• Aucun résultat trouvé

An introduction to network inference and mining - TP

N/A
N/A
Protected

Academic year: 2022

Partager "An introduction to network inference and mining - TP"

Copied!
46
0
0

Texte intégral

(1)

An introduction to network inference and mining - TP

Nathalie Villa-Vialaneix -nathalie.villa@toulouse.inra.fr http://www.nathalievilla.org

INRA, UR 0875 MIAT

Formation INRA , Niveau 3

(2)

Packages in R

is provided with basic functions but more than 3,000 packages are available on theCRAN (Comprehensive R Archive Network) for additionnal functions (see also the projectBioconductor).

Installing new packages(has to be done only once) with the command line or the menu (Windows or Mac OS X or RStudio)

i n s t a l l.p a c k a g e s(c( " huge " , " i g r a p h " ,

" m i x O m i c s " ))

Loading a package(has to be done each time R is re-started)

l i b r a r y( i g r a p h )

Be sure you properly set the working directory (directory in which you put the data files) before you start

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 2 / 40

(3)

Outline

1 Network inference Data description Inference with glasso Basic mining

2 Network mining

Building the graph with igraph Global characteristics

Visualization

Individual characteristics Clustering

3 Use gephi

(4)

Network inference

Outline

1 Network inference Data description Inference with glasso Basic mining

2 Network mining

Building the graph with igraph Global characteristics

Visualization

Individual characteristics Clustering

3 Use gephi

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 4 / 40

(5)

Network inference Data description

Use case description

Data in the R package mixOmics

microarray data: expression of 120 selected genes potentially involved in nutritional problems on 40 mice. These data come from a nutrigenomic study [Martin et al., 2007].

data( n u t r i m o u s e ) s u m m a r y( n u t r i m o u s e ) expr <- n u t r i m o u s e$gene

r o w n a m e s( expr ) <- p a s t e(1:nrow( expr ) ,

n u t r i m o u s e$genotype , n u t r i m o u s e$diet , sep = " - " )

(6)

Network inference Data description

Data distribution

b o x p l o t( expr , n a m e s= NULL )

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 6 / 40

(7)

Network inference Data description

Gene correlations and clustering

expr .c <- s c a l e( expr )

h e a t m a p (as.m a t r i x( expr .c))

(8)

Network inference Data description

Hierarchical clustering from raw data

h c l u s t . tree <- h c l u s t ( dist (t( expr ))) plot( h c l u s t . tree )

rect. h c l u s t ( h c l u s t . tree , k =7 , b o r d e r =r a i n b o w(7))

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 8 / 40

(9)

Network inference Data description

Save gene clusters

h c l u s t . g r o u p s <- c u t r e e ( h c l u s t . tree , k =7) t a b l e( h c l u s t . g r o u p s )

h c l u s t . g r o u p s

# 1 2 3 4 5 6 7

# 1 8 4 2 0 5 2 1 7 6 3

(10)

Network inference Inference with glasso

Sparse linear regression by Maximum Likelihood

Estimation: [Friedman et al., 2008] Gaussien framework allows us to use ML optimizationwith a sparse penalization

L(S|X)+pen=

n

X

i=1

p

X

j=1

logP(Xij|Xi−j, Sj)

−λkSk1

g l a s s o . res <- huge (as.m a t r i x( expr ) , m e t h o d = " g l a s s o " ) g l a s s o . res

# M o d e l : g r a p h i c a l l a s s o ( g l a s s o )

# I n p u t : T h e D a t a M a t r i x

# P a t h l e n g t h : 1 0

# G r a p h d i m e n s i o n : 1 2 0

# S p a r s i t y l e v e l : 0 - - - > 0 . 2 1 2 8 8 5 2

estimates of the concentration matrixS are in glasso.res$icov[[1]], ..., glasso.res$icov[[10]], each one corresponding to a different λ

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 10 / 40

(11)

Network inference Inference with glasso

Select λ for a targeted density with the StARS method [Liu et al., 2010]

g l a s s o . sel <- huge . s e l e c t ( g l a s s o . res ,

c r i t e r i o n = " s t a r s " ) plot( g l a s s o . sel )

(12)

Network inference Inference with glasso

Using igraph to create the graph

From the binary adjacency matrix:

bin .mat <- as.m a t r i x( g l a s s o . sel$opt . icov )! =0 c o l n a m e s( bin .mat) <- c o l n a m e s( expr )

Create an undirected simple graph from the matrix:

n u t r i m o u s e . net <- s i m p l i f y ( g r a p h . a d j a c e n c y ( bin .mat, mode= " max " ))

n u t r i m o u s e . net

# I G R A P H UN - - 1 2 0 3 9 2 - -

# + a t t r : n a m e ( v/c )

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 12 / 40

(13)

Network inference Basic mining

Connected components

The resulting network is not connected:

is. c o n n e c t e d ( n u t r i m o u s e . net )

# [ 1 ] F A L S E

Connected components are extracted by:

c o m p o n e n t s . n u t r i m o u s e <- c l u s t e r s ( n u t r i m o u s e . net ) c o m p o n e n t s . n u t r i m o u s e

# [ 1 ] 1 2 3 2 2 4 5 2 2 2 6 2 7 2

# . . .

#

# $c s i z e

# [ 1 ] 7 6 7 1 6 2 1 1 1 1 1 1 1 1 2

# . . .

#

# $n o

# [ 1 ] 4 0

(14)

Network inference Basic mining

Working on a connected subgraph

The largest connected component (with 99 nodes) can be extracted with:

n u t r i m o u s e . lcc <- i n d u c e d . s u b g r a p h ( n u t r i m o u s e . net , c o m p o n e n t s . n u t r i m o u s e$m e m b e r s h i p ==

w h i c h.max( c o m p o n e n t s . n u t r i m o u s e$c s i z e )) n u t r i m o u s e . lcc

# I G R A P H UN - - 6 7 3 7 5 - -

# + a t t r : n a m e ( v/c ) and visualized with:

n u t r i m o u s e . lcc$ l a y o u t <- l a y o u t. k a m a d a . k a w a i ( n u t r i m o u s e . lcc )

plot( n u t r i m o u s e . lcc , v e r t e x . size =2 , v e r t e x . c o l o r = " l i g h t y e l l o w " ,

v e r t e x .f r a m e. c o l o r = " l i g h t y e l l o w " , v e r t e x . l a b e l . c o l o r = " b l a c k " ,

v e r t e x . l a b e l . cex = 0 . 7 )

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 14 / 40

(15)

Network inference Basic mining

Resulting network

(16)

Network inference Basic mining

Node clustering (compared to raw clustering)

Using one of the clustering function available in igraph:

set. seed ( 1 2 1 9 )

c l u s t e r s . n u t r i m o u s e <- s p i n g l a s s . c o m m u n i t y ( n u t r i m o u s e . lcc )

c l u s t e r s . n u t r i m o u s e

t a b l e( c l u s t e r s . n u t r i m o u s e$m e m b e r s h i p )

# 1 2 3 4

# 1 5 2 5 1 7 1 0

The hierarchical clustering for nodes in the largest connected component is obtained with:

i n d u c e d . h c l u s t . g r o u p s <- h c l u s t . g r o u p s [ c o m p o n e n t s . n u t r i m o u s e$m e m b e r s h i p ==

w h i c h.max( c o m p o n e n t s . n u t r i m o u s e$c s i z e )]

t a b l e( i n d u c e d . h c l u s t . g r o u p s )

# 1 3 4 5 6

# 6 1 7 4 2 1 1

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 16 / 40

(17)

Network inference Basic mining

Visual comparison

par( m f r o w =c(1 ,2)) par( mar =rep(1 ,4))

plot( n u t r i m o u s e . lcc , v e r t e x . size =5 ,

v e r t e x . c o l o r =r a i n b o w(6)[ i n d u c e d . h c l u s t . g r o u p s ] , v e r t e x .f r a m e. c o l o r =

r a i n b o w(6)[ i n d u c e d . h c l u s t . g r o u p s ] , v e r t e x . l a b e l = NA ,

main = " H i e r a r c h i c a l c l u s t e r i n g " ) plot( n u t r i m o u s e . lcc , v e r t e x . size =5 ,

v e r t e x . c o l o r =r a i n b o w(4)[

c l u s t e r s . n u t r i m o u s e$m e m b e r s h i p ] , v e r t e x .f r a m e. c o l o r =r a i n b o w(4)[

c l u s t e r s . n u t r i m o u s e$m e m b e r s h i p ] ,

v e r t e x . l a b e l = NA , main = " G r a p h c l u s t e r i n g " )

(18)

Network inference Basic mining

Visual comparison

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 18 / 40

(19)

Network inference Basic mining

Numeric comparison

c o m p a r e . c o m m u n i t i e s ( i n d u c e d . h c l u s t . groups ,

c l u s t e r s . n u t r i m o u s e$m e m b e r s h i p , m e t h o d = " nmi " )

# [ 1 ] 0 . 5 0 9 1 5 6 8

m o d u l a r i t y ( n u t r i m o u s e . lcc , i n d u c e d . h c l u s t . g r o u p s )

# [ 1 ] 0 . 2 3 6 8 4 6 2

(20)

Network mining

Outline

1 Network inference Data description Inference with glasso Basic mining

2 Network mining

Building the graph with igraph Global characteristics

Visualization

Individual characteristics Clustering

3 Use gephi

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 20 / 40

(21)

Network mining Building the graph with igraph

Use case description

Data are Natty’s facebook network1

fbnet-el.txt is the edge list;

fbnet-name.txt are the nodes’ initials.

e d g e l i s t <- as.m a t r i x(read.t a b l e( " fbnet - el . txt " )) v n a m e s <- read.t a b l e( " fbnet - name . txt " )

v n a m e s <- as.c h a r a c t e r( v n a m e s [ ,1])

The graph is built with:

# w i t h ‘ g r a p h . e d g e l i s t ’

f b n e t 0 <- g r a p h . e d g e l i s t ( edgelist , d i r e c t e d = F A L S E ) f b n e t 0

# I G R A P H U - - - 1 5 2 5 5 1 - -

See also help(graph.edgelist)for more graph constructors

1Do it with yours: http://shiny.nathalievilla.org/fbs

(22)

Network mining Building the graph with igraph

Vertexes, vertex attributes

The graph’s vertexes are accessed and counted with:

V ( f b n e t 0 )

v c o u n t ( f b n e t 0 )

Vertexes can be described by attributes:

# a d d a n a t t r i b u t e f o r v e r t i c e s V ( f b n e t 0 )$i n i t i a l s <- v n a m e s f b n e t 0

# I G R A P H U - - - 1 5 2 5 5 1 - -

# + a t t r : i n i t i a l s ( v/x )

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 22 / 40

(23)

Network mining Building the graph with igraph

Edges, edge attributes

The graph’s edges are accessed and counted with:

E ( f b n e t 0 )

# [ 1 ] 1 1 - - 1

# [ 2 ] 4 1 - - 1

# [ 3 ] 5 2 - - 1

# [ 4 ] 6 9 - - 1

# [ 5 ] 7 4 - - 1

# [ 6 ] 7 5 - - 1

# . . .

e c o u n t ( f b n e t 0 )

# 5 5 1

igraph can also handle edge attributes (and also graph attributes).

(24)

Network mining Global characteristics

Connected components

is. c o n n e c t e d ( f b n e t 0 )

# [ 1 ] F A L S E

\end{ R c o d e }

As this n e t w o r k is not c o n n e c t e d , the c o n n e c t e d c o m p o n e n t s can be e x t r a c t e d :

\ b e g i n { R c o d e }

fb . c o m p o n e n t s <- c l u s t e r s ( f b n e t 0 ) n a m e s( fb . c o m p o n e n t s )

# [ 1 ] " m e m b e r s h i p " " c s i z e " " n o "

head ( fb . c o m p o n e n t s$m e m b e r s h i p , 10)

# [ 1 ] 1 1 2 2 1 1 1 1 3 1

fb . c o m p o n e n t s$c s i z e

# [ 1 ] 1 2 2 5 1 1 2 1 1 1 2 1

# [ 1 1 ] 1 2 1 1 2 3 1 1 1 1

# [ 2 1 ] 1

fb . c o m p o n e n t s$no

# [ 1 ] 2 1

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 24 / 40

(25)

Network mining Global characteristics

Largest connected component

f b n e t . lcc <- i n d u c e d . s u b g r a p h ( fbnet0 , fb . c o m p o n e n t s$m e m b e r s h i p ==

w h i c h.max( fb . c o m p o n e n t s$c s i z e ))

# m a i n c h a r a c t e r i s t i c s o f t h e L C C f b n e t . lcc

# I G R A P H U - - - 1 2 2 5 3 5 - -

# + a t t r : i n i t i a l s ( v/x ) is. c o n n e c t e d ( f b n e t . lcc )

# [ 1 ] T R U E

and global characteristics

g r a p h .d e n s i t y( f b n e t . lcc )

# [ 1 ] 0 . 0 7 2 4 8 3 4

t r a n s i t i v i t y ( f b n e t . lcc )

# [ 1 ] 0 . 5 6 0 4 5 2 4

(26)

Network mining Visualization

Network visualization

Different layouts are implemented in igraph to visualize the graph:

plot( f b n e t . lcc , l a y o u t=l a y o u t. random , main = " r a n d o m l a y o u t " , v e r t e x . size =3 ,

v e r t e x . c o l o r = " pink " , v e r t e x .f r a m e. c o l o r = " pink " , v e r t e x . l a b e l . c o l o r = " d a r k r e d " ,

edge . c o l o r = " grey " ,

v e r t e x . l a b e l = V ( f b n e t . lcc )$i n i t i a l s ) Try also layout.circle,layout.kamada.kawai,

layout.fruchterman.reingold... Network are generated with some randomness. See also help(igraph.plotting)for more information on network visualization

igraph integrates a pre-defined graph attribute layout:

V ( f b n e t . lcc )$l a b e l <- V ( f b n e t . lcc )$i n i t i a l s plot( f b n e t . lcc )

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 26 / 40

(27)

Network mining Visualization

(28)

Network mining Individual characteristics

Degree and betweenness

f b n e t . d e g r e e s <- d e g r e e ( f b n e t . lcc ) s u m m a r y( f b n e t . d e g r e e s )

# M i n . 1 s t Q u . M e d i a n M e a n 3 r d Q u . M a x .

# 1 . 0 0 2 . 0 0 6 . 0 0 8 . 7 7 1 5 . 0 0 3 1 . 0 0

f b n e t . b e t w e e n <- b e t w e e n n e s s ( f b n e t . lcc ) s u m m a r y( f b n e t . b e t w e e n )

# M i n . 1 s t Q u . M e d i a n M e a n 3 r d Q u . M a x .

# 0 . 0 0 0 . 0 0 1 4 . 0 3 3 0 1 . 7 0 1 2 3 . 1 0 3 4 3 9 . 0 0 and their distributions:

par( m f r o w =c(1 ,2))

plot(d e n s i t y( f b n e t . d e g r e e s ) , lwd =2 ,

main = " D e g r e e d i s t r i b u t i o n " , xlab = " D e g r e e " , ylab = " D e n s i t y " )

plot(d e n s i t y( f b n e t . b e t w e e n ) , lwd =2 , main = " B e t w e e n n e s s d i s t r i b u t i o n " , xlab = " B e t w e e n n e s s " , ylab = " D e n s i t y " )

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 28 / 40

(29)

Network mining Individual characteristics

Degree and betweenness distribution

(30)

Network mining Individual characteristics

Combine visualization and individual characteristics

par( mar =rep(1 ,4))

# s e t n o d e a t t r i b u t e ‘ s i z e ’ w i t h d e g r e e V ( f b n e t . lcc )$size <- 2* sqrt( f b n e t . d e g r e e s )

# s e t n o d e a t t r i b u t e ‘ c o l o r ’ w i t h b e t w e e n n e s s bet .col <- cut(log( f b n e t . b e t w e e n +1) ,10 ,

l a b e l s= F A L S E )

V ( f b n e t . lcc )$c o l o r <- heat.c o l o r s(10)[11 - bet .col] plot( f b n e t . lcc , main = " D e g r e e and b e t w e e n n e s s " ,

v e r t e x .f r a m e. c o l o r =heat.c o l o r s( 1 0 ) [ bet .col] , v e r t e x . l a b e l = NA , edge . c o l o r = " grey " )

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 30 / 40

(31)

Network mining Individual characteristics

(32)

Network mining Clustering

Node clustering

One of the function to perform node clustering is spinglass.community (that prossibly produces different results each time it is used since it is based on a stochastic process):

f b n e t . c l u s t e r s <- s p i n g l a s s . c o m m u n i t y ( f b n e t . lcc ) f b n e t . c l u s t e r s

# G r a p h c o m m u n i t y s t r u c t u r e c a l c u l a t e d w i t h

# t h e s p i n g l a s s a l g o r i t h m

# N u m b e r o f c o m m u n i t i e s : 9

# M o d u l a r i t y : 0 . 5 6 5 4 1 3 6

# M e m b e r s h i p v e c t o r :

# [ 1 ] 9 5 6 5 5 9 1 9 1 1 4 9 9 6 2 7 2 7 2 7 5

# . . .

t a b l e( f b n e t . c l u s t e r s$m e m b e r s h i p )

# 1 2 3 4 5 6 7 8 9

# 8 7 8 3 2 1 4 7 1 8 2 2 6

See help(communities)for more information.

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 32 / 40

(33)

Network mining Clustering

Combine clustering and visualization

# c r e a t e a n e w a t t r i b u t e

V ( f b n e t . lcc )$c o m m u n i t y <- f b n e t . c l u s t e r s$m e m b e r s h i p f b n e t . lcc

# I G R A P H U - - - 1 2 2 5 3 5 - -

# + a t t r : l a y o u t ( g/n ) , i n i t i a l s ( v/c ) ,

# l a b e l ( v/c ) , s i z e ( v/n ) , c o l o r ( v/c ) ,

# c o m m u n i t y ( v/n ) Display the clustering:

par( m f r o w =c(1 ,1)) par( mar =rep(1 ,4))

plot( f b n e t . lcc , main = " C o m m u n i t i e s " , v e r t e x .f r a m e. c o l o r =

r a i n b o w(9)[ f b n e t . c l u s t e r s$m e m b e r s h i p ] , v e r t e x . c o l o r =

r a i n b o w(9)[ f b n e t . c l u s t e r s$m e m b e r s h i p ] , v e r t e x . l a b e l = NA , edge . c o l o r = " grey " )

(34)

Network mining Clustering

Combine clustering and visualization

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 34 / 40

(35)

Network mining Clustering

Export the graph

Thegraphml format can be used to export the graph (it can be read by most of the graph visualization programs and includes information on node and edge attributes)

w r i t e. g r a p h ( f b n e t . lcc , file= " f b l c c . g r a p h m l " , f o r m a t= " g r a p h m l " )

seehelp(write.graph)for more information of graph exportation formats

(36)

Use gephi

Outline

1 Network inference Data description Inference with glasso Basic mining

2 Network mining

Building the graph with igraph Global characteristics

Visualization

Individual characteristics Clustering

3 Use gephi

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 36 / 40

(37)

Use gephi

Import data

Start and select “new project”.

Create a graph from an edge list: filefbnet-el.txt

File / Open Graph type: “undirected”

Create a graph (with nodes an edges attributes) from a GraphML file: filefblcc.graphmlpreviously created with igraph

File / Open Graph type: “undirected”

On the right part of the screen, the number of nodes and edges are indicated.

Check nodes attributes and define nodes labels

Data lab

Copy data to a column: initials Copy to: Label

Other nodes or edges attributes can be imported from a csv file with

import file

(38)

Use gephi

Import data

Start and select “new project”.

Create a graph from an edge list: filefbnet-el.txt

File / Open Graph type: “undirected”

Create a graph (with nodes an edges attributes) from a GraphML file: filefblcc.graphmlpreviously created with igraph

File / Open Graph type: “undirected”

On the right part of the screen, the number of nodes and edges are indicated.

Check nodes attributes and define nodes labels

Data lab

Copy data to a column: initials Copy to: Label

Other nodes or edges attributes can be imported from a csv file with

import file

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 37 / 40

(39)

Use gephi

Import data

Start and select “new project”.

Create a graph from an edge list: filefbnet-el.txt

File / Open Graph type: “undirected”

Create a graph (with nodes an edges attributes) from a GraphML file: filefblcc.graphmlpreviously created with igraph

File / Open Graph type: “undirected”

On the right part of the screen, the number of nodes and edges are indicated.

Check nodes attributes and define nodes labels

Data lab

Copy data to a column: initials Copy to: Label

Other nodes or edges attributes can be imported from a csv file with

import file

(40)

Use gephi

Visualization

Visualize the graph with Fruchterman & Reingold algorithm

Bottom left of panel “Global view”

Spatialization: Choose “Fruchterman and Reingold”

Area: 800 - Gravity: 1 Click on “Stop” when stabilized

Customize the view:

zoom or de-zoom with the mouse

change link width (bottom toolbox)

display labels and change labels size and color (bottom toolbox)

with the “select” tool, visualize a node neighbors (top left toolbox)

with the “move” tool, move a node (top left toolbox)

Use the view to understand the graph(delete labels before)

Color a node’s neighbors (middle left toolbox)

Visualize the shortest path between two nodes (middle left toolbox)

Visualize the distances from a given node to all the other nodes by nodes coloring (middle left toolbox)

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 38 / 40

(41)

Use gephi

Visualization

Visualize the graph with Fruchterman & Reingold algorithm

Bottom left of panel “Global view”

Spatialization: Choose “Fruchterman and Reingold”

Area: 800 - Gravity: 1 Click on “Stop” when stabilized

Customize the view:

zoom or de-zoom with the mouse

change link width (bottom toolbox)

display labels and change labels size and color (bottom toolbox)

with the “select” tool, visualize a node neighbors (top left toolbox)

with the “move” tool, move a node (top left toolbox)

Use the view to understand the graph(delete labels before)

Color a node’s neighbors (middle left toolbox)

Visualize the shortest path between two nodes (middle left toolbox)

Visualize the distances from a given node to all the other nodes by nodes coloring (middle left toolbox)

(42)

Use gephi

Visualization

Visualize the graph with Fruchterman & Reingold algorithm

Bottom left of panel “Global view”

Spatialization: Choose “Fruchterman and Reingold”

Area: 800 - Gravity: 1 Click on “Stop” when stabilized

Customize the view:

zoom or de-zoom with the mouse

change link width (bottom toolbox)

display labels and change labels size and color (bottom toolbox)

with the “select” tool, visualize a node neighbors (top left toolbox)

with the “move” tool, move a node (top left toolbox)

Use the view to understand the graph(delete labels before)

Color a node’s neighbors (middle left toolbox)

Visualize the shortest path between two nodes (middle left toolbox)

Visualize the distances from a given node to all the other nodes by nodes coloring (middle left toolbox)

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 38 / 40

(43)

Use gephi

Graph mining

Node characteristics

Window / Statistics

On the bottom right panel, Degree: run Check on Data Lab

On the top left panel, Clustering / Nodes / Size: Choose a clustering parameter:

Degree

Size: Min size:10, Max size: 50, Apply On the bottom right panel, Shortest path: run Color: Choose a clustering parameter: Betweenness centrality

Default: choose a palette, Apply

(44)

Use gephi

Node clustering

Node characteristics

On the bottom right panel, Modularity: run Check on Data Lab

On the top left panel, Clustering / Nodes / Label color: Choose a clustering parameter: Modularity class

Color: Default: choose a palette, Apply

Export a view

Preview / Default with straight links / Refresh / Export (bottom left)

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 40 / 40

(45)

Use gephi

Node clustering

Node characteristics

On the bottom right panel, Modularity: run Check on Data Lab

On the top left panel, Clustering / Nodes / Label color: Choose a clustering parameter: Modularity class

Color: Default: choose a palette, Apply

Export a view

Preview / Default with straight links / Refresh / Export (bottom left)

(46)

Use gephi

Friedman, J., Hastie, T., and Tibshirani, R. (2008).

Sparse inverse covariance estimation with the graphical lasso.

Biostatistics, 9(3):432–441.

Liu, H., Roeber, K., and Wasserman, L. (2010).

Stability approach to regularization selection for high dimensional graphical models.

InProceedings of Neural Information Processing Systems (NIPS 2010), pages 1432–1440, Vancouver, Canada.

Martin, P., Guillou, H., Lasserre, F., Déjean, S., Lan, A., Pascussi, J., San Cristobal, M., Legrand, P., Besse, P., and Pineau, T. (2007).

Novel aspects of PPARα-mediated regulation of lipid and xenobiotic metabolism revealed through a multrigenomic study.

Hepatology, 54:767–777.

Formation INRA (Niveau 3) Network (TP) Nathalie Villa-Vialaneix 40 / 40

Références

Documents relatifs

Classical optimization methods, namely gradient based methods, require those derivatives: therefore, when they are not available as simulator outputs, they are usually

You are in a music festival, and you need to use a toilet, unfortunately, the toilets are not so good, and you want to choose the best one under the next constraints:..

To obtain the final solution, one has just to observe that the set of cut edges is complementary to the set of connected subtrees, i.e., the optimal partition is given by the

The paper is organised the following way: Section 2 introduces the latent class model, derives the resulting log-likelihood function to be maximised, it presents the

We developed a neural network model permitting the robot to: first, be aware of his own dynamic by learning (babbling step) to link his actions (proprioception) and the induced

Based on a layer scanning algorithm, the color reordering generates gray level images and makes it possible to embed the color palette into the gray level images using a data

Authors of [4] sort the colors of the color palette in order to get an index image which is near of the luminance of the original color image and in the same time they get a

As according to the experimental results obtained on WordNet and BabelNet, ENC shows generally better results for synset induction task when algorithm parameters are oriented