• Aucun résultat trouvé

3 Onbirationaltransformationsof P ofdegree3and4

N/A
N/A
Protected

Academic year: 2022

Partager "3 Onbirationaltransformationsof P ofdegree3and4"

Copied!
37
0
0

Texte intégral

(1)

Introduction ACM examples Other examples inBir4,4(P3)

On birational transformations of P

3

of degree 3 and 4

Frederic Han, (j. w. Julie Déserti)

Mediterranean Complex Projective Geometry, Carry le Rouet

Mai 27, 2016

(2)

Introduction ACM examples Other examples inBir4,4(P3)

Denition Bird(P3) =

φ:P399KP3, birational linear system of degree d with base locus of codim > 1

Denition Bird1,d2(P3) =

φBird1(P3),φ1Bird2(P3)

(3)

Introduction ACM examples Other examples inBir4,4(P3)

Denition Bird(P3) =

φ:P399KP3, birational linear system of degree d with base locus of codim > 1

Denition Bird1,d2(P3) =

φBird1(P3),φ1Bird2(P3)

(4)

Introduction ACM examples Other examples inBir4,4(P3)

φBird(P3), H hyperplane ofP3 then

φ1(H)is a rational surface of degree d

Bird(P3) d3

6= Bird(P3) d>3 so

Bir4,4(P3)?

(5)

Introduction ACM examples Other examples inBir4,4(P3)

(book 1927) Hudson's Table of Bir

3

( P

3

)

(6)

Introduction ACM examples Other examples inBir4,4(P3)

Hudson's Table in bidegree (3,5)

D.p. of binode D. p.'s pt

of pt of ord. F -curves

contact osc. contact pts

· · · · · 2 ω3(rational), l

· · 1 · · 2 ω4O1(genus 1)

· · 1 · · 2 ω3O1(rational), lO1

· 1 · · · 2 ω4O12(2)

· 1 · · · 2 ω2O1(1), l1O1(1), l2O1

1 · · · · 2 ω3O12, l1O1

1 · · · · 2 lO1(contact), l1O1, l2O1

· · 2 · · 2 ω3O1O2 (rational), lO1O2

· 1 1 · · 2 ω2O1(1)O2, l1O1O2, l2O1(1) 1 · 1 · · 2 lO1O2 (contact), l1O1, l2O1

1 1 · · · 2 lO1O2(1)(osculation), l1O1

· · · · 1 · ω4(rational)

· · 1 · 1 · ω4O12

· 1 · · 1 · ω3O12(1), lO1(1)

1 · · · 1 · l1O1, l2O1, l3O1, l4O1

· · · · · 6 l2

(7)

Introduction ACM examples Other examples inBir4,4(P3)

Rough ideas about Bir

3

( P

3

)

The situation inBir3(P3)is poor with non normal surfaces Only one component ofBir3,d(P3)for each 2d5 But

The situation inBir3(P3)is very rich with normal surfaces

(8)

Introduction ACM examples Other examples inBir4,4(P3)

Determinantal cubo-cubic

0 → O

P33

(− 1 ) −→

M

O

P34

I

C

( 3 ) → 0 ,

(M generic) IC ideal of a curve C of degree 6 and genus 3.

Pf3(C)is a complete intersection inP3×P3. ((1,1)3) The linear system|IC(3)|: P399K|IC(3)| is birational Denition (Determinantal cubo-cubic)

Let D3,3Bir3,3(P3)be the set of maps dened by the maximal minors of a linear map OP33(−1)OP34.

Remark

D3,3 is an irreducible component ofBir3,3(P3).

(9)

Introduction ACM examples Other examples inBir4,4(P3)

Determinantal cubo-cubic

0 → O

P33

(− 1 ) −→

M

O

P34

I

C

( 3 ) → 0 ,

(M generic) IC ideal of a curve C of degree 6 and genus 3.

Pf3(C)is a complete intersection inP3×P3. ((1,1)3)

The linear system|IC(3)|: P399K|IC(3)| is birational Denition (Determinantal cubo-cubic)

Let D3,3Bir3,3(P3)be the set of maps dened by the maximal minors of a linear map OP33(−1)OP34.

Remark

D3,3 is an irreducible component ofBir3,3(P3).

(10)

Introduction ACM examples Other examples inBir4,4(P3)

Determinantal cubo-cubic

0 → O

P33

(− 1 ) −→

M

O

P34

I

C

( 3 ) → 0 ,

(M generic) IC ideal of a curve C of degree 6 and genus 3.

Pf3(C)is a complete intersection inP3×P3. ((1,1)3) The linear system|IC(3)|: P399K|IC(3)| is birational

Denition (Determinantal cubo-cubic)

Let D3,3Bir3,3(P3)be the set of maps dened by the maximal minors of a linear map OP33(−1)OP34.

Remark

D3,3 is an irreducible component ofBir3,3(P3).

(11)

Introduction ACM examples Other examples inBir4,4(P3)

Determinantal cubo-cubic

0 → O

P33

(− 1 ) −→

M

O

P34

I

C

( 3 ) → 0 ,

(M generic) IC ideal of a curve C of degree 6 and genus 3.

Pf3(C)is a complete intersection inP3×P3. ((1,1)3) The linear system|IC(3)|: P399K|IC(3)| is birational Denition (Determinantal cubo-cubic)

Let D3,3Bir3,3(P3)be the set of maps dened by the maximal minors of a linear map OP33(−1)OP34.

Remark

D3,3 is an irreducible component ofBir3,3(P3).

(12)

Introduction ACM examples Other examples inBir4,4(P3)

Determinantal cubo-cubic

0 → O

P33

(− 1 ) −→

M

O

P34

I

C

( 3 ) → 0 ,

(M generic) IC ideal of a curve C of degree 6 and genus 3.

Pf3(C)is a complete intersection inP3×P3. ((1,1)3) The linear system|IC(3)|: P399K|IC(3)| is birational Denition (Determinantal cubo-cubic)

Let D3,3Bir3,3(P3)be the set of maps dened by the maximal minors of a linear map OP33(−1)OP34.

Remark

D3,3 is an irreducible component ofBir3,3(P3).

(13)

Introduction ACM examples Other examples inBir4,4(P3)

Determinantal quarto-quartic

Is there a similar construction with quartics ?

0→

O

P⊕23(−1)⊕

O

P3(−2)−→G

O

P⊕43 I(4)→0,

Problem,if G is generic :P3 2:1

99KP3

Example (Déserti,)

- LetIΓbe the ideal of a general trigonal curveΓP3of degree 8 and genus 5,

- I be the ideal of , the unique line 5-secant toΓ.

- 0→

O

P⊕23(−1)⊕

O

P3(−2)−→G

O

P⊕43 I2∩IΓ(4)→0

- The linear system|I2IΓ(4)|: P399K|I2IΓ(4)| is birational

(14)

Introduction ACM examples Other examples inBir4,4(P3)

Determinantal quarto-quartic

Is there a similar construction with quartics ?

0→

O

P⊕23(−1)⊕

O

P3(−2)−→G

O

P⊕43 I(4)→0,

Problem,if G is generic :P3 2:1

99KP3

Example (Déserti,)

- LetIΓbe the ideal of a general trigonal curveΓP3of degree 8 and genus 5,

- I be the ideal of , the unique line 5-secant toΓ.

- 0→

O

P⊕23(−1)⊕

O

P3(−2)−→G

O

P⊕43 I2∩IΓ(4)→0

- The linear system|I2IΓ(4)|: P399K|I2IΓ(4)| is birational

(15)

Introduction ACM examples Other examples inBir4,4(P3)

Determinantal quarto-quartic

Is there a similar construction with quartics ?

0→

O

P⊕23(−1)⊕

O

P3(−2)−→G

O

P⊕43 I(4)→0,

Problem,if G is generic :P3 2:1

99KP3

Example (Déserti,)

- LetIΓ be the ideal of a general trigonal curveΓP3of degree 8 and genus 5,

- I be the ideal of , the unique line 5-secant toΓ.

- 0

O

⊕2 1

O

2 G

O

⊕4 I2 I 4 0

(16)

Introduction ACM examples Other examples inBir4,4(P3)

Construction in f P

3

(∆)

Pf3(∆) =blow up ofP3 in a line. X fP3(∆)×P3

a complete intersection(1,0,1)·(0,1,1)·(1,1,1) X P1×P3×P3 a complete intersection(1,1,0(1,0,1)·(0,1,1)·(1,1,1)

P3XP3 are birational.

Denition (Determinantal quarto-quartic)

Bir4,4(P3)D4,4=| ∃∆,X such that φ:P399KXP3}

(17)

Introduction ACM examples Other examples inBir4,4(P3)

Construction in f P

3

(∆)

Pf3(∆) =blow up ofP3 in a line. X fP3(∆)×P3

a complete intersection(1,0,1)·(0,1,1)·(1,1,1)

X P1×P3×P3 a complete intersection(1,1,0(1,0,1)·(0,1,1)·(1,1,1) P3XP3 are birational.

Denition (Determinantal quarto-quartic)

Bir4,4(P3)D4,4=| ∃∆,X such that φ:P399KXP3}

(18)

Introduction ACM examples Other examples inBir4,4(P3)

as XPf3(∆)×P3 is a complete intersection(1,0,1)·(0,1,1)·(1,1,1) p:X fP3(∆), p(OX(2,2,1))gives :

0 OPf

3(∆)(−1,0)

OPf

3(∆)(0,1)

OPf

3(∆)(−1,1)

Ge

−→O4

Pf3(∆)IZ(2,2)0

Z has genus 5, degOZ(0,1) =8,|OZ(1,0)|is a g31.

A general trigonal curve of degree 8 and genus 5 withas 5-secant line has the same resolution.

(19)

Introduction ACM examples Other examples inBir4,4(P3)

as XPf3(∆)×P3 is a complete intersection(1,0,1)·(0,1,1)·(1,1,1) p:X fP3(∆), p(OX(2,2,1))gives :

0 OPf

3(∆)(−1,0)

OPf

3(∆)(0,1)

OPf

3(∆)(−1,1)

Ge

−→O4

Pf3(∆)IZ(2,2)0

Z has genus 5, degOZ(0,1) =8,|OZ(1,0)|is a g31.

A general trigonal curve of degree 8 and genus 5 withas 5-secant line has the same resolution.

(20)

Introduction ACM examples Other examples inBir4,4(P3)

as XPf3(∆)×P3 is a complete intersection(1,0,1)·(0,1,1)·(1,1,1) p:X fP3(∆), p(OX(2,2,1))gives :

0 OPf

3(∆)(−1,0)

OPf

3(∆)(0,1)

OPf

3(∆)(−1,1)

Ge

−→O4

Pf3(∆)IZ(2,2)0

Z has genus 5, degOZ(0,1) =8,|OZ(1,0)|is a g31.

A general trigonal curve of degree 8 and genus 5 withas 5-secant line has the same resolution.

(21)

Introduction ACM examples Other examples inBir4,4(P3)

Explicit constructions over P

3

L2=H0(OP1(1)), A4=H0(OP3(1)), A04=H0(OP03(1)), B:L2 L2 X P1×P3×P03a complete intersection(1,1,0(1,0,1)·(0,1,1)·(1,1,1)

zA4, g1=N1BtN0(z), g2=M(z), g3=TBtN0(z)(z) g1g2g3V3A04=A0∨4, (gi)gives the 3 columns of G

yA04, g10=N0tBtN1(y), g20 =tM(y), g30=t(TBtN1(y))(y) g10g20g30V3A4=A4, (gi0)gives the 3 columns of G0 Minors of G and G0gives a birational map and its inverse.

(22)

Introduction ACM examples Other examples inBir4,4(P3)

Explicit constructions over P

3

L2=H0(OP1(1)), A4=H0(OP3(1)), A04=H0(OP03(1)), B:L2 L2

(1,1,0) L2N0A4

(1,0,1) L2N1A04

(0,1,1) A4 M A04

(1,1,1)

T: L2 Hom(A4,A04)

λ 7→ Tλ

N1BtN0, M, Tλ: A4−→A04

zA4, g1=N1BtN0(z), g2=M(z), g3=TBtN0(z)(z) g1g2g3V3A04=A0∨4, (gi)gives the 3 columns of G

yA04, g10=N0tBtN1(y), g20 =tM(y), g30=t(TBtN1(y))(y) g10g20g30V3A4=A4, (gi0)gives the 3 columns of G0 Minors of G and G0gives a birational map and its inverse.

(23)

Introduction ACM examples Other examples inBir4,4(P3)

Explicit constructions over P

3

L2=H0(OP1(1)), A4=H0(OP3(1)), A04=H0(OP03(1)), B:L2 L2

(1,1,0) L2N0A4

(1,0,1) L2N1A04

(0,1,1) A4 M A04

(1,1,1)

T: L2 Hom(A4,A04)

λ 7→ Tλ

N1BtN0, M, Tλ: A4−→A04

zA4, g1=N1BtN0(z), g2=M(z), g3=TBtN0(z)(z) g1g2g3V3A04=A0∨4, (gi)gives the 3 columns of G

yA04, g10=N0tBtN1(y), g20 =tM(y), g30=t(TBtN1(y))(y) g10g20g30V3A4=A4, (gi0)gives the 3 columns of G0 Minors of G and G0gives a birational map and its inverse.

(24)

Introduction ACM examples Other examples inBir4,4(P3)

Explicit constructions over P

3

L2=H0(OP1(1)), A4=H0(OP3(1)), A04=H0(OP03(1)), B:L2 L2

(1,1,0) L2N0A4

(1,0,1) L2N1A04

(0,1,1) A4 M A04

(1,1,1)

T: L2 Hom(A4,A04)

λ 7→ Tλ

N1BtN0, M, Tλ: A4−→A04

zA4, g1=N1BtN0(z), g2=M(z), g3=TBtN0(z)(z) g1g2g3V3A04=A0∨4, (gi)gives the 3 columns of G

yA04, g10=N0tBtN1(y), g20 =tM(y), g30=t(TBtN1(y))(y) g10g20g30V3A4=A4, (gi0)gives the 3 columns of G0 Minors of G and G0gives a birational map and its inverse.

(25)

Introduction ACM examples Other examples inBir4,4(P3)

Proposition

D4,4 is an irreducible component ofBir4,4(P3).

Proposition

Let φbe a general element ofD4,4, andΓbe the associated trigonal curve of genus 5 embedded inP3byOΓ(H), then

1 φ1D4,4 is also constructed fromΓbut embedded in P3byOΓ(H0)

2 OΓ(H0) =ωΓ2(−H)

(26)

Introduction ACM examples Other examples inBir4,4(P3)

Proposition

D4,4 is an irreducible component ofBir4,4(P3). Proposition

Let φbe a general element ofD4,4, andΓbe the associated trigonal curve of genus 5 embedded inP3byOΓ(H), then

1 φ1D4,4 is also constructed fromΓbut embedded inP3byOΓ(H0)

2 OΓ(H0) =ωΓ2(−H)

(27)

Introduction ACM examples Other examples inBir4,4(P3)

Contracted locus

φ:P399KP3,φD4,4, thenφcontracts

1 A ruled surface of degree 9 (triangles with vertices elements of the g31ofΓ)

2 The cubic surface containingΓ.

(28)

Introduction ACM examples Other examples inBir4,4(P3)

Contracted locus

φ:P399KP3,φD4,4, thenφcontracts

1 A ruled surface of degree 9 (triangles with vertices elements of the g31ofΓ)

2 The cubic surface containingΓ.

(29)

Introduction ACM examples Other examples inBir4,4(P3)

Classical examples

Jd,dBird,d(P3)(lift an automorphism ofP2 with monoids) (z0:z1:z2:z3)7→

z0:z1:z2: z3Pd1(z0,z1,z2) +Pd(z0,z1,z2) z3Qd2(z0,z1,z2) +Qd1(z0,z1,z2)

Rd,dBird,d(P3), ruled surfaces with a line of multiplicity d1 + d1 base rulesfactors through a threefold of degree d inPd+2) + d1 base points

G. Loria's example (1890) in Bir4,4(P3). (Steiner quartics + 3 base points)

Références

Documents relatifs

To begin with, we study the prime ideals associated to a finitely generated modules over a Noetherian ring (they form a finite set).. Next, we move to finite length

LION’S CLUB CÔTE BLEUE Président :. Philippe DUBOIS Contact : 06 25 04

La Métropole Aix-Marseille Provence et la commune de Carry-Le-Rouet ont ainsi défini dans le cadre d’une convention de fonds de concours n°Z210579COV, les modalités de participation

ARTICLE 1 - DESCRIPTION DES TRAVAUX OBJET DU FONDS DE CONCOURS Les travaux, objet de cette participation financière sont strictement limités à ceux réalisées dans le

- Un agent titulaire qui assure la fonction de gardien permanent et de mandataire de ce parking. A cet effet, il est chargé de changer les bobines des deux caisses lorsque

98 chambres de 17 m² comprenant une alcôve avec 1 lit simple ou 2 lits superposés, une chambre avec 1 lit double ou 2 lits simples, une salle de douche, TV et balcon. 20 chambres

Compte-tenu de cette situation, la Métropole et la Commune se sont accordées pour investir la Commune de la totalité des prérogatives de maîtrise d'ouvrage afférentes à

- Une deuxième partie pratique d’une durée de 5 heures 30 lors de laquelle, vous bénéficiez de 2 temps de préparation d’une heure chacun.. Vous gérez 4 situations