logPtf dγ = −1 2

Z |∇Ptf|2 Ptf dγ commutation |∇Ptf| ≤ e−tPt(|∇f|)

equivalent to a curvature condition

(121)

heat kernel parametrisation

logarithmic Sobolev inequality R

f logf dγ ≤ 12R |∇f|2 f dγ generator Lf = ∆f −x· ∇f, Pt=etL semigroup

γ invariant measure

d dt

Z

Ptf logPtf dγ = −1 2

Z |∇Ptf|2 Ptf dγ commutation |∇Ptf| ≤ e−tPt(|∇f|)

equivalent to a curvature condition

(122)

heat kernel parametrisation

logarithmic Sobolev inequality R

f logf dγ ≤ 12R |∇f|2 f dγ generator Lf = ∆f −x· ∇f, Pt=etL semigroup

γ invariant measure

d dt

Z

Ptf logPtf dγ = −1 2

Z |∇Ptf|2 Ptf dγ

commutation |∇Ptf| ≤ e−tPt(|∇f|) equivalent to a curvature condition

(123)

heat kernel parametrisation

logarithmic Sobolev inequality R

f logf dγ ≤ 12R |∇f|2 f dγ generator Lf = ∆f −x· ∇f, Pt=etL semigroup

γ invariant measure

d dt

Z

Ptf logPtf dγ = −1 2

Z |∇Ptf|2 Ptf dγ commutation |∇Ptf| ≤ e−tPt(|∇f|)

equivalent to a curvature condition

(124)

heat kernel parametrisation

logarithmic Sobolev inequality R

f logf dγ ≤ 12R |∇f|2 f dγ generator Lf = ∆f −x· ∇f, Pt=etL semigroup

γ invariant measure

d dt

Z

Ptf logPtf dγ = −1 2

Z |∇Ptf|2 Ptf dγ commutation |∇Ptf| ≤ e−tPt(|∇f|)

equivalent to a curvature condition

(125)

extensions

dµ=e−Vdx on Rn, V00≥c >0 Riemannian manifolds Ric≥c >0

Bochner’s formula 1

2∆ |∇f|2

− ∇f · ∇(∆f) = kHess(f)k2+Ric(∇f,∇f) ≥ c|∇f|2

equivalent to |∇Ptf| ≤ e−ctPt(|∇f|) (Gauss space : curvature 1 )

manifolds withweights dµ=e−Vdx, Ric+Hess(V)≥c >0

(126)

extensions

dµ=e−Vdx on Rn, V00≥c >0

Riemannian manifolds Ric≥c >0 Bochner’s formula

1

2∆ |∇f|2

− ∇f · ∇(∆f) = kHess(f)k2+Ric(∇f,∇f) ≥ c|∇f|2

equivalent to |∇Ptf| ≤ e−ctPt(|∇f|) (Gauss space : curvature 1 )

manifolds withweights dµ=e−Vdx, Ric+Hess(V)≥c >0

(127)

extensions

dµ=e−Vdx on Rn, V00≥c >0 Riemannian manifolds Ric≥c >0

Bochner’s formula 1

2∆ |∇f|2

− ∇f · ∇(∆f) = kHess(f)k2+Ric(∇f,∇f) ≥ c|∇f|2

equivalent to |∇Ptf| ≤ e−ctPt(|∇f|) (Gauss space : curvature 1 )

manifolds withweights dµ=e−Vdx, Ric+Hess(V)≥c >0

(128)

extensions

dµ=e−Vdx on Rn, V00≥c >0 Riemannian manifolds Ric≥c >0

Bochner’s formula 1

2∆ |∇f|2

− ∇f · ∇(∆f) = kHess(f)k2+Ric(∇f,∇f)

≥ c|∇f|2

equivalent to |∇Ptf| ≤ e−ctPt(|∇f|) (Gauss space : curvature 1 )

manifolds withweights dµ=e−Vdx, Ric+Hess(V)≥c >0

Références

Documents relatifs

Keywords: Transportation cost distances; Mallows or Wasserstein distance; Mixtures of distributions; Finite Gaussian mixtures; Concentration of measure; Gaussian bounds;

Keywords: Poincaré inequality; Concentration of measure; Transportation-cost inequalities; Inf-convolution inequalities; Logarithmic-Sobolev inequalities; Super Poincaré

In the second part of the paper, we show that every metric measure space satisfying the classical Brunn-Minkowski inequality can be approximated by discrete metric spaces with

THEOREM 10.. — Assume that the system X of vector fields on R 71 is such that the identity map gives a homeomorphism between the Carnot-Caratheodory metric p and the Euclidean

This is a survey of recent developments in the area of lower Ricci curvature bounds for both geodesic metric measure spaces, and discrete metric measure spaces, from a

The final step in obtaining the coarea formula for mappings defined on an H n -rectifiable metric space is the proof of the area formula on level sets:.. Theorem 7 (The Area Formula

Our method also allows us to have semigroup proofs of the geometric Brascamp-Lieb inequality and of the reverse one which follow exactly the same lines.. 2000 Mathematics

Concentration, invariant measure, reversible Markov process, Lya- punov condition, functional inequality, carr´e du champ, diffusion process, jump