• Aucun résultat trouvé

Search for dark matter towards the Galactic Centre with 11 years of ANTARES data

N/A
N/A
Protected

Academic year: 2021

Partager "Search for dark matter towards the Galactic Centre with 11 years of ANTARES data"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-02431461

https://hal.archives-ouvertes.fr/hal-02431461

Submitted on 26 Nov 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Search for dark matter towards the Galactic Centre with

11 years of ANTARES data

A. Albert, M. André, M. Anghinolfi, G. Anton, M. Ardid, J.-J. Aubert, J.

Aublin, B. Baret, S. Basa, B. Belhorma, et al.

To cite this version:

A. Albert, M. André, M. Anghinolfi, G. Anton, M. Ardid, et al..

Search for dark matter

to-wards the Galactic Centre with 11 years of ANTARES data. Phys.Lett.B, 2020, 805, pp.135439.

�10.1016/j.physletb.2020.135439�. �hal-02431461�

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Search

for

dark

matter

towards

the

Galactic

Centre

with

11

years

of

ANTARES

data

A. Albert

a

,

b

,

M. André

c

,

M. Anghinolfi

d

,

G. Anton

e

,

M. Ardid

f

,

J.-J. Aubert

g

,

J. Aublin

h

,

B. Baret

h

,

S. Basa

i

,

B. Belhorma

j

,

V. Bertin

g

,

S. Biagi

k

,

M. Bissinger

e

,

J. Boumaaza

l

,

S. Bourret

h

,

M. Bouta

m

,

M.C. Bouwhuis

n

,

H. Brânza ¸s

o

,

R. Bruijn

n

,

p

,

J. Brunner

g

,

J. Busto

g

,

A. Capone

q

,

r

,

L. Caramete

o

,

J. Carr

g

,

S. Celli

q

,

r

,

s

,

M. Chabab

t

,

T.N. Chau

h

,

R. Cherkaoui El Moursli

l

,

T. Chiarusi

u

,

M. Circella

v

,

A. Coleiro

h

,

M. Colomer

h

,

w

,

R. Coniglione

k

,

H. Costantini

g

,

P. Coyle

g

,

A. Creusot

h

,

A.F. Díaz

x

,

G. de Wasseige

h

,

A. Deschamps

y

,

C. Distefano

k

,

I. Di Palma

q

,

r

,

A. Domi

d

,

z

,

C. Donzaud

h

,

aa

,

D. Dornic

g

,

D. Drouhin

a

,

b

,

T. Eberl

e

,

I. El Bojaddaini

m

,

N. El Khayati

l

,

D. Elsässer

ab

,

A. Enzenhöfer

e

,

g

,

A. Ettahiri

l

,

F. Fassi

l

,

P. Fermani

q

,

r

,

G. Ferrara

k

,

F. Filippini

u

,

ac

,

L. Fusco

h

,

ac

,

P. Gay

ad

,

h

,

H. Glotin

ae

,

R. Gozzini

w

,

,

R. Gracia Ruiz

a

,

K. Graf

e

,

C. Guidi

d

,

z

,

S. Hallmann

e

,

H. van Haren

af

,

A.J. Heijboer

n

,

Y. Hello

y

,

J.J. Hernández-Rey

w

,

J. Hößl

e

,

J. Hofestädt

e

,

G. Illuminati

w

,

C.W. James

ag

,

M. de Jong

n

,

ah

,

P. de Jong

n

,

M. Jongen

n

,

M. Kadler

ab

,

O. Kalekin

e

,

U. Katz

e

,

N.R. Khan-Chowdhury

w

,

A. Kouchner

h

,

ai

,

M. Kreter

ab

,

I. Kreykenbohm

aj

,

V. Kulikovskiy

d

,

ak

,

R. Lahmann

e

,

R. Le Breton

h

,

D. Lefèvre

al

,

am

,

E. Leonora

an

,

G. Levi

u

,

ac

,

M. Lincetto

g

,

D. Lopez-Coto

ao

,

S. Loucatos

ap

,

h

,

G. Maggi

g

,

J. Manczak

w

,

M. Marcelin

i

,

A. Margiotta

u

,

ac

,

A. Marinelli

aq

,

ar

,

J.A. Martínez-Mora

f

,

R. Mele

as

,

at

,

K. Melis

n

,

p

,

P. Migliozzi

as

,

M. Moser

e

,

A. Moussa

m

,

R. Muller

n

,

L. Nauta

n

,

S. Navas

ao

,

E. Nezri

i

,

C. Nielsen

h

,

A. Nuñez-Castiñeyra

g

,

i

,

B. O’Fearraigh

n

,

M. Organokov

a

,

G.E. P˘av˘ala ¸s

o

,

C. Pellegrino

u

,

ac

,

M. Perrin-Terrin

g

,

P. Piattelli

k

,

C. Poirè

f

,

V. Popa

o

,

T. Pradier

a

,

L. Quinn

g

,

N. Randazzo

an

,

G. Riccobene

k

,

A. Sánchez-Losa

v

,

A. Salah-Eddine

t

,

D.F.E. Samtleben

n

,

ah

,

M. Sanguineti

d

,

z

,

P. Sapienza

k

,

F. Schüssler

ap

,

M. Spurio

u

,

ac

,

Th. Stolarczyk

ap

,

B. Strandberg

n

,

M. Taiuti

d

,

z

,

Y. Tayalati

l

,

T. Thakore

w

,

S.J. Tingay

ag

,

A. Trovato

k

,

B. Vallage

ap

,

h

,

V. Van Elewyck

h

,

ai

,

F. Versari

u

,

ac

,

h

,

S. Viola

k

,

D. Vivolo

as

,

at

,

J. Wilms

aj

,

D. Zaborov

g

,

A. Zegarelli

q

,

r

,

J.D. Zornoza

w

,

J. Zúñiga

w

aUniversitédeStrasbourg,CNRS,IPHCUMR7178,F-67000Strasbourg,France bUniversitédeHauteAlsace,F-68200Mulhouse,France

cTechnicalUniversityofCatalonia,LaboratoryofAppliedBioacoustics,RamblaExposició,08800VilanovailaGeltrú,Barcelona,Spain dINFN- SezionediGenova,ViaDodecaneso33,16146Genova,Italy

eFriedrich-Alexander-UniversitätErlangen-Nürnberg,ErlangenCentreforAstroparticlePhysics,Erwin-Rommel-Str.1,91058Erlangen,Germany fInstitutd’InvestigacióperalaGestióIntegradadelesZonesCostaneres(IGIC)- UniversitatPolitècnicadeValència,C/Paranimf1,46730Gandia,Spain gAixMarseilleUniv,CNRS/IN2P3,CPPM,Marseille,France

hAPC,UnivParisDiderot,CNRS/IN2P3,CEA/Irfu,ObsdeParis,SorbonneParisCité,France iAixMarseilleUniv,CNRS,CNES,LAM,Marseille,France

jNationalCenterforEnergySciencesandNuclearTechniques,B.P.1382,R.P.10001Rabat,Morocco kINFN- LaboratoriNazionalidelSud(LNS),ViaS.Sofia62,95123Catania,Italy

lUniversityMohammedVinRabat,FacultyofSciences,4av.IbnBattouta,B.P.1014,R.P.10000Rabat,Morocco mUniversityMohammedI,LaboratoryofPhysicsofMatterandRadiations,B.P.717,Oujda6000,Morocco nNikhef,SciencePark,Amsterdam,theNetherlands

oInstituteofSpaceScience,RO-077125Bucharest,M˘agurele,Romania

pUniversiteitvanAmsterdam,InstituutvoorHoge-EnergieFysica,SciencePark105,1098XGAmsterdam,theNetherlands qINFN- SezionediRoma,P.leAldoMoro2,00185Roma,Italy

*

Correspondingauthor.

E-mailaddress:srgozzini@km3net.de(R. Gozzini).

https://doi.org/10.1016/j.physletb.2020.135439

(3)

2 A. Albert et al. / Physics Letters B 805 (2020) 135439

rDipartimentodiFisicadell’UniversitàLaSapienza,P.leAldoMoro2,00185Roma,Italy sGranSassoScienceInstitute,VialeFrancescoCrispi7,00167L’Aquila,Italy

tLPHEA,FacultyofScience- Semlali,CadiAyyadUniversity,P.O.B.2390,Marrakech,Morocco uINFN- SezionediBologna,VialeBerti-Pichat6/2,40127Bologna,Italy

vINFN- SezionediBari,ViaE.Orabona4,70126Bari,Italy

wIFIC- InstitutodeFísicaCorpuscular(CSIC- UniversitatdeValència),c/CatedráticoJoséBeltrán,2,E-46980Paterna,Valencia,Spain xDepartmentofComputerArchitectureandTechnology/CITIC,UniversityofGranada,18071Granada,Spain

yGéoazur,UCA,CNRS,IRD,ObservatoiredelaCôted’Azur,SophiaAntipolis,France zDipartimentodiFisicadell’Università,ViaDodecaneso33,16146Genova,Italy aaUniversitéParis-Sud,91405OrsayCedex,France

abInstitutfürTheoretischePhysikundAstrophysik,UniversitätWürzburg,Emil-FischerStr.31,97074Würzburg,Germany acDipartimentodiFisicaeAstronomiadell’Università,VialeBertiPichat6/2,40127Bologna,Italy

adLaboratoiredePhysiqueCorpusculaire,ClermontUniversité,UniversitéBlaisePascal,CNRS/IN2P3,BP10448,F-63000Clermont-Ferrand,France aeLIS,UMRUniversitédeToulon,AixMarseilleUniversité,CNRS,83041Toulon,France

afRoyalNetherlandsInstituteforSeaResearch(NIOZ)andUtrechtUniversity,Landsdiep4,1797SZ’tHorntje(Texel),theNetherlands agInternationalCentreforRadioAstronomyResearch- CurtinUniversity,Bentley,WA6102,Australia

ahHuygens-KamerlinghOnnesLaboratorium,UniversiteitLeiden,theNetherlands aiInstitutUniversitairedeFrance,75005Paris,France

ajDr.Remeis-SternwarteandECAP,Friedrich-Alexander-UniversitätErlangen-Nürnberg,Sternwartstr.7,96049Bamberg,Germany ak

MoscowStateUniversity,SkobeltsynInstituteofNuclearPhysics,Leninskiegory,119991Moscow,Russia

alMediterraneanInstituteofOceanography(MIO),Aix-MarseilleUniversity,13288,Marseille,Cedex9,France amUniversitéduSudToulon-Var,CNRS-INSU/IRDUM110,83957,LaGardeCedex,France

anINFN- SezionediCatania,ViaS.Sofia64,95123Catania,Italy

aoDpto.deFísicaTeóricaydelCosmos&C.A.F.P.E.,UniversityofGranada,18071Granada,Spain apIRFU,CEA,UniversitéParis-Saclay,F-91191Gif-sur-Yvette,France

aqINFN- SezionediPisa,LargoB.Pontecorvo3,56127Pisa,Italy

arDipartimentodiFisicadell’Università,LargoB.Pontecorvo3,56127Pisa,Italy asINFN- SezionediNapoli,ViaCintia80126Napoli,Italy

atDipartimentodiFisicadell’UniversitàFedericoIIdiNapoli,ViaCintia80126,Napoli,Italy

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received12December2019 Receivedinrevisedform3April2020 Accepted16April2020

Availableonline21April2020 Editor:H.Peiris

Keywords:

Darkmatterindirectdetection Neutrinotelescope

GalacticCentre ANTARES

Neutrinodetectorsparticipateintheindirectsearchforthefundamentalconstituentsofdarkmatter(DM)inform ofweaklyinteractingmassiveparticles(WIMPs).InWIMPscenarios,candidateDMparticlescanpair-annihilateinto StandardModelproducts,yieldingconsiderablefluxesofhigh-energyneutrinos.AdetectorlikeANTARES,locatedin theNorthernHemisphere,isabletoperformacomplementarysearchlookingtowardstheGalacticCentre,wherea highdensityofdarkmatteristhoughttoaccumulate.Boththisdirectionalinformationandthespectralfeaturesof annihilatingDMpairsareenteredintoanunbinnedlikelihoodmethodtoscanthedatasetinsearchforDM-like signalsinANTARESdata.Resultsobtaineduponunblinding3170daysofdatareconstructedwithupdatedmethods arepresented,whichprovidesalarger,andmoreaccurate,datasetthanapreviouslypublished resultusing2101 days.Anon-observationofdarkmatterisconvertedintolimitsonthevelocity-averagedcrosssectionforWIMPpair annihilation.

©2020PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction:darkmattersignalsatneutrinotelescopes

The existence of cold, non-baryonic dark matter (DM), evi-dencedonmacroscopicscalebyastrophysicalobservations[1], en-couragesthesearchesforitspossibleparticleconstituents.Among thosecandidates,mostWIMPscenariosaccommodatetheDMrelic densityreportedbyastrophysicalmeasurementsthrougha freeze-out mechanism. Thiscould implythat typical WIMP interactions of the DMcandidate, especially its annihilation cross section, lie neartheelectroweakscale;beyondthat,otherparameterslikethe candidateWIMPmassorthespecificdetailsoftheDMmodelare leftunbound.UnderthehypothesisthataWIMPcoincideswithits antiparticle,indirectsearchesforWIMPsarepossiblebydetecting a signature of WIMP annihilation into Standard Model particles. Suchsignalsare thereforesearchedfromthedirectionofmassive astrophysical environments, where WIMPs can be gravitationally attracted.DMbuildsupinandaroundmassivecelestialbodiesand gravitationalaccumulators, andis organized inhalos and clumps. Thedistributionofdarkmatterwithdensity

ρ

atagivensky loca-tion(r

,

θ,

φ

)isdescribedthroughthe J -factor

J

=



 d

(θ, φ)



l.o.s.

ρ

2

(

s

(

r

, θ, φ))

ds

,

(1)

with



beingthesolid angleunderwhichthesourceisobserved, and

s the

radialcoordinateintegratedoverthelineofsight(l

.

o

.

s

.

) (see [2] for a detaileddiscussion).For neutrinotelescopes,which haveaverybroadfieldofview,valuesaslargeas10◦

30◦canbe consideredfortheopeninganglecharacterisingthesolidangle



. Preferred locationswheredarkmatter ispredictedtoaccumulate are:

1. theGalacticCentre,havingthelargest J -factor; 2. massive,non-luminousgalaxieslikedwarfspheroidals; 3. theSunorothernearbyverymassivecelestialbodies. DM messengers for indirect searches are neutrinos,

γ

rays or charged cosmic rays (e+, p),

¯

produced either as primary or as secondaryproductsofaWIMPpairannihilation,throughdifferent channels.TheGalacticCentreisnotonlyapromisingsourceforits large predictedDM density;it is alsoa target ofcomplementary searches for neutrinodetectors and

γ

-ray telescopes,due to the lowsourcecontaminationthatwouldgivewaytoanunambiguous signal identification. Lastly,the GalacticCentre is ingood visibil-ityforneutrinotelescopeslocatedintheNorthernHemisphere(as will beclarifiedinSection 2),orfor

γ

-raytelescopes installedin theSouthernHemisphere.ThefluxofneutrinosreachingtheEarth froma WIMPpairannihilation canbe expressedasafunction of

(4)

thethermallyaveraged crosssection



σ

v



forWIMP pair annihi-lation,oftheenergydistributionofoutcomingparticlesperWIMP paircollision

dN

/

dEν , andoftheDMdistribution representedby the J -factor: d

(

)

dEν

=

1 4

π

M2WIMP



σ

v



2 dN

(

)

dEν J

,

(2)

wherethefactor1/2,usedinthisanalysis,holdsforself-conjugate WIMPs,andistobe replacedbyafactor1/4otherwise.Similarly, theterm1

/

M2WIMParisesfromthepresenceoftwoWIMPSinthe process,keepingintoaccountthatboththemassandthe volumet-ricdensityareexpressed inenergyunits.Through therelationin Equation (2), a measurement of the integratedneutrino and an-tineutrinofluxfromtheregionoftheGalacticCentre

νν

=



dEνd

ν dEν

+



dEν¯d

ν¯ dEν¯ (3)

is converted into limits on the thermally averaged cross section



σ

v



forWIMPpairannihilation.Alowerboundonthisquantityof 3

·

10−26 cm3s−1 canbemadebaseduponcosmologyarguments [3].

1.1. Directional and morphological information

Indirect searches for dark matter are unavoidably subject to largeuncertainties,mostlyarisingfromtheparameterisationofthe

unknown DM distribution. The spherically averaged DM density

profile

ρ

containedinthe J -factor (Equation (1))ismodelled ac-cordingtodifferentassumptions,leadingto considerablydifferent results.Themainassumptionson

ρ

arebasedoncosmological N-bodysimulationresultsand/ordynamicalconstraintsontheMilky Way or spiral galaxies. Even if baryonic physics (star formation andfeedbacks)isnotfullyundercontrolinhydrodynamics simula-tions,thebaryonsmaysteepenorevenflattentheinnerbehaviour oftheDMprofile(see e.g.[4–7]).Alternatively,dynamicalstudies ofgalaxies show a large diversity inrotation curves [8] and can suggesta coredDMprofile [9,10].Apopular andsimple parame-terisationof the DMdensity obtained inpure (without baryons)

DM cosmological simulations is the Navarro-Frenk-White (NFW)

profile[11]:

ρ

N F W

(

r

)

=

ρ

0 r rs



1

+

rr s



γ (4)

with

γ

=

2. The NFW profile is adopted in the presentanalysis with

ρ

0

=

1

.

40

·

107M

/

kpc3 and

r

s

=

16

.

1 kpc [12].Forthesake ofillustratingthoseDMdensityuncertainties,othertwocasesare considered:theprofilefromtherecentstudyofMcMillan[13] giv-ingan internal power lawr0.79±0.32, andtheBurkert profile [14] forwhichtheinnerdensityisconstant.

1.2. Energy information

The energy distribution of a neutral massive particle pair-annihilatinginto Standard Model products can be effectively

de-scribed with a Monte Carlo generator such as PYTHIA or

HER-WIG[15,16]. The PPPC4 cookbook [17], used in this analysis, di-rectlyprovidesspectraforWIMPannihilationsintoStandardModel modeswhich arestraightforwardto adapttoanykindofindirect searches.

PPPC4 yields the energy distribution for an isotropic flux of Standard Model particles originated in the WIMP pair annihila-tionatthesource.Severalfinal statesoftheannihilationprocess, resulting in different decay modes (

τ

+

τ

−, W+W−, bb, μ

¯

+

μ

−,

ν

ν

¯

) have been simulated,evaluating the spectrum of the result-ingneutrinoflux,

dNν

/

dEν , foreach WIMPmass.Eachchannel is consideredwitha100%branchingratio(BR).Notethatthematter densityintheGalacticCentreisnotenoughtocausedistortionsor absorptioneffectsinoutcomingneutrinospectra.

Flavouroscillations occurbetweensource anddetectionpoint. ThethreeneutrinoflavoursareequallyproducedinWIMPpair an-nihilations,andthedata setconsidered hereonlycontains muon neutrinosrecordedatthedetector.Theoscillations

ν

e

,

ντ into νμ,

aswell asthe lossof

νμ into

the other two flavours,have been accounted for. The energy distribution of neutrino final states is therefore obtained from a modulated superposition of the three flavours, in the long-baseline approximation,1 with coefficients takenfrom[1].Neutrinosandantineutrinosaresymmetrically pro-ducedinWIMPannihilations,andaredetectedindistinctlyby cur-rentneutrinotelescopes. Thisanalysisisrestricted tomuon neu-trinoeventsatthedetector,aswillbedescribedinSection2.

2. Detectoranddataset

ANTARES isan underwater Cherenkovdetectorsituatedin the

Mediterranean Sea 40 km offshore from Toulon. It is composed

of12detectionlinesinstrumentedwithphotomultipliertubes en-closed inoptical modules [18]. ANTARES data analysisallows for energy and directional reconstruction of charged particle tracks originatedfromaneutrinointeractionoccurringaroundthe detec-tor.Theverylargebackgroundofmuonsproducedinatmospheric interactions of cosmic rays is suppressed by considering events witharrivaldirectionscrossingtheEarth.Underthiscondition,the GalacticCentre,locatedatadeclinationof

29

.

01◦,isvisiblefrom thedetectorlatitudeabout70% ofthetime[19].

Inthispaper,11yearsofdatacollectedwithANTARESbetween

May2007andDecember2017are analysed,updatingupon prior

searches [20]. Signatures of neutrinos from DM annihilation are

searched for in a data sample composed of reconstructed muon

tracks originatingfrom chargedcurrent (CC) interactions of neu-trinos around the detector. A set of pre-selection cuts has been applied to discriminate these

νμ CC-induced

events from

atmo-spheric muon background; this first discrimination is based on

the zenith angle ofprovenience ofthe event andon the quality of thetrack reconstruction. Tracks are reconstructed inANTARES from the position andtimes of photomultiplier hits, recorded in generalfromdifferentdetectorlines. Thequality parameteris, in

thestandard approach,amaximumlikelihood

obtainedwitha

multi-line reconstruction fit [21]. At low energies, however, it is possible to best reconstructthose tracks hitting only one line of thedetectorusingasingle-linereconstruction[22];thisfitisbased ona

χ

2minimizationandthe

χ

2valueservesasaquality

param-eter. The single-line reconstruction is more efficient for energies

below

100GeV.

The parameters

and

χ

2 are used as quality indicator for

multi-line andsingle-line tracks respectively. Additionally, an an-gular errorestimate

β

, provided by themulti-line reconstruction fit, has been considered. Variable cuts have been applied as re-ported in Table 1, and the values yielding best sensitivity have beenchosentounblindthedata,asexplainedlaterinsection3.1.

This sample is composed of 8976 tracks reconstructed with

the multi-line algorithm and2522tracks withthe single-line al-gorithm recorded over 3170 days ofeffective livetime; note that in the text that follows the termneutrinos stands for

ν

+ ¯

ν

, as theevents generatedby their interactionsare seen indistinguish-ablyincurrentneutrinotelescopes.Tracks arereconstructedwith

1 TheE/L dependencyoftheoscillationsareaveragedoutforGeV–TeVneutrino energiesoverthedistancebetweentheEarthandtheGalacticCentre.

(5)

4 A. Albert et al. / Physics Letters B 805 (2020) 135439

Table 1

Final selection criteria applied to the data set. The qualityof the multi-line reconstruction fit is evalu-atedbyalikelihood andangularerrorestimateβ;

χ2characterisesthesingle-linefit;theangle

θis com-plementarytothezenith,suchthatcosθ >0 identifies anupgoing track,comingfromacrosstheEarth.

Fit Cut value

Multi-line >−5.2 Multi-line β <1◦ Single-line χ2<0.7

Both cosθ >0

an angular resolutionof theorder of 1◦ at theenergies relevant forthissearch[23].Givenitsgeometryandvolume,theANTARES telescopeisoptimisedforthedetectionofneutrinoswithenergies fromabout20GeVtoafewPeV.TheDManalysisis,therefore,in

themediumWIMPmassrange.TheamountofCherenkovphotons

induced along the paths of the propagating charged particles is proportionaltotheamountofdepositedenergyand,consequently, thenumber ofhit optical modules, NHITS,is a goodproxyofthe

neutrinoenergy

Eν .

A set of simulated data has been produced in

correspon-dencewiththeenvironmentalandtriggerconditionsofeachdata run [24],andhasbeenadaptedtothespecificDManalysisthrough theuseofweightsreproducingtheenergydistribution

dNν

/

dEν of eachWIMPannihilationchannel.Thesimulateddatausedforthis search contain

νμ CC

induced muons;thecontribution ofmuons from

ντ

τ

andsubsequent

τ

decayisnotconsideredinthe sim-ulatedsampleusedinthisanalysis.

Thesearchisoptimisedonshuffled(blind)right-ascensiondata, which are unblinded after having established the best selection criteria. A newly releasedversion ofthe ANTARES reconstruction software[21,22] wasrun onthefull dataset.Withthenew pro-cessing andreconstruction of the data a considerable amountof livetime could be recovered withrespect to the previous 9-year study[20].

The search method used forthis analysisis the same asthat used in the previous study [20], keeping into account the cor-rectionofacomputation problemwhichaffectedtheprevious re-sults [20].

3. Method

The signal from DM annihilation is expected to appear as a cluster of neutrino events scattered around the position of the Galactic Centre according to the J -factor profile, whose energy distribution reproduces the WIMP annihilation spectra [17]. This spatial cluster ofsignal eventsis to be found overa background of atmospheric neutrinos [25]. Both background estimation and search optimisation useshuffled (blinded) realdata,by replacing

the right ascension value with a random value between0◦ and

360◦.Thisrandomshufflewashesoutanypossiblespatial cluster-ing in correspondenceto the source, permitting to use real data withfakecoordinatestoaccuratelydescribethebackground distri-butionofevents.

Foridentifying the signal, discriminating variables are the di-rectionofthereconstructed neutrinotrackandthe energyproxy, NHITS, whose normalised distributions are used asan input in a

likelihoodfunctionasprobabilitydensityfunctions(PDFs).The sig-nal PDF,

S

, is built from simulated data weighted according to theWIMPannihilationspectra[17];thebackgroundPDF,

B

,is ob-tainedfromshuffleddata.Toassessthesignalsignificance,alarge numberofskymaps(pseudo-experiments)aregeneratedinjecting an variable number of signal events, ns, according to the signal PDF,overasetof

N

=

ns

+

nbgevents,with

n

bg backgroundevents.

Thetotalnumberofevents,N, isobtainedfromthetotalnumber oftracksinthe datasample.Thealgorithm usedtosearch foran excessofeventscomingfromtheregionofthe GalacticCentreis basedonanunbinnedlikelihoodfunction,

L

,associatedwitheach skymap(containing

N events)

log

L

(

ns

)

=

N



i=1 log



ns

S

i

,

NiHITS

,

qi

)

+

nbg

B

(δi,

NHITSi

,

qi)



nbg

ns, (5)

where

ψ

i istheangulardistanceofthe

i-th

eventfromthe Galac-tic Centre;

δ

i,the Equatorial declinationof the i-th event; NiHITS, the numberoflight hitsrecordedby the detectorandassociated with the i-th reconstructed track, and qi, the quality of the re-construction. The likelihood maximisation returns thenumber of signal events, ns, found to belong to a cluster around the fixed coordinatesoftheGalacticCentre(

α

,

δ

)=(266◦,

29

.

01◦).The sig-nificanceofaclusterisestablishedbytheteststatistics,TS,which

is a function of the ratio between the maximum and the pure

backgroundlikelihood T S

= −

log

L

(

ns

)

L

(

ns

=

0

)

.

(6)

To determine the significance of the observed TS, a series of

pseudo-experimentsisgenerated.Thisisperformedby creatinga largenumberofskymapswithavariablenumberofinjectedsignal events,

n

s,andrunningamaximumlikelihoodalgorithmoneach, returning the fitted number of events ns for each of them. The numberofeventsineach setofpseudo-experimentsissubjectto fluctuationsfollowingaPoissondistribution.Toincludethiseffect, a transformationthroughaPoissonfunction,

P

,isperformed, re-turningtheTSasafunctionofthePoissonianmean

μ

:

P

(

T S

(

μ

))

=

N



ns=1

P



T S

(

ns

)

P

(

ns

,

μ

),

(7)

where P

(

T S

)

indicatestheTSdistribution.

The main source of systematic uncertainties comes from the determinationoftheneutrinotrackdirection.Thetrack reconstruc-tion relies on the time resolution of the detector,dependent on thephotomultipliertimespread,onthecalibrationandonpossible spacemisalignmentofthedetectorlines.Theeffectofsystematic uncertainties was estimatedin aprevious analysis [23] toa total of15%. AGaussiansmearing of15%is appliedtothesignal PDFs toaccountfordetectorsystematics.

3.1. Sensitivity of the search method

FollowingNeyman’sprescription [26],anaverageupperlimiton thenumberofsignal eventsiscomputedfromthemedianofthe background test statistics T S0, compared with each distribution

P

(

T S

)

foreach pseudo-experiment set.The sensitivity isdefined asthe90% C.L.upperlimitforameasurementequaltothemedian ofthebackgroundTSdistribution.Theanalysiscutsareoptimised to yieldthebestsensitivity(see Section2andvaluesreportedin Table 1). If, afterunblinding, a value smallerthan the medianof thebackgroundTSisobservedinthedata,limitsare setequalto thesensitivity.

In case of a non-observation, a limit of the total number of signaleventsinthedata(

μ

90)isconvertedintoalimitonthe

in-tegratedflux,

νν , throughtheacceptance,

A

,andthelivetime, t, as

(6)

Fig. 1. Upperlimitsat90% C.L.onthethermallyaveragedcrosssectionforWIMP pairannihilationasafunctionoftheWIMPcandidatemasssetwith11yearsof ANTARESdata,shownforfiveindependentannihilationchannels(eachwith100% branchingratio)andNFWhalomodel[11].

νν

=

μ

90

A

·

t

.

(8)

Theacceptanceisdefinedastheconvolutionoftheeffectivearea, Ae f f [23],witheachannihilationmodespectrum

dNν

/

dEν [17]:

A

(

M

)

=

M



E0 e f f

(

)

dNν

(

)

dEν dEν

+ [

ν

→ ¯

ν

],

(9)

where M is theconsidered WIMP mass, E0 theenergythreshold

ofthe detector,determined fromthe first non-empty bin of the effectivearea,and

[

ν

→ ¯

ν

]

indicatesasymmetrictermfor antineu-trinos.Thedetectoreffectiveareaincreaseswithenergyduetothe raisewithenergyoftheCCcrosssection,combinedwiththebetter trackdefinitionofhigh-energyevents,andwithanincreaseinthe muonrange,making suchthat partially containedtrackscanstill bemeasured.Theacceptancecalculationreliesonspectraprovided byPPPC4. The integratedflux ofEquation (8) isconverted intoa measurement (limit) on the thermallyaveraged cross section for WIMP annihilation



σ

v



using Equation (2), fora given J -factor assumingaspecificparameterisationoftheDMhalomodel.

4. Results

Upon unblinding, the TS computed for 11 years of ANTARES

data is compatible with background. We observed a TS smaller

thanthe backgroundmedianforall cases(massesandchannels),

hence we set all limit values equal to the corresponding

sen-sitivities. This measurement sets limits on the cross section for

WIMP-pairannihilation shownin Fig.1 andcomputed according

toEquation (2). Thisfigureshowslimitsforthefivemost promi-nentWIMPpairannihilationchannels:

WIMP WIMP

bb

¯

,

τ

+

τ

,

W+W

,

μ

+

μ

,

ν

ν

¯

(10)

independentlycomputedwith100%BR. Thetotalamountofdark

matterwithina30◦anglearoundtheGalacticCentreistakeninto account,which correspondsto thesolid angle



inEquation (1). Bestlimitsareobtainedforthedirect

ν

ν

¯

channel,asseeninFig.1, whichhasthehighestacceptanceandthebestsensitivityin

num-ber of events, due to the shape of the energy spectrum which

peaks around the WIMP candidate mass; channels with steeply

fallingspectrasuchas

b

b give

¯

theleaststringentlimits.Predictions onneutrinofluxesderiving fromDMannihilationstronglyrelyon theparameterisationof the J -factor, asmentioned inSection 1.1. Fig.2showsthe90% C.L.limitson



σ

v



forthe

τ

+

τ

− channelfor

Fig. 2. Upperlimitsat90% C.L.onthethermallyaveragedcrosssectionforWIMP

pairannihilationasafunctionoftheWIMPcandidatemasssetwith11yearsof ANTARESdataforthreedifferenthalomodels [11,13,14].Here,onlythe

τ

+τ− chan-nelisshown.

Fig. 3. LimitsonthethermallyaveragedcrosssectionforWIMPpair-annihilation

setwith11yearsofANTARESdata,comparedwithcurrentsimilarsearchesfrom IceCube[27] andfrom

γ

-raytelescopesHESS[28],VERITAS[29] andFermi-LAT+ MAGIC[30].Allcurvesareforthe

τ

+τ−benchmarkchannel.

threedifferenthalomodels.TheNFWprofile [11] givespredictions overoneorderofmagnitudemorestringentthan

flat profiles

such asBurkert [14].Anintermediateresultisachievedforthe McMil-lanprofile[13] whichhasanintermediateinnerslope.Theresults presentedinthisworkrepresentan improvementrangingfroma factor1.1to1.4withrespecttotheprevious9-yearstudy[20], ac-cordingtotheWIMPmassandchannelconsidered.

5. Discussionandconclusions

Limitsonthethermallyaveragedcrosssection



σ

v



forDM an-nihilation towardstheGalacticCentre wereplacedusing11years ofANTARESdata.Someofthechannelsconsideredforthissearch alsoyield

γ γ

pairsasafinalproduct.Forthiscase,ANTARES lim-its are set in context withexisting limitsfrom

γ

-ray telescopes (Fig. 3) for the

τ

+

τ

− channel. In particular, the HESS Galactic Centresurvey[28] givesstrongconstraintsthankstothegood vis-ibility of this source from their location and to the prolongued

observation campaign performed on this target. Note that both

theMAGICandtheVERITASdetectorsarelocatedintheNorthern

Hemisphere and thereforethey obtain their limitson the WIMP

pairannihilationcross sectionfroma campaignofobservationof dwarf spheroidal Galaxies [29,30], not having the possibility to lookdirectly intothe GalacticCentre, ifnot withspecial settings for large zenith angle observations (e.g. [31]) with reduced sen-sitivity. Halo modeling in dwarf spheroidalGalaxies is subjectto

(7)

6 A. Albert et al. / Physics Letters B 805 (2020) 135439

large uncertainties, andcomparison with the Galactic Centre re-sultsisthereforenotdirect.TheresultsshownforIceCube[27] are

obtained withDeep Core data, a configuration where the whole

IceCube detector acts as a veto for atmospheric muons. Because of the GalacticCentre visibility,this analysis is limitedto WIMP masses up to 1 TeV/c2. All results shown in Fig. 3 are obtained withtheNFWprofile,withtheexceptionoftheHESSresultwhich referstotheEinastoDMhalomodel[32].

ThecurrentsearchesfordarkmatterperformedwithANTARES willbe continuedwithKM3NeT,which willinstrumentatotal of about1km3ofdeep-seawater[33].KM3NeThasamodularlayout

consistingofblocksof115detectionlineseach.Twomodulesare beingdeployedinalargevolume(36minter-optical-modulesand 90 minter-line spacing) to form the ARCA high-energy detector, andone inadensergeometryinstrumentingasmallervolume(9 mbetweenopticalmodules and20minter-linespacing)to form theORCAlow-energydetector.AstheprescriptionsfortheWIMP candidatemassvaryoverabroadrangeofvalues,bothARCAand ORCAwillcontributetoDMsearches.

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

The authors acknowledge the financial support of the

fund-ingagencies:CentreNationaldelaRechercheScientifique(CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives

(CEA),CommissionEuropéenne(FEDERfundandMarieCurie

Pro-gram), Institut Universitaire de France (IUF), IdEx program and

UnivEarthS Labexprogram atSorbonne ParisCité

(ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Labex OCEVU

(ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Région

Île-de-France (DIM-ACAV), Région Alsace (contrat CPER), Région

Provence-Alpes-Côte d’Azur, Département du Var and Ville de

La Seyne-sur-Mer, France; Bundesministerium für Bildung und

Forschung (BMBF), Germany; Instituto Nazionale di Fisica Nucle-are (INFN), Italy; Nederlandse Organisatie voor Wetenschappelijk

Onderzoek (NWO), the Netherlands; Council of the President of

the Russian Federationforyoung scientists and leading scientific schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research,Development and Innovation (UEFIS-CDI),Romania; Ministerio de Ciencia, Innovación yUniversidades

(MCIU): Programa Estatal de Generación de Conocimiento (refs.

PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER),

Severo Ochoa Centre of Excellence and MultiDark Consolider

(MCIU), Junta de Andalucía(ref. SOMM17/6104/UGR), Generalitat Valenciana: Grisolía (ref. GRISOLIA/2018/119), Spain; Ministry of Higher Education, Scientific Research and Training, Morocco. We alsoacknowledgethetechnicalsupportofIfremer,AIMandFoselev MarinefortheseaoperationandtheCC-IN2P3 forthecomputing facilities.

References

[1]M. Tanabashi,Particle DataGroup,Reviewofparticle physics, Phys. Rev.D 98 (3)(Aug2018)030001.

[2]N.W.Evans,J.L.Sanders,AlexGeringer-Sameth,Simplej-factorsandd-factors forindirectdarkmatterdetection,Phys.Rev.D93(May2016)103512.

[3]G. Bertone,Particle DarkMatter: Observations, Modelsand Searches, Cam-bridgeUniv.Press,Cambridge,2010.

[4]E.Tollet,A.V.Macciò,A.A.Dutton,G.S.Stinson,L.Wang,C.Penzo,T.A.Gutcke, T.Buck,X.Kang,C.Brook,A.DiCintio,B.W.Keller,J.Wadsley,NIHAO- IV:core creationand destructionindarkmatterdensity profilesacrosscosmic time, Mon.Not.R.Astron.Soc.456 (4)(Mar2016)3542–3552.

[5]A.Pontzen,F.Governato,Colddarkmatterheatsup,Nature506 (7487)(Feb 2014)171–178.

[6]P.Mollitor,E.Nezri,R.Teyssier,Baryonicanddarkmatterdistributionin cos-mologicalsimulations of spiral galaxies, Mon. Not. R. Astron. Soc. 447 (2) (2015)1353–1369.

[7]G.R.Blumenthal,S.M.Faber,R.Flores,J.R.Primack,Contractionofdarkmatter galactichalosduetobaryonicinfall,Astrophys.J.301(Feb1986)27.

[8]A.Ghari,B.Famaey,C.Laporte,H.Haghi,Darkmatter-baryonscalingrelations fromEinastohalofitstoSPARCgalaxyrotationcurves,AAP623(Mar2019) A123.

[9]W.J.G.deBlok,Thecore-cuspproblem,Adv.Astron.2010(Jan2010)789293.

[10]B.Famaey,DarkmatterintheMilkyWay,PoSP14(2016)051.

[11]J.F.Navarro,C.S.Frenk,S.D.M.White,Thestructureofcolddarkmatterhalos, Astrophys.J.462(1996)563.

[12]F.Nesti,P.Salucci,ThedarkmatterhalooftheMilkyWay,AD2013,J.Cosmol. Astropart.Phys.2013 (7)(Jul2013)016.

[13]P.J.McMillan,Themass distributionand gravitationalpotentialoftheMilky Way,Mon.Not.R.Astron.Soc.(2017).

[14]A.Burkert,Thestructureofdarkmatterhalosindwarfgalaxies,Astrophys.J. 447 (1)(1995)L25.

[15]T.Sjöstrand,S.Mrenna,P.Skands,PYTHIA6.4physicsandmanual,J.High En-ergyPhys.2006 (5)(May2006)026.

[16]G.Corcella,I.G.Knowles,G.Marchesini,S.Moretti,K. Odagiri,P.Richardson, M.H.Seymour,B.R.Webber,HERWIG6:aneventgeneratorforhadronemission reactionswithinterferinggluons(includingsupersymmetricprocesses),J.High EnergyPhys.2001 (1)(Jan2001)010.

[17]M.Cirelli,G.Corcella,A.Hektor,G.Hutsi,M.Kadastik,P.Panci,M.Raidal,F. Sala,A.Strumia,PPPC4DMID:apoorparticlephysicistcookbookfordark matterindirectdetection,J.Cosmol.Astropart.Phys.1103(2011)051,Erratum: J.Cosmol.Astropart.Phys.1210(2012)E01.

[18]M.Ageron,etal., ANTARES:thefirstunderseaneutrinotelescope,Nucl. In-strum.MethodsPhys.Res.,Sect.A656 (1)(Nov2011)11–38.

[19]T.Pradier,Coincidencesbetweengravitationalwaveinterferometersandhigh energyneutrinotelescopes,Nucl.Instrum.MethodsPhys.Res.,Sect.A,Accel. Spectrom.Detect.Assoc.Equip.602 (1)(2009)268–274.

[20]A.Albert,etal.,ResultsfromthesearchfordarkmatterintheMilkyWaywith 9yearsofdataoftheANTARESneutrinotelescope,Phys.Lett.B769(2017) 249,Erratum:Phys.Lett.B796(2019)253–255.

[21]S.Adrián-Martínez,etal.,Searchforcosmicneutrinopointsourceswithfour yearsofdatafromtheantarestelescope,Astrophys.J.760 (1)(Nov2012)53.

[22]J.A.Aguilar, et al., A fast algorithm for muon trackreconstruction and its applicationtotheantaresneutrinotelescope,Astropart.Phys.34 (9)(2011) 652–662.

[23]A. Albert,et al., First all-flavorneutrino pointlike source search with the ANTARESneutrinotelescope,Phys.Rev.D96 (8)(Oct2017)082001.

[24]A.Margiotta,Commonsimulationtools forlargevolumeneutrinodetectors, Nucl.Instrum.MethodsPhys.Res.,Sect.A725(Oct2013)98–101.

[25]M.Honda,T.Kajita,K.Kasahara,S.Midorikawa,T.Sanuki,Calculationof atmo-sphericneutrinofluxusingtheinteractionmodelcalibratedwithatmospheric muondata,Phys.Rev.D75 (4)(Feb2007)043006.

[26]J.Neyman,Outlineofatheoryofstatisticalestimationbasedontheclassical theoryofprobability,Philos.Trans.R.Soc.Lond.Ser.A236 (767)(Aug1937) 333–380.

[27]M.G.Aartsen,etal.,Searchforneutrinosfromdarkmatterself-annihilationsin thecenteroftheMilkyWaywith3yearsofIceCube/DeepCore,Eur.Phys.J.C 77(2017)627.

[28]H.Abdallah,A.Abramowski,F.Aharonian,F.AitBenkhali,A.G.Akhperjanian, E.Angüner,M.Arrieta,P.Aubert,M.Backes,A.Balzer,Searchfordarkmatter annihilationstowardstheinner galactic halofrom10yearsofobservations withH.E.S.S.,Phys.Rev.Lett.(2016).

[29]S.Archambault,etal.,Darkmatterconstraintsfromajointanalysisofdwarf spheroidalgalaxyobservationswithVERITAS,Phys.Rev.D95(2017)082001.

[30]M.L.Ahnen,etal.,Limitstodarkmatterannihilationcross-sectionfroma com-binedanalysisofMAGICandFermi-LATobservationsofdwarfsatellitegalaxies, J.Cosmol.Astropart.Phys.2016 (2)(Feb2016)039.

[31]J.Albert,etal.,Observationofgammaraysfromthegalacticcenterwiththe MAGICtelescope,Astrophys.J.638 (2)(Feb2006)L101–L104.

[32]J.Einasto,Ontheconstructionofacompositemodelforthegalaxyandonthe determinationofthesystemofgalacticparameters,Tr.Astrofiz.Inst.Alma-Ata 5(Jan1965)87–100.

[33]S.Adrián-Martínez,etal.,LetterofintentforKM3NeT2.0,J.Phys.G,Nucl.Phys. 43 (8)(Aug2016)084001.

Figure

Fig. 1. Upper limits at 90% C.L. on the thermally averaged cross section for WIMP pair annihilation as a function of the WIMP candidate mass set with 11 years of ANTARES data, shown for five independent annihilation channels (each with 100%

Références

Documents relatifs

Suivent les lots d’œufs achetés au niveau des différents points de vente des œufs avec un taux de contamination de 32.22%, puis les lots d’œufs provenant des bâtiments

Figure 6.28: Comparison of the multi-lines, single-line and combined sensitivities to neutrino flux coming from dark matter annihilation inside the Sun as a function of WIMP mass

We discuss a robust and fairly model-independent upper bound on the possible neutrino flux produced by neutralino annihilation in the center of our galaxy, and show that its

In this work I use astrometric and spectroscopic data on the S2 star at the Galactic centre (GC) up to 2016 to derive specific constraints on the size of a dark matter (DM) spike

Preliminary studies of this improved analysis looking for neutrino produced by annihilation of Dark Matter inside the Sun performed on the ANTARES data set collected between 2007

Limit on the LKP-to-proton cross section as a function of the mass of the LKP B (1) particle obtained from the search of neutrino events produced by Dark Matter annihilation

Figure 1 (right) presents the expected sensitivity of ANTARES with the data collected in 2007-2008 to the flux of neutrino-induced muons produced by annihilations of Dark Matter

Prospects of indirect detection in the close-by dark matter dominated Sagittarius dwarf galaxy are investigated in MSSM and Kaluza-Klein scenarii.. 2 γ-rays from Dark