• Aucun résultat trouvé

Dose-dependent heart rate responses to drinking water: a randomized crossover study in young, non-obese males

N/A
N/A
Protected

Academic year: 2021

Partager "Dose-dependent heart rate responses to drinking water: a randomized crossover study in young, non-obese males"

Copied!
7
0
0

Texte intégral

(1)

A

B

C

D

~30

30

60

4

Time line [min]

A

=

Stabilization period plus attachment of equiment (electrodes and blood pressure cuffs)

B

=

Hemodynamic baseline measurement

C

=

Treatment ingestion (one of four treatments; randomized fashion)

D

=

Post treatment observational time

Treatment 1 (200 mL still mineral water at room temperature)

SCHEMATIC STUDY PROTOCOL – DOSE-RESPONSE WATER STUDY

Treatment 2 (400 mL still mineral water at room temperature)

Treatment 3 (600 mL still mineral water at room temperature)

Treatment 4 (800 mL still mineral water at room temperature)

(2)

Data supplement Figure 2 Blood pressure responses

1

Figure 2 – Supplement

Figure 2 – Supplemental data. Left panels A and B: Time course for changes in systolic-

and diastolic blood pressure after ingestion of water at different volumes (200 mL, 400 mL, 600 mL, and 800 mL) investigated in five young, non-obese subjects. Each mean value (i.e. 10 min blocks) corresponds to the average over the respective interval that was subtracted by

its baseline values. Right panels A and B: Floating bars (min to max) represent individual

mean responses (open circles: ○) averaged over min 0 to 60 post-drink relative to baseline values and presented as a delta (Δ) for each drink volume, respectively. Treatment versus time interaction effects were analysed by two-way repeated measures ANOVA with time and treatment (200 mL, 400 mL, 600 mL, and 800 mL) as interaction factors (no interaction effect

(3)

Data supplement Figure 2 Blood pressure responses

2 was observed). BL indicates baseline. Data are presented as means ± standard deviation (Panel A).

Systolic and diastolic blood pressure were measured continuously and beat-to-beat by using a Task Force Monitor (CNSystems, Graz, Austria) for a 30 min baseline and for a 60 min post-drink period. Detailed information concerning this technique can be accessed from the references below:

Monnard CR, Grasser EK. Cardiovascular responses to a glucose drink in young male individuals with overweight/obesity and mild alterations in glucose metabolism, but without impaired glucose tolerance. Eur J Nutr 2019; doi: 10.1007/s00394-019-02120-3.

Grasser EK, Yepuri G, Dulloo AG, Montani JP. Cardio- and cerebrovascular responses to the energy drink Red Bull in young adults: a randomized cross-over study. Eur J Nutr

2014;53(7):1561-71.

Moreover, a critical methodological discussion for continuous compared with discontinuous blood pressure measurements can be accessed from the reference below:

Erik Konrad Grasser, Jennifer Lynn Miles-Chan, Nathalie Charrière, Cathríona R Loonam, Abdul G Dulloo, and Jean-Pierre Montani. Energy Drinks and Their Impact on the

(4)

Data supplement Table 1 Subject characteristics

Table 1 – Supplement: Anthropometric- and averaged beat-to-beat cardiovascular baseline data

over the last 10 min prior to ingesting each of the drinks (data are presented as means ± standard deviation)

n: number of subjects; VLF_RRI_LN: Very low frequency component of RR-interval (0.003 to 0.04 Hz) after natural logarithm transformation; LF_RRI_LN: Low frequency component of RR-interval (0.04 to 0.15 Hz) after natural logarithm transformation; HF_RRI_LN: High frequency component of RR-interval (0.15 to 0.4 Hz) after natural logarithm transformation; PSD_RRI_LN: Power spectral density of RR-interval (0.003 to 0.4 Hz) after natural

logarithm transformation; HF_RRI_%: Normalized high frequency power component in percentage. Statistical analysis was performed using one-way repeated measures ANOVA with Holm-Sidak’s multiple comparison test comparing each condition among themselves and

p < 0.05 was considered as significant difference between test drinks.

200 mL 400 mL 600 mL 800 mL p values n

Age, years 23.9 ± 2.9 --- --- --- --- 8

Height, m 1.81 ± 0.07 --- --- --- --- 8

Weight, kg 77.9 ± 9.5 --- --- --- --- 8

Body mass index, kg · m-2 23.7 ± 2.2 --- --- --- --- 8

Heart rate, bpm 65.6 ± 6.2 66.1 ± 5.9 68.1 ± 8.7 71.4 ± 10.0 > 0.10 8 VLF_RRI_LN 6.1 ± 0.8 5.9 ± 0.7 5.3 ± 0.8 5.4 ± 1.1 > 0.10 8 LF_RRI_LN 6.4 ± 0.6 6.6 ± 0.5 6.4 ± 0.6 6.5 ± 0.6 > 0.74 8 HF_RRI_LN 5.9 ± 0.9 6.2 ± 0.9 5.9 ± 1.1 5.7 ± 1.1 > 0.45 8 PSD_RRI_LN 7.2 ± 0.7 7.5 ± 0.5 7.2 ± 0.7 7.2 ±0.7 > 0.58 8 HF_RRI_% 43.3 ± 11.7 44.5 ± 13.8 40.2 ± 14.5 39.5 ± 18.1 > 0.89 8 Systolic blood pressure, mmHg 120.2 ± 7.1 121.2 ± 10.3 117.6 ± 7.4 116.6 ± 4.3 > 0.36 5 Diastolic blood pressure, mmHg 78.0 ± 5.7 76.5 ± 6.3 76.6 ± 6.5 75.8 ± 5.3 > 0.87 5

(5)

Data supplement Table 1 Subject characteristics

Subjects

Eight healthy, young male subjects were recruited and paid (Table 1). All of the test subjects were non-smokers and classified as non-obese with normal resting blood pressure and normal resting heart rate and were free of any diseases nor were taking any medication that would affect cardiovascular and/or autonomic regulation. All participants fasted (no food or water) for ≥ 12 h and abstained from alcohol, smoking and caffeine, as well as from vigorous

exercise for 24 h prior to each test and were advised not to change their dietary habits between the tests.

(6)

Data supplement Table 2 Heart rate variability parameters

1 1

Table 2 - Supplement: Heart rate variability parameters from spectral analysis in response to

water at different drink volumes and presented as an averaged delta response relative to baseline values.

Holm-Sidak test 2F-ANOVA Variable Post-drink time periods (averaged delta responses to baseline

values) Overall effect Interaction ΔVLF_RRI_LN 10 min 20 min 30 min 40 min 50 min 60 min p - value None 200 mL -0.0 ± 0.9 -0.2 ± 0.6 -0.3 ± 1.0 -0.4 ± 0.6 -0.2 ± 0.9 -0.1 ± 0.9 0.43

400 mL 0.1 ± 0.4 0.3 ± 0.6 0.0 ± 0.4 0.2 ± 0.4 0.1 ± 0.5 0.1 ± 0.3 0.53 600 mL 0.9 ± 0.7* 1.0 ± 0.6* 0.4 ± 0.5 0.9 ± 0.9 0.6 ± 0.5* 0.6 ± 0.4* 0.02 800 mL 0.8 ± 0.8 0.7 ± 1.0 0.4 ± 1.2 0.4 ± 1.0 0.3 ± 1.1 0.3 ± 1.1 0.15

ΔLF_RRI_LN 10 min 20 min 30 min 40 min 50 min 60 min p - value None 200 mL 0.6 ± 0.4 0.1 ± 0.4 0.2 ± 0.5 0.3 ± 0.4 0.3 ± 0.4 0.5 ± 0.5 0.03

400 mL 0.4 ± 0.4 0.1 ± 0.6 0.1 ± 0.5 0.2 ± 0.6 0.1 ± 0.5 0.0 ± 0.5 0.19 600 mL 0.8 ± 0.6* 0.2 ± 0.6 0.4 ± 0.4 0.0 ± 0.6 0.2 ± 0.4 0.1 ± 0.5 < 0.005 800 mL 0.5 ± 0.6 0.2 ± 0.6 -0.1 ± 0.7 0.0 ± 0.7 0.0 ± 0.4 0.1 ± 0.6 0.10

ΔHF_RRI_LN 10 min 20 min 30 min 40 min 50 min 60 min p - value None 200 mL 0.5 ± 0.8 0.3 ± 0.9 0.2 ± 0.7 0.2 ± 0.7 0.2 ± 0.8 0.2 ± 0.7 0.23

400 mL 0.5 ± 0.4 0.3 ± 0.3 0.3 ± 0.5 0.3 ± 0.5 0.1 ± 0.5 -0.1 ± 0.3 0.06 600 mL 0.7 ± 0.5* 0.7 ± 0.5* 0.5 ± 0.6 0.3 ± 0.6 0.4 ± 0.7 0.1 ± 0.5 < 0.01 800 mL 0.8 ± 0.6* 0.7 ± 0.2*** 0.5 ± 0.3** 0.4 ± 0.2*** 0.2 ± 0.1** 0.3 ± 0.3* < 0.005

ΔPSD_RRI_LN 10 min 20 min 30 min 40 min 50 min 60 min p - value None 200 mL 0.5 ± 0.4* 0.2 ± 0.2 0.2 ± 0.2 0.2 ± 0.1* 0.3 ± 0.2* 0.4 ± 0.3* 0.01

400 mL 0.4 ± 0.3 0.2 ± 0.5 0.2 ± 0.5 0.2 ± 0.5 0.1 ± 0.5 0.0 ± 0.4 0.11 600 mL 0.8 ± 0.4*** 0.5 ± 0.4* 0.5 ± 0.3* 0.3 ± 0.4 0.3 ± 0.4 0.2 ± 0.4 < 0.005 800 mL 0.6 ± 0.4 0.4 ± 0.5 0.1 ± 0.5 0.2 ± 0.4 0.1 ± 0.3 0.1 ± 0.5 0.03

ΔHF_RRI_% 10 min 20 min 30 min 40 min 50 min 60 min p - value None 200 mL -2.5 ± 9.1 0.5 ± 11.3 -3.8 ± 9.2 -4.0 ± 12.6 -5.0 ± 13.6 -6.8 ± 12.0 0.28

400 mL 0.4 ± 14.6 4.1 ± 11.8 4.8 ± 11.6 0.4 ± 11.1 -0.2 ± 11.3 -2.9 ± 9.6 0.30 600 mL -1.9 ± 15.3 8.5 ± 16.2 5.8 ± 11.5 7.0 ± 14.4 3.0 ± 14.8 0.4 ± 16.2 0.13 800 mL 2.1 ± 13.3 7.0 ± 10.2 11.2 ± 10.5 7.4 ± 11.3 4.5 ± 8.1 1.5 ± 7.3 0.07

VLF_RRI_LN: Very low frequency component of RR-interval (0.003 to 0.04 Hz) after natural logarithm transformation; LF_RRI_LN: Low frequency component of RR-interval (0.04 to 0.15 Hz) after natural logarithm transformation; HF_RRI_LN: High frequency component of RR-interval (0.15 to 0.4 Hz) after natural logarithm transformation; PSD_RRI_LN: Power spectral density of RR-interval (0.003 to 0.4 Hz) after natural logarithm transformation; HF_RRI_%: Normalized high frequency power component in

(7)

Data supplement Table 2 Heart rate variability parameters

2 2 percentage. Δ refers to averaged post-drink responses, which were subtracted from respective baseline values for that variable and presented as deltas: *p < 0.05, **p < 0.01, ***p < 0.005, statistical significant difference between a post-drink period and its respective baseline value by using one-way repeated measures ANOVA with the Holm-Sidak’s multiple comparison test. Interaction refers to treatment versus time effects by two-way repeated measures ANOVA analysis with time and treatment (i.e. 200 mL, 400 mL, 600 mL, and 800 mL) as interaction factors. Values are presented as means ± standard deviation.

Figure

Figure 1 Supplement
Figure 2 – Supplemental data. Left panels A and B: Time course for changes in systolic-  and diastolic blood pressure after ingestion of water at different volumes (200 mL, 400 mL,  600 mL, and 800 mL) investigated in five young, non-obese subjects
Table 2 - Supplement: Heart rate variability parameters from spectral analysis in response to  water at different drink volumes and presented as an averaged delta response relative to  baseline values

Références

Documents relatifs

Il suffit de mettre le terme du plus haut degré en facteur et de constater que l’autre facteur est la somme d’une constante non nulle et d’une espression qui tend vers zéro..

[r]

[r]

La norme de L ∞ ( R , B, λ) induit la norme uniforme sur les fonctions continues ; si une suite de fonctions continues converge pour la norme de L ∞ , elle est de Cauchy uniforme et

Le tableau ci-après montre les étapes de l’algorithme pour créer la liste des nombres entiers naturels de 1 à 50 (repérés en bout de chaque ligne par la case jaune). Quand un

Si l'on diminue la longueur d'une suite convenable de 1 en y remplaçant les deux dernières composantes par une seule égale à leur somme, on obtient une nouvelle suite convenable

Un calculette programmable ou un tableur font apparaître une stabilité autour de 5 pour les 100 premiers termes, puis vers 7 ensuite, ce qui laisserait entendre que la

Pour obtenir le nombre initial après une double opération, il faut et il suffit que cette division soit réversible, c'est à dire qu'on obtienne le quotient p en divisant N par