• Aucun résultat trouvé

An AWAXS study of CoErB ternary amorphous metallic alloys

N/A
N/A
Protected

Academic year: 2021

Partager "An AWAXS study of CoErB ternary amorphous metallic alloys"

Copied!
5
0
0

Texte intégral

(1)

ELSEVIER Journal of Non-Crystalline Solids 192& 193 (1995) 355-359

J O U R N A L O F

An AWAXS study of Co-Er-B ternary amorphous metallic alloys

B. Bouchet-Fabre a,*, A. Kebab b, j. Dixmier c, H Lassri c, R. Krishnan c

a LURE, b?lt 209d, Universit~ Paris-Sud, F-91405 Orsay c~dex, France

b Laboratoire de M~tallurgie Physique, Universit~ de Rouen, F-76130 Mont-Saint-Aignan, France c LPSB, CNRS Meudon Bellevue, l pl. Aristide Briand, F-92190 Meudon, France

Abstract

Amorphous Co79_x_yErxB21+y alloys, with x < 10 at.% and y < 3 at.%, belong to the series of ternary transition metal-rare earth-metalloid glasses of great interest for their high coercivity and magnetization. An anomalous wide angle X-ray scattering study has been performed on a series of metallic glasses in order to relate their magnetic behaviour to their local and medium range order. Due to the large difference in size and electronic number, Z, between the three components, this technique allows the determination of the surroundings of the cobalt and erbium atoms and the discrimination of the Co-Co, Er-Er and Co-Er correlations in the first coordination shell. A competition between the topological disorder and a chemical ordering in the short and medium range occurs when the Er content increases, which may influence their magnetic and thermodynamic properties.

1. Introduction

The magnetic properties of amorphous ferromag- nets are dominated by the local and medium range orders in two ways: first, the exchange interaction varies for the different pairs of neighbouring spins and depends on the distances between them; second, the spin directions are defined by the local field determined by the short-range structural order [1].

The magnetization of melt-spun C o 7 9 _ x _ y E r x B 2 t + y ribbons with x < 10 at.% and y < 3 at.%, has al- ready been studied: it was shown that under intense magnetic field the antiparallel arrangement of Co and Er spins breaks down, and that the field needed to reach this situation depends strongly on the Er

* Corresponding author. Tel: + 33-1 64 46 80 00. Telefax:

+33-1 64 46 41 48. E-mail: bouchet@lure.u-psud.fr.

content beyond 4 at.% Er [2,3]; this behaviour re- veals the existence and evolution of the exchange

J E r - E r in these diluted glasses, where the ferrimag- netic coupling Jco-Er normally dominates.

A thermal study performed on Fes0_xRxB2o, where R is a rare earth, also shows a strong depen- dence on x around x = 6 at.%, where the crystalliza- tion temperature exhibits a maximum value, leading to the precipitation of the tetragonal RB 4 phase; at higher concentration of R, the Fe3R phase first ap- pears [4]. In a previous structural study on Co 79 - x EL B21, the presence of first-neighbour E r - E r pairs was confirmed and a change starting at x = 7.5 at.% was observed in the cobalt surrounding [5]. This paper reports a detailed structural study based on anomalous wide angle X-ray scattering (AWAXS) of the same melt-spun ribbons series that have been employed for the magnetic measurements, at compo-

0022-3093/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved

SSDI 0 0 2 2 - 3 0 9 3 ( 9 5 ) 0 0 3 7 6 - 2

(2)

356 B. Bouchet-Fabre et al. /Journal of Non-Crystulline Solids 192 & 193 (1995) 355-359

Table 1

Weights of the pairs at k = 3 ,~ i in S~(k) and Sx(k) as defined in Section 2

Co75.1Er3.9B21 Co70.9Er5.1 B24 Co71.5Er7.5 B21 Co69.sEr9.5 B21 Differential structure factor S Z : without Co-Er contributions

C o - C o 0.96 0.95 0.99 1.03

Er-Er - 0.01 - 0.02 - 0.05 - 0.09

C o - B 0.05 0.07 0.06 0.07

Differential structure factor S x : without Co-Co contributions

E r - C o 0.84 0.80 0.77 0.73

Er-Er 0.10 0.13 0.18 0.22

E r - B 0.04 0.05 0.04 0.04

C o - B 0.02 0.02 0.01 0.01

sition C o 7 9 _ x E r x B 2 1 with x = 3.9, 7.5 and 9.5 at.%

and Co70.9Er5.1B24 . The X-ray measurements have

been performed with a two-circle goniometer on the wiggler beam line at LURE (France), equipped with a solid multidetector [5,6]. A new way to explore the differential surrounding from the total structure fac- tors has been developped in order to eliminate either the C o - C o correlations which are dominant, or that from the C o - E r pairs.

2. Anomalous wide angle X-ray scattering study

The scattered X-ray intensity per average atom at an energy, E, is usually written as

l( k, E) = ( f2) 4_ (f)2[ S( k ' E) - 1]

with

( r e ) = ]~.,xifi(k ' E ) f i ( k ' E),

( f ) 2 E X i X j f i ( k , g ) f j ( k , e ) .

The complex atomic scattering factor of atomic species j: f~(k, E) =fj0(k) + f ; ( E ) + / i f ( E ) , shows significative variation with E just near the absorp- tion edge of species j. The weighted differential structure factor AqS(k, EA, E u) is calculated by taking

A i j I ( k , E A , En)

= I ( k , Eh)Fq(k, EB) - I ( k , EB)Fij(k, EA) ,

Vo(k, E a ) = ( 2 - 8 i j ) / 2 [ f j ( k , Eu)fi(k, EB)

e.)],

then

Aijl(k, EA, EB)

= A i j ( f 2 ) + A i j ( f ) 2. [ A i j S ( k , EA, E B ) -- 1]

with

Aij(f2 > = ( fA2>Fij( k, EB) -- (f2>Fij( k , EA), Aij( f ) 2 = ( f A ) i F / j ( k , EB) - (fB)eFij( k, EA).

In the differential structure factor are eliminated either C o - E r correlation (called Sz(k), or C o - C o (called Sx(k)). f j ( E ) is calculated by Kramers- Kr6nig transformation of f ; ' ( E ) extracted from EX- AFS data; Sz(k) and Sx(k) have been extracted from the data taken at 8100 and 8355 eV, respectively.

The relative weights of the pairs are listed in Table 1.

3. Results

The curves, Sz(k), from which are removed the C o - E r correlations are drawn in Fig. 1. The oscilla- tions above 4 ,~-1 with two maxima at k 2 = 5.4 ,~-i and k 3 = 6.3 .~-1 are unchanged while the mean position of the first peak k I increases from 3.2 ,~-1 to 3.4 ~ - 1 together with the width, with in- creasing Er content. The ratio, k2/k x, decreases from 1.69 to 1.61 which is close to the golden number, r, when increasing XEr. These features reveal a surprising contraction and ordering of the Co subnetwork as the concentration of Er increases.

Caution has to be used in the interpretation of the

curves Sx(k) drawn in Fig. 2 since most of the signal

(3)

B. Bouchet-Fabre et al. /Journal of Non-Crystalline Solids 192& 193 (1995) 355-359 357

1 1

,.', 9

~ 7

i t 3

e~

- 1

. . . . . . . . . . . . ! . . . . I . . . . I . . . . |

i C o 6 9 . $ E r 9 . $ B 2 1

~: . . . . C o 7 1 , $ E r 7 . $ B 2 1

i ~ = = CoT0.9ErS.IB24

. . . C o 7 ~ . i E r 3 . 9 1 B 2 1

: ? *

... ~ ... ~... ... :,.~... ~..~.,~...~ .~..,, ~ .~.

' i' ". " " , . - , ' "

... ~ ... ~:.-.,----~.----i ... ~ ... ::-~---:-~-'- . '., ' . . ~ . . , , , . '

. . . . ~ . . . , . /

... + ... ] - i ... ", ---....! ... i ... '.','-~,-*'-'."-., ;~.~

3 4

k ( A " )

Fig. 1. Differential structure factors, Sz(k), for Co79_xErxB21, with x = 3.9, 5.1, 7.5 and 9.5 at.% and Co70.9Ers.1B24.

1 2

m

• . 1 0

~ 6

4

- 2

. . . . . . . . . . . . ! . . . . ! . . . . i . . . .

. . . z . . . " " ' " F t " i . . . i" C o 6 9 . S E r 9 . $ B 2 1 . . . .

. ~ . . . . C o T I . ~ E r 7 . $ B 2 1

... T ... -[----~ ... --.. ~0,,.9~,.,~,, ----~

... ;---/--i-].]!1 ... - ... " ... c°~s"E'3"9sz' -- 4

i • i ¢r i l ~ ~ ' ' "

... ~-~' ... i . . . i~, .. . . ~ ~ ~ - . . ; " " " ~ ~ ...

. • ~ ' ',i I • N t i | '

_ . . . . . L . . . i~ . . . r. - . . . ~ . . . : . . . , ' . . .

, ' " ... ?,~ ... .1 " . . . " ' " ' - ~ . ' . : ' . . . - "

" L ; '~ /,. t ' ~ . ~ . " 7 '

!I!I!I!IIIEIIII!IE;IIEII iiilili i!i'iill IIIIIEIIIIIII iiiii iiiii iiiii iii;i IIIIIIIIIIIIIIIIE

, , , , I , , , , I , , , , L , , , , I , . . .

2 3 4 5 6

k ( A -])

Fig. 2. Differential structure factors Sx(k) for Co79_xErxB2], with x = 3.9, 5.1, 7.5, 9.5 at.% and Co70 9ErsAB2~

c o m e s from the C o - C o pairs, at least for the more d i l u t e s a m p l e s . T h e c u r v e s s h o w a v e r y s t r o n g o s c i l - l a t i o n around 3 A - 1 w i t h a d e e p m i n i m u m at 3.38

o 1

. ~ - 1 . T h e l a r g e p r e p e a k l o c a t e d at 1.6 A - , a l r e a d y described in Ref. [5] increases with XEr.

T h e c o r r e s p o n d i n g p a i r r a d i a l d i s t r i b u t i o n f u n c - tions, R z ( r ) and R ~ ( r ) , are p r e s e n t e d in Figs. 3 and 4. T h e n e g a t i v e c o n t r i b u t i o n o f the E r - E r pairs to

R z ( r ) is s m a l l but leads to a first d e e p m i n i m u m n e a r 3.3 A and a s e c o n d in the v i c i n i t y o f 5.4 A. A l l the s a m p l e s s h o w in the m e d i u m r a n g e the s a m e w e l l d e f i n e d distribution o f C o - C o pairs n e a r 6.3 ~,. A Gauss±an fit o f these c u r v e s up to 4.5 ~, is p r e s e n t e d in T a b l e 2. T h e first C o - C o distance, d 1, a r o u n d 2.5 exhibits a s m a l l c o n t r a c t i o n b e t w e e n 5.1 and 7.5 at.% Er. T h e fit leads to a v e r y h i g h n u m b e r o f

Table 2

Results of the best Gauss±an fit performed for each sample on Rz(r) and Rx(r)

dco_c o N/o" dEr_E r N/o" dEr_Co Nco/~r

Co751Er3.9B21 2.54 + 0.01 10 ± 0.3/0.28 3.62 ± 0.04 2.8 ± 0.3/0.16 3.05 ± 0.01 13 ± 1/0.20 0.087 at./A 3

4.09 = 18/0.38 5.53 4.70 = 23/0.28

Co70.9Er5,1B24 2.52 ± 0.0l 11.7 ± 0.5/0.18 3.46 ± 0.02 3.5 ± 0.2/0.10 2.96 ± 0.01 11 ± 1/0.21 0.086 at./,~ 3

4.10 = 15/0.25 4.9 = 20/0.35

Co71.sErT.sBel 2.49 + 0.01 9 ± 0.5/0.26 = 3.45 < 1 2.98 ± 0.01 15 ± 0.5/0.21

0.082 at./.~ 3

4.05 = 17/0.36 4.74 = 29/0.31

Co69.sErg.5B21 2.50 ± 0.01 8.2 + 0.3/0.20 3.53 ± 0.04 1.3 ± 0.3/0.16 3.00 + 0.01 15.2 ___ 0.5/0.215 0.079 at./A 3

4.20 = 19/0.4 5.54 4.76 = 27/0.32

(4)

3 5 8 B . B o u c h e t - F a b r e e t a l . / J o u r n a l o f N o n - C r y s t a l l i n e S o l i d s 1 9 2 & 1 9 3 ( 1 9 9 5 ) 3 5 5 - 3 5 9

.~ 1 7 0

1 5 0

. ~ 1 3 0

I

e 1 1 0

%, 1t

~ 9o

~ 7O

i .~ 3o

C o 6 9 . S E r g . S B 2 1 . . . i . . . i . . . T . . .

- ~ ° ' " ' ~ " " " iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii{ C o T 0 . g E r S . l B 2 4 ... ~ . . . C o T $ . I E r $ . g B 2 1

... " ~ - : . . . + ' t ...

i , : : ! i o "

... ~ ... T ... T ... ~ i i ~ ... t + * ....

i :: i + ' ' •

... ... [. i ... i i__. ~ , i "

. / . _ i

i i ~ si i

ii< i::

... ~ ... T " ; ; ; " - . . . ' ... i ... ~ ...

... L . . . . i...,...~..~ ... £...i ... i ... i ... .~

i, ~i ~ ;! i ...

... - ... 1:,:++":"~',-:'tN li: ... i.. -+''-

. . . ',.. " u . . . ! . . . " t ... + ...

... i ... + " ; ; + ... ;,! ... ! ... i ... i ...

... ... i....'.L. ?.,.+ ./....i ... + ... i ... + ...

... ± ... ~:: ... },,.1 ... ! ... i.. ~ ...

1 2 3 5 6 7

r ( ~ )

Fig. 3. Differential radial distribution function of pairs Rz(r)

corresponding to Sz(k)

E r - E r first neighbours around 3.5 /~ for XEr < 5.1 at.% and surprisingly to a minimum number at 7.5 at.%. R , ( r ) involves the Er surrounding and exhibits the same strange behaviour; its first coordination shell is the sum of E r - C o and E r - E r correlations.

The smaller value of d~r_co at 7.5 at.% Er corre-

1 7 0

#

1 5 0

1 3 0

e-. 1 1 0 ,.e

I

• 9 0

o

.m 70

A ~

• ~ so

i 3o

I no

-1o

. " " ! . . . . I . . . . + .. . . ! . . . I . . . .

C o 6 9 . $ E r 9 . $ B 2 1 ... i ... ~ . . .

" - - c o ~ l . S E r T . S s 2 ] ... i ... ~ ...

S

- . . . C o ? 0 . g E r $ . I B 2 4 .... . . . s . . . "-"

- " . . . ' : ° " " . ' " . " + , ... ... + .. . . i ....

. . . . i ... ~ . . . ~ ... i . . . L ... ~...i ...

! : + P "i s - ~ ,

. . . T ... + ... ! ... ! ... i / - + ... i ! ~ . . . t ... + . . . ~ ... v",++ ... i.-.--+"..--- .+ ...

i + + + p. i ' . "

... + ! . . . ~ ... ,,,..i.~ ... + ,i ~ + + L_..] ... + + , + ,7++ i++ i .

... + ... + ... + b +";s:+.~-- + / + ...

i i * i , , , i . . . ~ . ' • . ! . . "

... + ... + .... / <...v...i-l. . . .i ... :~:...'.::+:~:~..- ... ~ ... < - l i ... '~i+': ... + ... ,+ " + ... : ,___-...~../++....+ ... .l../../.::.+./...:,..+.i: ... + ...

i iiii? ¢ i; . . . I . . . . t . . . . ] , J I I I I , , , [ . . . . ] J , I

0 2 3 4 5 6 7

r(J,)

Fig. 4. Differential radial distribution function of pairs Rx(r) around the erbium, corresponding to Sx(k)

sponds to a stronger C o - E r correlation and to a less E r - E r first neighbour than in the more diluted sam- ples.

4 . D i s c u s s i o n

Indeed it is most unexpected that increasing the Er content results in the disappearance of a pair distance observed at lower concentrations. We sug- gest that the local order around 7.5 at.% Er should be homogeneous already constituted of molecules in- volving Co, Er and B atoms. Such configurations should correspond to a maximum of space filling for the corresponding disordered hard sphere model of these three sizes atom mixing. The magnetic be- haviour is then largely influenced by the chemical homogeneity and may be analyzed using model de- veloped for crystalline ordered compounds [7].

The larger E r - E r first neighbour value at 3.9 and 5.1 at.% Er indicates a type of local segregation of Er atoms, due to the precipitation of units excluding Co atoms. This behaviour is similar to that of metal-metalloid glasses [8]; it also has been sus- pected from E X A F S study in Fe75-(Ti,V)sB20 [9].

Isolated clusters surrounding Er form domains in the cobalt matrix. Two types of local magnetic field do exist. The topological medium range disorder may then produce a random anisotropy magnetic be- haviour [10].

The distances in COT0.9Ers.1B24 are generally smaller perhaps due to the higher concentration in Boron leading to a ratio close to Co3B; it is compati- ble with the local structure relaxation generally ob- served when the metalloid concentration increases.

5 . C o n c l u s i o n

Through the differential analysis of the structure

allowed by A W A X S , it is possible to understand the

changes in thermal and magnetic behaviour of amor-

phous ternary alloys based on transition metal-rare

earth-boron. The changes in those properties with

the concentration of rare earth have their origin in

the radical change in the local order and in the

formation of a kind of amorphous solid solution in

the vicinity of 6 - 7 at.%.

(5)

B. Bouchet-Fabre et al. /Journal of Non-Crystalline Solids 192& 193 (1995) 355-359 359

References

[1] E. Chudnovsky, J. Appl. Phys. 64 (1988) 5770.

[2] H. Lassri, PhD thesis, Universit6 de Rouen (1990).

[3] R. Krishnan and H. Lassri, Solid State Commun. 69 (1989) 803.

[4] J. Kim and K. Hirano, J. Non-Cryst. Solids 117&118 (1990) 547.

[5] B. Bouchet-Fabre, A. Kebab and J. Dixmier, J. Non-Cryst.

Solids 156 (1993) 161.

[6] R. Andouard, C. Barbier, D. Dagneaux, M.De Santis, D.

Raoux and G. Nicoli, in: Proc. 2nd Eur. Int. Conf. on Progress in X-Ray Sync. Syncrotron Radiation Research,

Rome, ed. A. Balerma, E. Bernieri and S. Mobilio, Vol. 25 (SIF, Bologna, 1990) p. 351.

[7] R. Krishnan, H. Lassri and R.J. Radwanski, Appl. Phys. Lett.

61 (1992) 354.

[8] C. Back, J.M. Dubois and R. Bellissent, in: Methods in the Determination of Partial Structure Factors, ed. J.B. Suck, D.

Raoux, P. Chieux and C. Rieckel (World Scientific, Greno- ble, 1993) p. 218.

[9] C. Antonione, G. Cocco, S. Enzo and G. Riontino, Key Eng.

Mater. 40&41 (1990) 251.

[10] R.W. Cochrane, R. Harris and M.J. Zuckermann, Phys Rev.

48 (1978) 1.

Références

Documents relatifs

A correlation between short range smectic- like ordering and the elastic constants of nematic liquid crystals... A correlation between short range smectic-like

Moreover in the diffraction patterns of some liquid alloys similar effects have been observed as for disordered polycrystalline substitutional alloys, with tendency

The continuous random network model proposed by Polk and Turnbull to describe the amorphous Germanium structure has been one of the most successful result of

The system Al-H-REhas been investigated regarding H solubility in the metallic liquid phase using both experimental and calculated data.Our study shows that

High-field magnetization studies performed at 4.2 K in magnetic fields up to 35 T on amorphous GdxCos0_xB20 and ErxCos0_xB20 alloys have revealed, for samples with

-5O- T. as we have discussed earlier. A qualitative explanation would be that the Er sub-lattice moment freezes below T,, due to a large increase in the random

‘*’ We have reported on the amorphous Co-Er-B alloyF3 where we have shown that Er has a conical spin structure resultin, ‘7 from strong random anisotropy and

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des