• Aucun résultat trouvé

Sums of Dirac masses and conditioned ubiquity Sommes de masses de Dirac et ubiquit´e conditionnelle

N/A
N/A
Protected

Academic year: 2022

Partager "Sums of Dirac masses and conditioned ubiquity Sommes de masses de Dirac et ubiquit´e conditionnelle"

Copied!
7
0
0

Texte intégral

(1)

Sums of Dirac masses and conditioned ubiquity Sommes de masses de Dirac et ubiquit´e conditionnelle

Julien Barral St´ ephane Seuret

a

aEquipe Complex, INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France

Abstract

Multifractal formalisms hold for certain classes of atomless measuresµ obtained as limits of multiplicative pro- cesses. This naturally leads to ask whether non trivial discontinuous measures obey such formalisms. This is the case for a new kind of measures, whose construction combines additive and multiplicative chaos. This class is defined byνγ,σ=X

j1

b−jγ j2

bj−1

X

k=0

µ([kb−j,(k+ 1)b−j))σδkb−j (supp(µ) = [0,1],binteger≥2,γ≥0,σ≥1).Under suitable assumptions on the initial measureµ,νγ,σobeys some multifractal formalisms. Its Hausdorff multifractal spectrumh7→dνγ,σ(h) is composed of a linear part forhsmaller than a critical valuehγ,σ, and then of a concave part whenh≥hγ,σ. The same properties hold for the Hausdorff spectrum of some function seriesfγ,σconstructed according to a scheme similar to the one ofνγ,σ. These phenomena are the consequences of new results relating ubiquitous systems to the distribution of the mass ofµ.

R´esum´e

Les formalismes multifractals sont v´erifi´es par certaines classes de mesures diffusesµlimites de processus multipli- catifs. Cela pose naturellement la question de savoir s’ils le sont encore pour des mesures non diffuses non triviales.

C’est effectivement le cas pour des mesures d’un type nouveau, qui mˆelent chaos additifs et multiplicatifs. Cette classe de mesures est d´efinie parνγ,σ =X

j1

b−jγ j2

bj−1

X

k=0

µ([kb−j,(k+ 1)b−j))σδkb−j (supp(µ) = [0,1],bentier ≥2, γ ≥ 0,σ ≥ 1).Sous certaines hypoth`eses sur µ, plusieurs formalismes multifractals sont en effet satisfaits par νγ,σ. De plus, son spectre multifractal de Hausdorffh7→dνγ,σ(h) se compose alors d’une partie lin´eaire pourh plus petit qu’une valeur critiquehγ,σ, puis d’une partie concave pourh≥hγ,σ. Cette propri´et´e est partag´ee par le spectre de Hausdorff de s´eries de fonctionsfγ,σ construites de fa¸con analogue `aνγ,σ. L’analyse des singularit´es de ces objets fait appel `a de nouveaux r´esultats combinant la notion d’ubiquit´e avec les propri´et´es d’auto-similarit´e de la mesureµ.

Email addresses:Julien.Barral@inria.fr(Julien Barral),Stephane.Seuret@inria.fr(St´ephane Seuret).

(2)

Version fran¸caise abr´eg´ee

Soitµune mesure bor´elienne positive sur [0,1]. Soitbun entier≥2,γ≥0 etσ≥1. Consid´erons la me- sure constitu´ee d’atomesνγ,σ =P

j1j2Pbj1

k=0 bµ([kbj,(k+ 1)bj))σδkb−j. Nous nous int´eressons au spectre de Hausdorff de νγ,σ, c’est-`a-dire `a la fonction dνγ,σ qui `a un exposant h ≥ 0 associe la dimension de Hausdorff dimEhνγ,σ de l’ensembleEhνγ,σ ={x: lim infr0+

logνγ,σ(B(x,r)) logr =h}.

A une mesure de Borel positive` νsur [0,1], nous associons sa fonction d’´echelleτν(q) d´efinie relativement

`

a la grilleb-adique comme dans [6], et la transform´ee de Legendreτν(h) = infqR(qh−τν(q)). On dit que le formalisme multifractal est valide pourν enhsi dimEhνν(h).

On a alors le th´eor`eme suivant, qui d´epend de deux conditions sur µ : C1 demande que le support de µ soit [0,1] et que supx[0,1],r(0,1)logµ(B(x,r))logr < ∞. Etant donn´e un exposant h ≥ 0, C2(h) est v´erifi´ee lorsque la famille{(kbj,2bj)}j1,k=0,..,bj forme un syst`eme h´et´erog`ene d’ubiquit´e par rapport

`

a µ, h, τµ(h)

au sens de [4].

Th´eor`eme 0.1 Supposons que C1 soit v´erifi´ee par µ. Soit qγ,σ = inf{q ∈ R : τµ(σq) +γq = 0} et hγ,σ=στµ0(σqγ,σ ) +γ. On a qγ,σ ∈(0,1]et0≤hγ,σ ≤qγ,σ1.

(i) Si hγ,σ > 0, alors pour tout h ∈ [0, hγ,σ], dνγ,σ(h) ≤ qγ,σh. De plus, si C2 hγ,σσγ

est v´erifi´ee, alors pour touth∈[0, hγ,σ],dνγ,σ(h) =qγ,σh, et le formalisme multifractal est valide en h.

(ii) Sih≥hγ,σ, alors dνγ,σ(h)≤τµ hσγ

. De plus, siC2 hγ,σσγ

est v´erifi´ee, dνγ,σ(h) =τµ hσγ , et le formalisme multifractal est valide enh.

Lorsqu’elle est v´erifi´ee, C2 h

permet de calculer la dimension de Hausdorff d’ensembles limsup Sµ(α, δ,ε) ´e etroitement li´es `a la fois `a la distribution de la masse deµet `a la famille des pointsb-adiques {(kbj,2bj)}j1,k=0,..,bj. En effet, on a :

Th´eor`eme 0.2 Soith >0. ´Etant donn´esδ≥1 et une suite positive eε={εj}j, on d´efinit l’ensemble Sµ(h, δ,ε) =e \

N1

[

nN:b−j(h+εj)µ [kb−j,(k+1)b−j)

b−j(h−εj)

[kbj−b, kbj+b].

Supposons queC2 h

soit v´erifi´ee parµ. Il existe une suite positiveεeconvergeant vers 0 telle que pour chaqueδ≥1, il existe une mesure de Borel positivemδ sur[0,1]telle quemδ(Sµ(h, δ,ε))e >0, et pour tout bor´elienE⊂[0,1]tel quedimE < τµ(h)/δ,mδ(E) = 0. En particulier, on adimSµ(h, δ,ε)e ≥τµ(h)/δ.

La connaissance de la dimension de Hausdorff de ces ensemblesSµ(h, δ,ε) permet le calcul dee dνγ,σ.

1. Introduction

Among the measures whose multifractal analysis can be performed, two families can be distinguished by the shape of their Hausdorff spectrum. On one side, measures built on an additive scheme, such as the Lebesgue-Stieljes measure associated with L´evy subordinators [10] for instance, classically exhibit linear increasing spectrum. On the other side, atomless measures with a construction involving a multiplicative scheme usually have a strictly concave spectrum, including a decreasing part when h is larger than a typical exponentht. Multinomial measures, Mandelbrot multiplicative cascades and their extensions, are classical examples of such measures, with the well-knownT

-shaped spectrum.

We consider a distinct construction scheme which mixes both additive and multiplicative structures.

Definition1.1 If µ is a positive Borel measure on [0,1] andb is an integer greater than 2, let νγ,σ be the measure defined with the help of two parameters γ≥0 andσ≥1 by

(3)

νγ,σ =X

j1

j2 X

k=0,...,bj1

bµ([kbj,(k+ 1)bj))σδkb−j. (1)

The multifractal behavior of these measures combines the two typical multifractal behaviors described above. A part of their multifractal spectrum is closely related to the non-emptiness of a new kind of limsup-setsSµ(α, δ, M) defined by (4). The computation of the Hausdorff dimension of these sets requires new ubiquity results (see Section 4 and [4]) which extend to the multifractal frame the classical ubiquity results only valid for a monofractal measureµ[7,11].

2. Multifractal spectrum of the new class of measures νγ,σ

The local regularity of a measureµat a pointxis hereafter described by the H¨older exponenthµ(x) = lim infr0+ logµ(B(x,r))

logr . The multifractal analysis ofµconsists in computing the Hausdorff dimensions of the level sets of this H¨older exponentEhµ ={x:hµ(x) =h},h≥0. Then one tries to find the multifractal spectrum ofµ,h7→dµ(h) = dim(Ehµ),where dim(E) stands for the Hausdorff dimension of the setE.

In order to fully state our result, the notion of multifractal formalism for measures is required. A multifractal formalism is a formula which relates, via a Legendre transform, the multifractal spectrum dµ to a scaling function associated withµ [6,15]. Here, we adopt the following definition for the scaling function [6]: ∀q ∈ R, τµ(q) = lim infj+1jlogbP

0kbjµ [kbj,(k+ 1)bj)q

, with the convention 0q = 0,∀q. The multifractal formalism is said to hold forµat exponenthwhen the multifractal spectrum ofµathis equal to the Legendre transformτµ ofτµ ath, i.e. whendµ(h) =τµ(h) = infqR(qh−τµ(q)).

Our result invokes two technical conditions. C1simply requires that the support of the measureµis [0,1] and that one has the control supx[0,1],r(0,1)logµ(B(x,r))logr <∞.C2(h)is said to hold for the measure µ and the exponent h when the family of points {(kbj,2bj)}j1,k=0,..,bj1 forms an heterogeneous ubiquitous system with respect to µ, h, τµ(h)

(see Section 4).

Theorem 2.1 Letµbe a positive Borel measure supported by[0,1], and assume thatC1holds forµ. Let γ≥0 andσ≥1, and consider the measureνγ,σ defined in (1). Let qγ,σ = inf{q∈R:τµ(σq) +γq= 0}, andhγ,σ=στµ0(σqγ,σ ) +γ. One has qγ,σ∈(0,1]and0≤hγ,σ≤qγ,σ1.

(i) Ifhγ,σ >0, for everyh∈[0, hγ,σ],dνγ,σ(h)≤qγ,σh. If moreover C2 hγ,σσγ

holds, then for every h∈[0, hγ,σ] dνγ,σ(h) =qγ,σh, and the multifractal formalism holds ath.

(ii) If h≥hγ,σ, thendνγ,σ(h)≤τµ hσγ

. If moreoverC2 hγ,σσγ

holds, dνγ,σ(h) =τµ hσγ

, and the multifractal formalism holds at h.

Theorem 2.1 applies to several classes of atomless statistically self-similar measures µ (see [2,5]), as well as to the measureν0,1itself: In this case the process can be iterated, the spectrum being unchanged.

It is shown in [2] that multifractal formalisms that focus on level sets such as{x: limr0

logνγ,σ(B(x,r))

logr =

h}(defined using a limit instead of a lim inf) do not hold for these measuresνγ,σ athwhen 0< h < hγ,σ. Theorem 2.1 thus pleads for the choice of the setsEhνγ,σ defined using the H¨older exponenthνγ,σ(x).

Also, the measuresνγ,σ provide new examples of measures that may have a scaling functionτνγ,σwhose derivative does not exist at some point (hereqγ,σ), while satisfying a multifractal formalism. Such a non differentiability is called a phase transition in the thermodynamical terminology.

(4)

ht d (h)µ

h o

1

o

1 1

d (h)µ d (h)

f

h h

h h h

t hc t γ t

ν f wav

d (h) or d (h)

o

Fig.1: Typical multifractal spectrum of a measureµbuilt on an (Left) additive or (Middle) multiplicative scheme, and (Right) ofνγ,σ(Theorem 2.1) andfγ,σ(Theorem 3.1) withγ= 0 andσ= 1; offwav(Theorem 3.2) with arbitraryγ, σ.

Fig.1: Spectre multifractal typique d’une mesureµconstruite sur un sch´ema (gauche) additif ou (centre) multiplicatif, et (droite) deνγ,σ(Th´eor`eme 2.1) oufγ,σ (Th´eor`eme 3.1) avecγ= 0,σ= 1; defwav(Th´eor`eme 3.2) avecγ, σquelconques.

3. Multifractal spectrum of function seriesfγ,σ naturally associated with νγ,σ

The multifractal analysis of functions constitutes a companion domain of the multifractal analysis of measures. Given a bounded functionf on [0,1],x0∈(0,1) andh≥0,f ∈Ch(x0) if there exist a constant C and a polynomial P of degree ≤hsuch that

f(x)−P(x−x0)

≤C|x−x0|h forx close enough to x0. The pointwise H¨older exponent of f at x0 [9] is then defined as hf(x0) = sup{h:f ∈ Ch(x0). The multifractal analysis off consists in computing its Hausdorff spectrumdf :h7→dim{x:hf(x) =h}.

Inspired by the construction of the measures νγ,σ, it is natural to build functions with a structure comparable with the one of νγ,σ. Let π be a positive Borel measure supported by [0,1], φ a bounded function onR,γ≥0 andσ≥1. In two situations, we study the function series defined by

f(x) =

+

X

j=1

fj(x) wherefj(x) = b j2

X

k=0,...,bj1

π([kbj,(k+ 1)bj))σφ(bjx−k). (2)

The first choice ofφcreates a discontinuity at eachb-adic number, the second one uses a wavelet.

Theorem 3.1 Under the assumptions of Theorem 2.1, and ifφ(x) = (x−1)11(x1)[0,1) andπ=µ, the corresponding function series (2), here denoted byfγ,σ, satisfy:

(i) Ifhγ,σ >0 andC2 hγ,σσγ

holds, for anyh∈

0,hγ,σσγ

,dfγ,σ(h) =qγ,σh.

(ii) If h≥hγ,σ andC2 hσγ

holds, thendfγ,σ(h) =dµ hγ σ

µ hσγ .

Theorem 3.2 b = 2. Under the assumptions of Theorem 2.1, if φ is a C wavelet as constructed for instance in [14] and ifπ=ν0,1, the corresponding function series (2), denoted herefwav, satisfy:

(i) Ifh0,1>0andC2(h0,1)holds, for anyh∈[γ, γ+σh0,1], one hasdfwav(h) =q0,1hσγ. (ii) If h≥γ+σh0,1 andC2 hσγ

holds, thendfwav(h) =dµ hγ σ

µ hσγ .

Theorem 3.1 is established in [3], and Theorem 3.2 is a consequence of a work achieved in [1].

The interest in function series with bounded variations and having a dense set of discontinuities goes back to the note of C. Jordan [12], where the spaceBV was introduced.

4. Ubiquity revisited via multifractality

Along the proof of Theorem 2.1, the non-emptiness of limsup-sets defined asSµ(α, δ, M) in (4) is crucial.

The study of this kind of sets is comparable with classical problems of ubiquity [7], but here the sets

(5)

Sµ(α, δ, M) are conditioned by a property PM which depends on a (statistically self-similar) measureµ.

We thus need a refinement of the ubiquity results in order to be able to combine the approximation rate by some family of points with the multifractal properties of a measureµ. This is achieved by Theorem 4.2.

Letd ≥1 and µa positive Borel measure on [0,1]d. The analysis of the local structure of µ may be naturally done on ac-adic grid for somec≥2. This is the case for instance for multinomial measures or Mandelbrot cascades. We shall thus need the following notations. For every integerj ≥1 and for every multi-integer k = (k1, . . . , kd) ∈ Nd, let us denote by Ij,k thec-adic box Πdi=1[kicj,(ki+ 1)cj). For every pointx∈[0,1)d,∀j≥1, we denotekj,x the uniquek∈Nd such thatx∈Ij,kj,x.

Definition4.1 Letµbe a positive Borel measure supported by[0,1]d, andα,β two positive real numbers.

Let{xn}nNbe a sequence in[0,1]d, and let{λn}nNbe a non-increasing sequence of positive real numbers converging to 0. The family{(xn, λn)}nNis said to form an heterogeneous ubiquitous system with respect to(µ, α, β)if the following conditions(1-4) are fulfilled (|I|stands for the diameter of the setI).

(1)There exist φandψ, two non-decreasing continuous functions defined on R+ such that (i)ϕ(0) = ψ(0) = 0,r7→rϕ(r)andr7→rψ(r)are non-increasing near0+, andlimr0+rϕ(r)= +∞;(ii)∀ε >0, r7→rεϕ(r) is non-decreasing near 0;(iii) (2),(3) and(4)hold.

(2)There exist a measure mwith a support equal to[0,1]d, which satisfies the following properties:

(i)m-almost every y∈[0,1]d belongs toT

N1

S

nNB(xn,λ2n).

(ii) For m-almost everyy∈[0,1]d, there exists an integerj(y)such that

∀j ≥j(y), ∀k such thatkk−kj,yk≤1, m Ij,k

≤ |Ij,k|βϕ(|Ij,k|) (3) (iii) There exists a constantM (depending onc andµ) such that form-almost everyy∈[0,1]d, one can find an integerj(y)such that∀j≥j(y),∀ ksuch thatkk−kj,yk≤1,PM(Ij,k)holds, where PM(I)is said to hold for a setI and a constantM when M1|I|α+ψ(|I|)≤µ I

≤M|I|αψ(|I|).

(3) (Self-similarity ofm) For every c-adic box I of [0,1]d, let fI denote the canonical affine mapping fromI onto[0,1]d. There exists a measuremI onI, equivalent to the restriction ofmtoI, such that the measuremI◦fI1 satisfies (3), and with the same exponent β.

Let us define the non-decreasing sequence{EnI}n1 of sets of [0,1]d

EnI =

 y∈I:

∀ j≥n+ logc |I|1 ,

∀k such thatkk−kj,yk≤1,

mI Ij,k

≤ |Ij,k|

|I|

βϕ |Ij,k|

|I|

 .

By (3),S

n1EnI is of fullmI-measure. DefinenI = inf

n≥1 : mI(EnI)≥12kmIk .

(4)(Speed of renewal of level sets and control of the mass kmIk) There exists Jm such that for every j≥Jm, for everyc-adic box I=Ij,k,nI ≤logc |I|1)ϕ(|I|)and |I|ϕ(|I|)≤ kmIk.

Theorem 4.2 Let us assume that{(xn, λn)}nN forms an heterogeneous ubiquitous system with respect to(µ, α, β). For δandM two real numbers greater than 1, let

Sµ(α, δ, M) = \

N1

[

nN:PM(B(xnn))holds

B(xn, λδn). (4)

There exists a constant M such that for every δ ≥ 1, one can find a positive measure mδ such that mδ(Sµ(α, δ, M)) > 0, and for everyx ∈ Sµ(α, δ, M), lim supr0+

mδ B(x,r)

rβ/δ−(4+d)ϕ(r) < ∞. In particular, dimSµ(α, δ, M)≥β/δ.

Theorem 4.2 is established in [4]. Heuristically, since PM(I) ensures that µ(I) ∼ |I|α up to a small correction, Theorem 4.2 allows the computation of the Hausdorff dimension of sets of points xthat are infinitely often close at rateδto pointsxn(i.e. such thatkx−xnk≤λδn) that verifyµ(B(xn, λn))∼λαn.

(6)

Theorem 4.2 is referred to as “measure-conditioned ubiquity” because it involves an ubiquity property of a family of points that must satisfy some property. Here this property is related to the behavior of µ B(xn, λn)

. The “usual” ubiquity theorems [7,11] must be seen as Theorem 4.2 in the particular case where the measureµis the Lebesgue measure, that is the condition is empty sinceµis strictly monofractal.

•Examples of families {(xn, λn)}:- Theb-adic family

(kbj,2bj) k

Nd, jN (whereb∈N\{0,1} can differ fromc) and the family of rational numbers

(p/q,2/q1+1/d) p

Nd, qN satisfy (i) of assumption (2)for any measure m, because lim supn→∞B(xn, λn/2) = [0,1]d in these cases. Ifmis atomless,d= 1 andα∈R\Q, the family{({nα},2/n)}nN satisfies (i) of(2)({x}is the fractional part ofx).

- Item (i) of (2) can also be satisfied almost surely for some random families of points. Let {xn} be a sequence of points independently and uniformly distributed in [0,1]d, and {λn}n be a non-increasing sequence of positive numbers. If lim supn+ Pn

p=1λp/2−dlogn

= +∞then, with probability one, lim supn→∞B(xn, λn/2) = [0,1]d (see [13]).

• Examples of measures µ: Suppose that lim supn→∞B(xn, λn/2) = [0,1]d. In [5], the properties required by Definition 4.1 are shown to hold for several classes of statistically self-similar measures (multi- nomial measures, Gibbs measures and their random counterparts) withα >0 andβ =τµ(α) as soon as τµ(α)>0. We mention that, in order to treat the Mandelbrot multiplicative cascades, a slight stronger version of Theorem 4.2 is required, see [4,5].

5. Another application of Theorem 4.2: Conditioned Diophantine approximation

Consider for the family {(xn, λn)}n the pairs {p/q,1/q2}p,qN2, p<q. For any x ∈ [0,1], consider the b-adic expansion of x = P

m=1xmbm, where ∀m, xm ∈ {0,1, . . . , b−1}. Let φi,n(x) be the function x7→φi,n(x) =#{mn:xn m=i}.Given (ρ0, ρ1, . . . , ρb1)∈(0,1)b such thatPb1

i=0ρi= 1, andδ >1, let Eδρ01,...,ρb−1=

x∈[0,1] :

there is an infinite number of integerspn, qn such that |x−pn/qn| ≤qn and∀i∈ {0,1, . . . , b−1}, lim

n+φi,[log

bq2n] pn/qn

i

 .

Besicovitch and later Eggleston [8] found dimEρ101,...,ρb−1 =Pb1

i=0−ρilogbρi. We address the problem of the computation of the Hausdorff dimension of the setsEδρ01,...,ρb−1, which is the set of points which are well-approximated by rational numbers that have given frequencies of digits. This problem is not covered by the usual ubiquity results. Applying Theorem 4.2 with the multinomial measureµassociated with the weights (ρ0, ρ1, . . . , ρb1) and with the family {(xn, λn)}nN = {(p/q,1/q2)}p,qN×N yields dimEδρ01,...,ρb−1≥δ1Pb1

i=0−ρilogbρi. The opposite inequality follows from standard arguments.

References

[1] J. Barral, S. Seuret, From multifractal measures to multifractal wavelet series, Preprint, 2002.

[2] J. Barral, S. Seuret, Combining multifractal additive and multiplicative chaos, Preprint, 2004.

[3] J. Barral, S. Seuret, Functions with multifractal variations, Math. Nachr. (2004) 274–275, 3–18.

[4] J. Barral, S. Seuret, Heterogeneous ubiquitous systems inRdand Hausdorff dimension, Preprint, 2004.

[5] J. Barral, S. Seuret, Speed of renewal of level sets for statistically self-similar measures, Preprint, 2004.

[6] G. Brown, G. Michon, J. Peyri`ere, On the multifractal analysis of measures, J. Stat. Phys. (1992) 66(3-4), 775–790.

(7)

[7] M.M. Dodson, M.V. Meli´an, D. Pestane, S.L. V´elani, Patterson measure and Ubiquity, Ann. Acad. Sci. Fenn. Ser. A I Math. (1995) 20(1), 37–60.

[8] H. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J. Math. Oxford Ser. (1949) 20, 31–36.

[9] S. Jaffard, Exposants de H¨older en des points donn´es et coefficients d’ondelettes, C. R. Acad. Sci. Paris,308erie I (1989), 79–81.

[10] S. Jaffard, The multifractal nature of L´evy processes, Prob. Th. and Rel. Fields (1999) 114(2), 207–227.

[11] S. Jaffard, On lacunary wavelet series, Ann. of Appl. Prob. (2000) 10(1), 313–329.

[12] C. Jordan, Sur la s´erie de Fourier, C. R. Acad. Sci. Paris, 92 (1881), 228-230.

[13] J.P. Kahane, Some random series of functions, 2nd Ed. Cambridge Univ. Pres, 1985.

[14] Y. Meyer, Ondelettes et Op´erateurs, Hermann, 1990.

[15] L. Olsen, A multifractal formalism, Adv. Math. (1995) 116, 92-195.

Références

Documents relatifs

In Section 2 we make the necessary computations concerning the Riemannian structure on the frame manifold and its two-fold covering P\ In Section 3 we relate the index density of

Combined with Theorem 7.14, the previous result yields a complete de- scription of the size and large intersection properties of A n,ψ. We assume that A n,ψ has Lebesgue measure

In his extremely suggestive essay entitled “Towards an Immersive Intelligence”, artist and theorist Joseph Nechvatal defines immersive virtual reality art as “an art that has a

This radiation is absorbed and scattered in the outer edges of the clouds, while the coreshine comes from the inner dense regions lacking any UV or optical

There were two main types of election in Venice: those reserved to the Signoria and the Consiglio dei Pregadi (Senate), two smaller assemblies, which had to decide for the

The previous calculations and Table 1 explain why sam- pled classic PI and PID controllers take into account, if their gains are properly tuned, the structural term −F/α, which

In section 1 we recall some background material on cluster-tilting objects in 2-CY categories, on generalized cluster categories from [Ami08] and on Jacobian algebras from

pressure of about 9 kbar this organic conductor undergoes a sharp conductor to semiconductor transition at a temperature which depends on the applied hydrostatic