• Aucun résultat trouvé

Cyclical versus non-cyclical harvesting policies in renewable resource economics

N/A
N/A
Protected

Academic year: 2021

Partager "Cyclical versus non-cyclical harvesting policies in renewable resource economics"

Copied!
20
0
0

Texte intégral

(1)Cyclical versus non-cyclical harvesting policies in renewable resource economics Katrin Erdlenbruch, Alain Jean-Marie, Michel Moreaux, Mabel Tidball, . European Association of Environmental And Resource Economists. To cite this version: Katrin Erdlenbruch, Alain Jean-Marie, Michel Moreaux, Mabel Tidball, . European Association of Environmental And Resource Economists. Cyclical versus non-cyclical harvesting policies in renewable resource economics. 15. EAERE Annual conference, Jun 2007, Thessalonique, Greece. 18 p. �hal02822507�. HAL Id: hal-02822507 https://hal.inrae.fr/hal-02822507 Submitted on 6 Jun 2020. HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés..

(2)  .

(3)

(4)    

(5)    

(6) 

(7)    

(8) .    

(9)           

(10)      1. 2. 3. 4. 

(11)     2 .      3        4       1.   .  !  " # ! $ %" & '  &   #(  '& !" %& ) *+,-  ! #   "  %      ' !   !       # ! &   &      ( ) %   &     % ( )      ' '  '& !   '.     ! &   ( ) !" ! !  ! %!  ''  ! '  ! % &      ' ! /!   $ !   $0     ' *,-( ) 1& '  !   !    "  '' ' !" ! !   '  !    &  !  (    23 4+(.        "%    !   (.

(12)    ! ! %!   "%      ''  %!  ' % (  % ' ! '  !  1!    ''   %  !      !  '  %   # !   $ ' !   "!( ! !  %!   & %         # "! '%  1!0 &         5 1! '   !    "$    ''     '    ''( . &  ! '  '  !    !      ' '   '     '( ! & !  '.   ! ! %!  ' '  '. &   (  !    !  " " ' ! " %' 5 ' "!! '   & !  ' ' "!! '    &  "! &  '1'     6   5 ! ' "( ) " %!  $ %" & '  & !  %& !  '&  ! !   (    '      ' 7& ) *+,-8 "   ' "! ! " $"    ' ' %& $ *,- ' $     ' "!! & ! '   $ $  &      &   ''  ! !   ( 9    ! &  ! " ' " " %:& " ! '.  "!&    # & % &5 !  &  ! %;   & &    "  $ . '  !      !   ! #       ' !   ! !   ( & " $" ' %   ! (  ! " " " & % ' "! 1  !< '  !  ! " ' " " &  '!( ! 1  & %!  '%'     " & %&  0   (  !  ' 7  # ' *32- =   ' ! *3+-  >&' ' 9!!&& *3?-8  ' %&   %     !  %  ! %(  ''   ! '   $ '' %  ' !  1#' ! '   *32- *3+-   ''   *3?-( @ &      '(  ' &  & ! %!     ' "!     ( '' ) *+,-  ! %& ! &   & % '   !  &  ! !   ( !      !   %  !    !      $  1%  '& ! ! '( A #   ' "!       !    '     '' %&  *+B- 7   <.  ' / *+3-8( '  ! #&     '  ' ' %& >' ' >&' *3C- ' '   *3,-  D' *++- %   1  !< &( !   ! & ' ' %&  !  ! %!    7    '8 %  ! &     %   ! 1  !<( +.

(13)  !' &  & %!     ' "!  ( A #  !  '   1! 7  # @ *3B-8 "! 1! '   !     &( @ # ! & %!  %& " 5      '  &  1! ( ''  & %   ! 1!  "  ! #   ! !'  1   < % 1!  "! !! E&( & ) *+,- ! !" ! !   !     ' !   &   &  ( @ %' ! &  !     ' %& $ $ '  *F-  ' "! "  % ' 1  !<(  ! ' ! !      "!! '  ) ' &    'E     ' !   $ ''(  ) !" !    '     76 '8     ! '   &  ! %! (  !  " " %!   $ %" & '  & !  %!  %  %'    ' "! &   %  !  ! ' ' %& $ *,-(   ! % "  % ' &<' %& ) *+,- #  !  $ '  '   1  !< ! !      ' !   $ '' '   ! ! ( !      !  '& ! %    '&  ' !  !    ! (½ )    1     ' %'  !    $ ' !    "!  (  % ! !     $ ' ' '   ! !  ( ! " ' & '.  ! "& ! !   ''5 "! !  ' %& ! !   !     '   '%' %& ! !   ' !   !  !    '(  '' !    & $  '.   ( ) !" ! !  ! %!  ''  !    "!!  ' ' ! !  %!   ! % &      ' ! /!   $   $      '(   ' " # '. "& !      & % ''( !   <'  "(   + "  !    % ' !< ! &  !  (   , " !" ' "!! ' !    " % & ' %!  $   $ $      (   G "  '& "     5  %    '     ( )  !" !    "!! !    & % ' ' ! 6  ! !  & !  !  ' ! (.

(14)          . 9 '  !    ' " '  ! 1   !  '# 72(38 !     ' ' %& $ *,-( $0 ' '  ½.    

(15)        

(16)  . ,.

(17) !  &  ( ) "   ! &  %!  "! ! "    ' '    % 7/8(    

(18). ) & ! " % 7/8( #<  ti , xi, Ii  i = 1...∞5 G({ti , xi − Ii , xi }∞ i=1 , x) =. ∞ . 738. e−rti g(xi , xi − Ii ). i=1. ((. x(t) ˙ = F (x(t)).  t ≥ 0,. t∈ / ti , i = 1, 2, .. x(0) = x0. lim x(ti ) = lim− x(ti ) − Ii ,. t→t+ i. t→ti. Ii ≤ xi ,. ,. xi = lim− x(ti ), t→ti. x(t) ∈ [0, K].. )! g '  !      ti !   ! Ii !    !  !  xi  !   $ ;  % ! ' r  ! '  ( !    $ x0  $"( ! '&  !   x(t)  '' %& !   "!   F (x)    !   !( )! !   ! '.  !   $ ;  % ! limt→t x(ti ) ' !   $ ;   ! limt→t x(ti )  6   ! !   5 Ii( & !   $   ' % '' %& ! & & K ( !  %    % 5 ti !   ! !   $  !  xi ' !    ! Ii( )    1  !< i = 1...∞(    % 7/8 " '%& '  & & 1  ( A  6   ! "  " !  %5 "!  !  1   ! " ! '  7' ' "!! '8H )!  !   ! 1    ! &   H ) "  ! "  ! 6    G( − i. + i. .       .    !   ' %& >' ' >&' *3C- ' '   *3,-   *+B- "  ! & / !     %( ! " !   ! #   6       %(.   ! "#!!# $$    !    

(19) v(x) =. max. {ti ,xi ,Ii }∞ i=1. G({ti , xi − Ii , xi }∞ i=1 , x). 7+8.

(20)   

(21)   

(22)     

(23)  

(24) 

(25)  

(26)  v(x) =. max. y∈[0,K],t≥0. e−rt [g(φ(t, x), y) + v(y)] ,.  φ(t, x)

(27)    

(28)     G. 7,8.

(29) "%.  ! ''   '&    *2-

(30) <I< *J- 9   *+-(. & !'   

(31) 

(32)   

(33)     

(34)           

(35)  .  

(36)  !

(37)

(38)    

(39)     

(40)

(41)       

(42)

(43) 

(44)         

(45)  

(46)  

(47)  

(48)  .  

(49) 

(50)    

(51)  

(52)   

(53)      

(54)    

(55)  !

(56)

(57) 

(58)    

(59)  "    #$%&' (    )*     )  #+,&  -

(60)     -  #+.&  /

(61) 

(62)       

(63)

(64)   

(65)      

(66)  

(67)  H(x, λ) = λ(t)F (x(t)),.  λ(t)

(68)   0

(69) 

(70)  

(71)  t         

(72)   

(73)  1     

(74)    

(75)  π(x, I, t) = e−rtg(x, x − I) 2  

(76)

(77)    

(78)  

(79)   0 (t = ti )  −∂H ∂F (x) ˙ λ(t) = (x(t), λ(t)) = −λ(t) , ∂x ∂x(t). 7G8. ∂π(x(t), 0, t) , ∂I. 7F8  "3'

(80)  

(81)          0   

(82)      

(83)   

(84)  xi   limt→t x(ti )     0   

(85)    x+i   limt→t x(ti )     0   

(86)  )

(87) 

(88)    λ−i   λ+i       

(89)  0     0    0 2  

(90)

(91)    0 

(92)   λ(t) . − i. + i. ∂π(xi , Ii, ti ) , ∂I ∂π(xi , Ii , ti ) − , λ+ i − λi = − ∂x ∂π(xi , Ii , ti ) + = 0. H(x+ i , λi ) − H(xi , λi ) − ∂t λ+ i =. 728 7C8. 7J8  

(93)

(94)      

(95)

(96) 

(97)

(98)    

(99)  

(100)       

(101)          

(102) 

(103)      

(104)    

(105)    

(106)         

(107)     "4'  

(108) 

(109)

(110)   

(111)    

(112) 

(113)    

(114)    

(115)          ".' 5

(116)    

(117)     /

(118) 

(119)    

(120) 

(121)    

(122)    

(123)     

(124) 6

(125) 

(126)   

(127)        

(128)    

(129)  "7'  

(130)     

(131)            "        #$%&'

(132)     

(133)  

(134) 

(135)      

(136)   

(137) 

(138) 8   

(139) . F.

(140) .       .  ! " " !< !       % 7/8( ) 1 % !       % 7/8 ' ! '    #& % 7/8  '   % 7/8( )  '& !  #& % $    !       '     ! % '&(     

(141)        . ) 1 '1 ! '  g ' F ' "!! ! %!     !     % 7/8   & %!  [x, x¯]  5 •  !   xt "  x¯ 7"! x0 ≤ x¯8 • !  x( ) '1 ! !   &  ! " "& 7( '# 2(+85 . y. τ (x, y) = x. 1 du. F (u).  ! & %!  " '1 G(x, x¯, x0 ) := g(¯ x, x) G '  G  '  ! xi = x¯, xi − Ii = x  i = 1...(. . 6 5. e−rτ (x0 ,¯x) . 1 − e−rτ (x,¯x). t0 = τ (x1 , x ¯) ti = t0 + iτ (x, x¯). 7?8  i = 2....     

(142) .   '  !  #& %5 (P A) =. max G(x, x¯, x0 ).. x,¯ x;x≤¯ x.   '  1  (( " ! " "   %  & ''  ! $  x¯ ' x( ) 1 & ! &     !  #& %(    " "  $" "!! !     #<'      7 x¯ = x8    % '&   7 x¯ = x8(. )    

(143)   !!   "x, x¯'

(144)    

(145)  

(146) 

(147)    "!(' 

(148)  0 < x < x¯ < K "

(149) 

(150)   

(151) '     

(152)

(153)   

(154)   e−rτ 1 ∂g 1 = −r , g ∂x F (x) 1 − e−rτ. 73B8. 1 e−rτ 1 ∂g =r . g ∂ x¯ F (¯ x) 1 − e−rτ. 7338. 2.

(155) 7 '# 2(,  '' #  ! 8(   ! ) ) "x∗, x¯∗'  

(156) 

(157)   

(158)  "!('    

(159)  "!'

(160)  ⎧ ∗ ∗ ∗ v(x) =. ⎨ G(x , x¯ , x) ⎩. if x ≤ x¯. g(x, x∗ ) + G(x∗ , x ¯∗ , x) if x > x¯∗ ..     

(161)   

(162)  "!'

(163)  

(164)   xi = x¯∗ ,. Ii = x¯∗ − x∗ ,. t0 = τ (x0 , x¯∗ ),. "%  '# 2(G( )  

(165)    

(166) . ti = t0 + iτ (x∗ , x¯∗ ),. i = 1.....   "    ! 5 x = x¯ = x 7!  x = 0 'K x¯ = K " % # ''     '&8(  !  !  7?8   " '1'  ! ' !(   ! limx→¯x g(x, x¯) = 0( ! ! % ' "5 g(x, x ¯) := g¯(¯ x, I);.  "   ! !  . ∂¯ g ∂I. I = x¯ − x..  " '1'5. ∂¯ g (¯ x, I) := g¯I (¯ x), I→0 ∂I "! x¯ → x  ! " lim. G. & % '1' %&  &. G(x, x, x0 ) = g¯I (¯ x). ! #< % %5. "&5. F (x) −rτ (x0 ,x) e . r. 73+8. (P Abord ) := max G(x, x, x0 ), 0≤x≤K. "! G   %& 3+( ! 1 ' '  ! " < % 5 g¯I (x)F (x) + g¯I (x)[F  (x) − r] = 0.. ) ' %& x∗ !    73,8(. 73,8. ))  '  * '+ 

(167) 

(168)   . @ !<' ! &          ' "  %!  1 $  !     '( '' "   ! ' 73,8 ' "! ! 6  "!! ' ! '&   ! "     %5  ∞ max h. 0. e−rt g¯I (x)hdt,. x˙ = F (x) − h,.  x0  ' 0 ≤ h ≤ hmax 7( '# 2(3 73,8 ' 7+B88( !  '' ! " $"  ' &      # *,-( C.

(169) & !' , 9 

(170)      

(171)  

(172)         

(173)   

(174) .   x = 0  :  x¯ = K  •     

(175)    

(176)  "!('

(177) 

(178) 

(179)   

(180)     

(181)   

(182)    "!'   

(183)   

(184) 

(185)      v(x∗) 

(186) 

(187)  

(188)      

(189) g(x, x¯)

(190)     G(x∗ , x∗ , x∗)  

(191)   

(192)      

(193)      

(194) g¯I (x) •     

(195)    

(196)  "!('

(197)      x = x¯      

(198)    

(199)   "!'       

(200) 

(201)    

(202)  x¯ − x =    

(203)    G(x∗ , x∗ , x0), ∀x0      lim G(x , x ¯ , x0 ) = G(x∗ , x∗ , x0 ). →0. 5      #.& / '.      "  ! ! #  & % !'  x¯ = x 71  +8   x¯ = x 71  38( & !        % '&      ' ''  ! 1   ! ( A " ! '' ! 1   "  %  %!  ! %" $0 ' ' !    '    !  7 8 ! ' 71 ' '8 ' ! ( ) " "    ! 6   ! &  1   " ! ' ' (. .              . !     !  '   ! #  & 1    ''  !  ( '' 1  '%'  ! '. %" %1 '  "! %1  & #'  &' 7!        !8 '    #   ''  !    !  7!  % ' &    !  %  1!8 ! % '  !   $ ' !    !    (  !  " ' ! '. 1   %& ' ! ! '&   (    "  '& $ '' !     !  !  ' %& $ *,-  !      '(   !        '. &       ! % '  !  ( !& '  '  !  &          '(   "!&   &        ! "(   ! '  '  %!  $  !    " "   %$  1 '  (        . ,. -#   %

(204)   %!  $

(205)  %

(206)  . $ *,- ' ! %;    !     '( ! !   '' %& ! $ < x = x(t) ' !   ! . E = E(t). h(t). J.

(207)  ! ! h = Q(E, x) "! !   Q(E, x)  ! '         ' &( $   !    %  %%   &    !  Q(E, x) = aE α xβ ,. "! aα ' β    ' & α = 1( !   axβ  % ' "!  %& '   G(x)  ! ! h = Q(E, x) = G(x)E h ' E = G(x) ( # $   ! !      .    5 c = CE ( ! !         % " 5 cc (x, h) = CE =. C h G(x). '  a = 1 ' β = 1 " !5 cc (x, h) =. C h, x. ' ! '      ! 5 gc (x, h) = (p −. C )h, x. "! p  !   (. ,   $ $ %

(208)   % 

(209)  !$

(210)   $ !.   "   ! !    '    " !  ' %& $ 7;   !   ' .     8( !   1   " %  %    ! 5 g(x, x¯) = a(¯ x)d(¯ x − x).. "$  ) x.   

(211)  "+,'  a(x∗ ) > 0   d(0) + d(0) aa(x(x )) > 0   

(212)   

(213) 

(214)   

(215)  

(216) 

(217)    "!(' "% )! g(x, x¯) = a(¯x)d(¯x − x) 6  73+8   %&5 . ∗. ∗. ∗. G(x, x, x0 ) = a(x)d (0). F (x) rτ (x0 ,x) . e r.  6  73,8 " $" ! 1 ' ' !'  a (x)F (x) + a(x)(F  (x) − r) = 0.. )  ' G   % !'  !  x = x¯   &  F (x) rτ (x0 ,x) e G(x + h, x + k, x0 ) ∼ B(x), = G(x, x, x0 ) + r. ?. 73G8.

(218) "!. . B(x) =. .   r − F  (x) r − F  (x)     a(x) d (0) + d (0) + hd (0) a (x) − a(x) , 2 F (x) F (x).  = h−k..  ! # h '  > 0  ! ! B(x∗ ) > 0 ! ! #  '   !   ! ' 7"! x < x¯8 "!  1 ! G(x∗ , x∗ , x0)( !  !  !  !      ! % '& x = x¯(

(219)  ! x∗ 1 73G8 !  E '  % B(x∗ )  ! < 5 a(x∗ ) > 0. '. d (0) + d (0). a (x∗ ) > 0. a(x∗ ). & !' .. •    

(220)  

(221)     #$%&   

(222)     g(xi , xi − Ii ) = (p − b/xi )Ii  a(x)

(223) 

(224) 

(225)    d(I)

(226) 

(227)    

(228) . 

(229)  1  

(230) 

(231)       

(232)  

(233)     

(234)  

(235)  

(236)    

(237) 

(238)       

(239)

(240)   a(x) = p−b/x d(I) = I  

(241)  

(242)     

(243)  

(244)          

(245)  

(246)   9;  "

(247) 

(248)   

(249)

(250)  c(x) = b/x'. •. . ,.  !    . -#  !$

(251)  $ %

(252)   %!  

(253) 

(254)  $ %

(255)  . )   '     1   xx¯ [p − c(x)]dx  ! ''    1   (p − c(x))h 7' 0   8 '      % 7( '# 2(38(  $0 ' !  ! !      ! #  ! & hmax (  hmax % 1& ! ! !   "'  '%  ' ! ( ! ' 1    ''  "5     6  x0 ' x1 "! x1 < x0 5 . lim. hmax→∞. t1. (p − c (x(t)))hmax dt,. x(t) ˙ = F (xt ) − hmax , ,. x(t0 ) = x0 ,. x(t1 ) = x1 .. t0. 5. x(t) = u  x(t0 ) = x0  xdt ˙ = du  x(t1 ) = x1 ( ) !  !5  x1  x1 hmax hmax lim (p − c(u)) du = (p − c(u)) lim du hmax→∞ x hmax→∞ F (u) − hmax F (u) − hmax x0 0  x0 = (p − c(u))du . x1. 3B.

(256) ,   # $ %

(257)   % 

(258)  !$

(259)   $ !   "   ! %    ! 1  5 . x ¯. g(x, x ¯) =. [p − c(x)]dx,. c(x) =. x. b xα+1. ,. F (x) = g0 x(K − x),. α ≥ 0.. 73F8.  !  " % ! "  5 "$  5  g   F 

(260)   "+3' x∗  

(261)  "+,'

(262)     

(263)  (x, x¯) > 0 ! "% )     ! ∀x < x¯ " ! H(x, x¯) := ∂G ∂x ∗ x = x¯ = x   % # ( '5 . . x ¯. H(x, x ¯) = −p + c(x) + [p(¯ x − x) −. −rτ. c(u)du] e x. e−rτ r . F (x)(1 − e−rτ ) 1 − e−rτ. )! τ = τ (x, x¯)L 0  '& !   H(x, x¯)( H(x, x ¯) =. "!5. H2 (x, x¯) x (p − c(x))(K − x) + α x g0 (K − x) + H3 (x, x¯) H1 (x, x¯)

(264) .   r x¯(K − x) g0 K H1 (x, x ¯) = α x g0 (K − x) − 1 < 0, x(K − x¯).  r x¯(K − x) g0 K H2 (x, x¯) = −α g0 < 0, x(K − x¯). '. H3 (x, x ¯) = r p α(¯ x − x) + r b c (¯ x−α − x−α ).. 3 ) ! ! H3(¯x, x¯) = 0 ' ∂H (¯ x, x¯) = r α(−p + c(x))(   x  ! ! −p + ∂x c(x) < 0 " ! H3 (x, x¯) > 0(  ! 6  & ! H(x, x¯) > 0(. & !' / •. • 9 #,&  

(265)  

(266)    

(267)

(268)     

(269)   

(270)      

(271)    

(272)   

(273)

(274)

(275)   

(276)  

(277)     

(278)   

(279)    

(280)   <  

(281)  

(282)  

(283)    

(284) 

(285)      =

(286)  

(287)     

(288)     

(289)  

(290)   9; 

(291) 

(292)  c(x) = x b  α+1. 33.

(293)   

(294)   ".

(295)  ! & '.   ' &   ! "     ' ' " & $ "!!    !  %%  ! 1'( !   &        "%   ( >   1 ! !  ''  %! ! '   $ '   !  5 c(x, h)¾( 0   ! 1   1!&  '     "!    &    $ '   (   '  ! 1'   ! !   ' %& !    !  h(t) 7  #

(296)   ( 7+BBB8 *?-8   ( 7+BBG8 *3-8   !    . 7  # @ ' ) 73??C8 *33-8( A  '& ! " ''   !  %  %& ! !   h( '' >!  ( *3J- !  '' !   ! ! $ 1 !%  1!&        "' '( !&     % $ '' ' & #  !  ! "   " !  '' %(    1 !  5 ! !     #    !    ( ¿        ! !  !  !   '  '   %     % "! !  "!  (. .   . ) ! 1' ! '.    &  & '. &   ! %! ( ) ! $ !   #  $0     ' "!   % ' " !  '  '      '( ) ! !" ! !  ! %!        '  ! % &      ' ! /!   $ !   $0     ' ''  !    !  '( & " ! 6 ' ! $'       7' 1  8 ! ! ' % '&( !  & "     '& % '  !  ( !   ' " ' ' 1 !  $ '' !     % "!   "!    & ''   '( > '  ! %& >!  ( *3J-   !  "'     % '       $( !&  & #  !  !    .(  ''  !  >  (   ! !   %  ' ( @"    $"' !   ''  '& ! & ' "!! ! ' ! ' % ''       '     (  ' & % !'  '  " ! 6  '  1'   "!! $'    " &  '.   (      

(297) 

(298)   

(299)   c(x, h, k)   

(300)  

(301) 

(302)  

(303)    

(304)      

(305)  

(306) ¿     

(307)   

(308)       

(309)

(310) 

(311)     

(312) 

(313)    

(314) 

(315)  

(316)   ¾. 3+.

(317) .

(318)  . #  $ !

(319) $ %  !  

(320)   

(321) $.   '' $  "%   ' 7( $ *,- $ '  *G-8 ! &  %  ! !  h(t)( !  ! %  % ' 5 G∗c (x0 ).  := maxh(·). 0. ∞. e−rt [p − c(x(t))] h(t)dt. 7328. 73C8 x(0) = x0 73J8 0 ≤ h(t) ≤ hmax 73?8  ! 1   7328 x(t)  !   !   $   t p  !    c(x) !  !  ' r ! '  ( ! '&        cc(x, h)    !  !  cc (x, h) = c(x)h(    $ x0   $" ' ! ! &  % '' %& hmax ( !   "!  $ '' '  %&5 F (x)( ! 1 # $  '   '&  "!!   ! ! !  ' &    ' ! $ . !' 7 $ '  *G-*,-85 x(t) ˙ = F (x(t)) − h(t). F  (x∗ ) −. c (x∗ )F (x∗ ) =r p − c(x∗ ). 7+B8.  7+B8 x∗ '  ! '&    ! ' %(  ! "! '    ! '&   %  '(    !   "! F (x(t))   %& 7+38 '   '  % ( F (x) = g0 x(1 −. x ) K. 7+38. "! g0  !  "!  ' K ! & &(  7+B8 !  6    ! !  &  !  ' ! !  ! '&  (( ! ! ! #  ! & hmax  x  ! x∗  ! "  x  ! x∗ ' ! $ . ;  ! '' "!  ! '&   !' x = x∗ ( #. & ' $ ! 

(322) % $(   τ (x, y). '  :" φ(t; x)   φ(t; φ(s, x)) = φ(t + s; x) "!!.  ! A x˙ = F (x)( ) ! ! " &5  !5. ∂φ ∂φ ∂φ (t; φ(s; x)) (s; x) = (t + s; x), ∂x ∂t ∂t. ∂φ (t; x) = x(t) ˙ = F (x(t)) = F (φ(t; x)), ∂t. 3,.

(323) ' !5 ' ". ∂φ ∂φ ∂φ (t; x) = (t; x)/ (0; x) = F (φ(t; x))/F (x). ∂x ∂t ∂t τ (x, y) !     x  y  ! :" φ( ) !. 7++8. φ(τ (x, y); x) = y.. . 7++8 "!   x5 ∂φ ∂φ ∂τ (x, y) (τ (x, y); x) + (τ (x, y); x) = 0, ∂x ∂t ∂x. '  ! 6  " %5 ∂φ ∂φ F (y) 1 1 ∂τ (x, y) = − (τ (x, y); x)/ (τ (x, y); x) = − =− . ∂x ∂x ∂t F (x) F (y) F (x). . 7++8 "!   y 5 ∂φ ∂τ (x, y) (τ (x, y); x) = 1 ∂y ∂t. ∂τ 1 = . ∂y F (y). ⇒. ! τ (x, y)  !    ! "  '. 6 5 1 ∂τ =− ; ∂x F (x).   !. τ (x, x) = 0.. τ (x, y) = A(y) − A(x). "  ' !5 '. ∂τ 1 = ; ∂y F (y). 1 , A (x) = F (x) .  A(x) = . y. τ (x, y) = x. x 0. 1 du F (u). 1 du. F (u). 7+,8. # )$    *.   &< G(x, x¯, x0 ) = g(¯ x, x). e−rτ (x0 ,¯x) e−rτ (x,¯x)−τ (x,x0 ) = g(¯ x , x) 1 − e−rτ (x,¯x) 1 − e−rτ (x,¯x).  x ≤ x0 ≤ x¯  ! !  ! '& τ (x, x¯) ! '5. = τ (x, x0 ) + τ (x0 , x¯). ln G = ln g − rτ − ln(1 − e−rτ ),. 3G. τ = τ (x, x¯).. '  !.

(324) ' 1 ∂G 1 ∂g ∂τ e−rτ = − r (x, x¯) , G ∂x g ∂x ∂x 1 − e−rτ. 1 ∂g ∂τ 1 ∂G e−rτ = − r (x, x¯) . G ∂ x¯ g ∂ x¯ ∂ x¯ 1 − e−rτ. )! ! '&  τ  " !5 e−rτ 1 ∂G 1 ∂g 1 = +r , G ∂x g ∂x F (x) 1 − e−rτ. 1 ∂g 1 1 1 ∂G = −r . G ∂ x¯ g ∂ x¯ F (¯ x) 1 − e−rτ. >  " !     7( 6  73B8 7338   385 1 e−rτ 1 ∂g = −r , g ∂x F (x) 1 − e−rτ. ! 6  &. 1 ∂g 1 e−rτ . =r g ∂ x¯ F (¯ x) 1 − e−rτ. 7+G8. F (¯ x) −rτ (x,¯x) ∂g ∂g =− e / . ∂x ∂ x¯ F (x).  ! !  6  ' "! 6  7J8( #     

(325) .  ' x0 < x¯∗ ( '  ! 3 !      % / 15 v(x) =. max. y∈[0,K],t≥0. e−rt [g(φ(t, x), y) + v(y)] ,. 7+F8. "! φ(t, x)  ! '&  ! &(    % φ(t, x) = x¯ ' t = τ (x, x¯)( ) !" ! −rτ (x,¯ x ∗. e ) v(x) = G(x , x¯ , x) = g(¯ x ,x ) ∗ ,x∗ ) −rτ (x 1−e ∗. ∗. ∗. ∗. 1 6  7+F8 (( 15. v(x) = max ψ(x, x¯, y), x ¯,y∈[0,K]. ψ(x, x¯, y) := e−rτ (x,¯x) [g(¯ x, y) + v(y)] .. 7+28.    "     ! ! #   ψ  !'  7x∗ , x¯∗8  5 . ∗ g(¯ x∗ , x∗ ) e−rτ (y,¯x ) ∂ −rτ (x,¯ x) ∂g = 0. ψ(x, x¯, y) = e +r ∂y ∂y F (y) 1 − e−rτ (y,¯x∗ −re−rτ (x,¯x) ∂ ∂g ψ(x, x¯, y) = [g(¯ x, y) + v(y)] + e−rτ (x,¯x) =0 ∂ x¯ F (¯ x) ∂ x¯ . ∗ e−rτ (y,¯x ) −r ∗ ∗ g(¯ x, y) + g(¯ x ,x ) = 0. ⇔ F (¯ x) 1 − erτ (x∗ ,¯x∗ ). 7+C8. 7+J8. 6  7+C8 ' 7+J8 '  ! 1 ' '  /( & "  ! v(x) = G(x∗ , x¯∗, x) 1 ! '&  6   3F.

(326) 5. max. y∈[0,K].   −rτ (x,¯x) [g(¯ x, y) + G(x∗ , x ¯∗ , y)] e. ∗ ∗ e−rτ (x ,¯x ) x ,x ) =e g(¯ x , x ) + g(¯ 1 − e−rτ (x∗ ,¯x∗ ) . 1 −rτ (x,¯ x∗ ) ∗ ∗ =e g(¯ x ,x ) = G(x∗ , x¯∗ , x) 1 − e−rτ (x∗ ,¯x∗ ) −rτ (x,¯ x∗ ). & !' 0   x > x¯. ∗. . ∗. ∗. ∗. ∗.

(327)

(328)   

(329)     

(330) 

(331)  v(x) = g(x, x∗ ) + v(x)..  v(x) =. ⎧ ⎨ G(x∗ , x¯∗ , x) ⎩. if x ≤ x¯∗. g(x, x∗ ) + G(x∗ , x¯∗ , x) if x > x¯∗. 32.

(332)   *3-  ( ( =( >' >( ( >! ' ( D' 7+BBG8( A '%$ 5     ! ' 1!  $ ' ' "&(  M       J27+85 F,3 FG+( *+- 9  ( M((  73?J+8( N    6  6   !' !6  ' 06   '( *,- $ ()( 73??B8( ! 9 ! A    "%   M! )& ' >( *G- $ ()( '

(333) ( (  73?CF8( !   ! ' '  !&5  1' ! M     '   +5 ?+ 3B2( *F- $ ()( $ (@( '

(334) ( (  73?C?8( !  #  " %   $5 /%  %   GC +F GC( *2-  (@(( 73??,8( $ ' ' A< / @( *C- '% ! =( 7+BBF8(    '    %( !O     3C+( *J-

(335) << ( 73?C?8L !O ' , &  ' /  !( *?-

(336)  ( 4( >' (=( ' >( >! 7+BBB8 @"   !    "%  5 !   '0 ! ' !&(  M       J+7,85 FCB FJB( *3B- @ ( 73?CF8( !& &5  !  ' !&( !  ' M    J7+8 3F3 3C,( *33- @ ( ( ' M( ( ) 73??C8  '   ' A    ( M     '  ,+5 3 +3( *3+- =   M( ' A( ! 73???8(  !   '5  '  / (  > GF7G8 F,? FF3( *3,- ' ( ' (   73??J8( A  !& ' > A<   ( %' & / ,F, ( *3G-  ( ' @(P( ) 73?JF8( > !    !   & "   > ' F+ +2, +J+( *3F-  ( ' @(P( )( 73?J28( A !      !   %( M    !& GB ++? +G?( *32- ' )(M( 73?J28( A ! '      &(     ' 3 FF C?( 3C.

(337) *3C- >' ( ' =( >&' 73?JC8( A  !& "!   ( ' ( *3J- >! ( ) 4( ' ( & 7+BB28( !  "! $ "! & ' &  '; ( M      '  F+ FJ+ F??( *3?- >&' ' 9!!&& 73??B8(  

(338)  &  '  !      ( M     '.  3J 32J 3CF( *+B-  ( 7+BB28(    ' ! &   '&  &(  '    !( *+3-  <  M( ' ( / 7+BB,8( /  !   ' '& ' & ' 5 !  

(339)  "$ ( *++- D' =(73?2C8  >& "! M   ! > D%(  ,F +C, +CC( *+,- ) (73??F8 ! & #  "%   >$ & 9 A( M     '  +? +F+ +23(. 3J.

(340)   35

(341)     '.    x¯ ' x 5    . 3?   x¯ ' x 5  % '&     +5

(342)     '. .

(343)

Références

Documents relatifs

Nerve conduction studies showed • Decreased CMAP amplitudes, • Normal conduction velocities, • Normal Distal latencies, • Normal F-wave latencies • Signs of

economic model to compare these cost-containment instruments directly to each other. First, a single-period economic model of 2015 was used to test the performance of a

More precisely we compare two schemes: scheme A has the property that on each check node of the base code the repair symbol generated by the LDPC code is also a Reed- Solomon

Influence of the poling electric field amplitude on the piezoelectric strain coefficient d 33 measured at room temperature for a PZT/PEEK composite (filled squares) and PZT/PA.

Therefore, this exothermic event can be considered as the thermal answer of the hydrophobic hydration of the polypeptides E50 and E50H; such a type of hydration was previously

d’incidence et de rémission de l’incontinence urinaire (IU) au sein d’une cohorte de femmes de la cinquantaine en prenant en compte le type d’IU (Incontinence urinaire d’effort

We are going to compare our schemes (WeakTraj 1, Weak 2 and OU Improved) to the Euler scheme with exact simulation of the process (Y t ) t ∈[0,T ] driving the volatility