• Aucun résultat trouvé

Sturmian Sequences

N/A
N/A
Protected

Academic year: 2022

Partager "Sturmian Sequences"

Copied!
43
0
0

Texte intégral

(1)

Thomas Fernique

LIRMM - Universit´e Montpellier II

12/19/2005

(2)

2 Sturmian sequences Cut and project Substitutions Continued fractions

3 Minimal complexity 1D sequences nD sequences

(3)

Periodicity and aperiodicity

(4)

Quasicrystals (Dan Shechtman, 1982)

(5)

Not so new (Penrose, 1972, Bohr, 1925)

(6)

function of quasiperiodicity/recurrence

Definition

SetA fA :R+→R+ s.t. :

∃x ∈A |P ⊂A∩B(x,r) ⇒ ∀y ∈A, P ⊂A∩B(y,fA(r)).

(7)

Generation : substitutions

Tiling : partition into a finite number (up to translation/rotation) of polygonal tiles.

Substitution : inflation of tiles + dissection into new tiles.

(8)

Cut & Project (Meyer, 1972, Katz et Duneau, 1985)

directive spaceD, projective space P s.t. Rd =P×D; window Ω⊂P (bounded open set) ;

strip S(Ω) =D×Ω ; projection π onP alongD,

set π(Zd∩S(Ω)) or tiling projecting the faces ofZd∩S(Ω)).

Penrose :d = 5, dim(P) = 2.

(9)

1 Aperiodic order

2 Sturmian sequences Cut and project Substitutions Continued fractions

3 Minimal complexity 1D sequences nD sequences

(10)

Cut & Project in codimension 1 : stepped plane

~

α∈Rn+ S~α.

Entries of~α linearly independent over Q: Sturmian plane.

(11)

Stepped plane tiling sequence

7→

23 3 1 23 23 3 1 23 23 3 23 3 1 2 3

2 3 3 1 2 3

2 3

1 23 2

3 3 1 23 2

3 3 23 3 1 23 23 3 1 2 3

23 3 2

3 3 1 2 3

2 3 3 2

3 3 1 23 23 3 1 23 23 3 1 23 3 1 2 3

23 3 1 2 3 3 1 2 3

2 3 3 1 23 2

3 3 1 23 23 3 23 3

1 23 23 3 23 3 1 2 3

2 3 3 1 2 3

2 3 3 23 3 1 23 23

3 23 3 1 23 23 3 1 2 3

23 3 2

3 3 1 23 2

3 3 1 23

3 1 23 23 3 1 23 23 3 1 23 3 1 2 3

2 3 3 1 2 3

2 3 3

2 3 3 1 23 2

3 3 1 23 23 3 23 3 1 2 3

23 3 1 2 3

2 3

1 2 3

2 3 3 1 2 3

2 3 3 23 3 1 23 23 3 1 23 23 3 2

3 3 1 2 3

23 3 2

3 3 1 23 2

3 3 1 23 23 3 23 3 1 2 3

23 3 23 3 1 2 3

2 3 3 1 2 3

2 3 3 1 23 3 1 23 23 3

1 23 3 1 23 23 3 1 2 3

23 3 1 2 3

2 3 3 2

3 3 1 23 23

3 23 3 1 23 23 3 1 23 23 3 2

3 3 1 2 3

2 3 3 1 23

3 1 23 2

3 3 1 23 23 3 23 3 1 2 3

23 3 1 2 3

2 3 3

2 3 3 1 2 3

2 3 3 1 23 3 1 23 23 3 1 23 23 3 1 2 3 23

In dimension 1 : classic Sturmian sequences.

(12)

1 Aperiodic order

2 Sturmian sequences Cut and project Substitutions Continued fractions

3 Minimal complexity 1D sequences nD sequences

(13)

Substitution : morphismσ of A s.t. |σn(i)| → ∞ for i ∈ A.

σ: 17→12,27→1 :

1→12→121→12112→12112121→. . . σ extended to Aω fixed-point :u ∈ Aω |u =σ(u).

n→∞lim σn(1) = 12112121121121· · ·=uα =σ(uα).

(14)

A={1,2,3}and (~e1, ~e2, ~e3) canonical basis ofR3.

u∈ A broken line of segments [~x, ~x+~ei] = (~x,i),~x∈N3 :

e3

e1

e2 2 2

3

3 1

(15)

σ onA linear map Θ(σ) on segments : Θ(σ) : (~x,i)7→Mσ~x+ X

p|σ(i)=p·j·s

(~f(p),j),

where (Mσ)i,j =|σ(j)|i and~f(u) = (|u|1, . . . ,|u|n).

(16)

σ :

17→12 27→13 37→1

, Mσ =

1 1 1 1 0 0 0 1 0

, σ(22331) = 13131112.

e3

e1

e2

e3

e2 e1

2 2

3 3 1

3 2

1 1

1

1 1

3

(17)

Segment (~x,i) dual face (~x,i) :

e3

e2 e1

e3

e2 e1

e3

e2 e1

If det(Mσ) =±1 : linear map Θ(σ) dual map Θ(σ) : Θ(σ)(~x,i) =Mσ−1~x+X

j∈A

X

s|σ(j)=p·i·s

(~f(s),j).

(18)

σ: 17→12,27→13,37→1 :

e3

e2 e1

e3

e2 e1

(19)

Theorem

Θ(σ)(S~α) =StMσ~α.

7→

Mσ−1Pα,β =Pα00 Θ(σ) “discretization” ofMσ−1.

(20)

1 Aperiodic order

2 Sturmian sequences Cut and project Substitutions Continued fractions

3 Minimal complexity 1D sequences nD sequences

(21)

A necessary condition to be substitutive

Proposition

IfSα~ is a fixed point of a substitution Θ(σ), then the entries ofα~ belong toQ(λ), where λis an algebraic number of d ≤n.

Θ(σ)(Sα~) =Sα~ ⇒ StMσ~α=S~α

tMσ~α=λ~α.

(22)

A sufficient condition to be substitutive

If there exists unimodular matricesMi s.t. :

~

α=λM1×M2×. . .×Mp~α, thenS~α is substitutive.

(23)

The case n = 2 : continued fractions

Gauss map :T :α 7→ α11

α

= α1 −a.

Matrix viewpoint : α

a 1 1 0

1 T(α)

= 1

α

.

So, if (Tn(α))n is periodic, thenS(1,α) is substitutif.

Lagrange :α quadratic has a periodic expansion (Tn(α))n. Thus : Theorem

S(1,α) substitutif iffα has a periodic continued fraction expansion.

(24)

The case n > 2 : Brun’s expansion

~

α= (α1, . . . , αn)∈[0,1)n\{0}: T(α1, . . . , αn) =

α1

αi, . . . ,αi−1

αi , 1 αi

1 αi

i+1

αi , . . . ,αn

αi

,

whereαi = maxαj. a(~α) =

1 maxαj

and ε(~α) = min{i |αi = max

j αj}.

Brun expansion (an, εn) = (a(Tn(~α)), ε(Tn(~α)))

(25)

Matrix viewpoint :αεAa,εt(1,T(~α)) =t(1, ~α), where :

Aa,ε =

a 1

Iε−1

1 0

In−ε

 ,

Theorem

If~α has a periodic Brun expansion, thenSt(1,~α) is substitutif.

Lagrange ?

(26)

1 Aperiodic order

2 Sturmian sequences Cut and project Substitutions Continued fractions

3 Minimal complexity 1D sequences nD sequences

(27)

Foru= (ui)i∈Z,pu(n) : number of different factor of length n inu.

Theorem

pu bounded iff ∃n |pu(n)≤n iff u is periodic.

∀n, pu(n) =n+ 1 :u aperiodic sequence of minimal complexity.

(28)

Theorem

Let u s.t.∀n, pu(n) =n+ 1. Three cases :

1 u is sturmian,

2 ∃σ ∈<l,r,e > |u =σ(ω010ω),

3 ∃σ ∈<l,r,e > |u =σ(ω01ω), where :

l :

07→0

17→01 , r :

07→0

17→10 , e :

07→1 17→0 .

(29)

Geometric viewpoint

(30)

1 Aperiodic order

2 Sturmian sequences Cut and project Substitutions Continued fractions

3 Minimal complexity 1D sequences nD sequences

(31)

nD sequence :u = (ui1,...,in)ijZ.

A⊂Zn A-complexity :pu(A) denotes the number of different factors of shapeA in u.

rectangular complexity :A={(i,j) |1≤i ≤m, 1≤j ≤n}. One writespu(m,n).

Question :u periodic iffpu(A)≤?

(32)

nD Sequenceu :r-periodic, 0≤r ≤n.

proposition

u n-periodic iff pu(m1, . . . ,mn) bounded.

Limit 1-periodicity/aperiodicity ?

(33)

Conjecture (Nivat, 1997) For a 2D sequenceu :

∃(m0,n0) |pu(m0,n0)≤m0n0 ⇒ u periodic.

sequences of complexitymn+ 1 : characterized 2D sequences over{0,1};

proved for pu(m0,n0)≤ 161 m0n0;

converse is false (rectangle = bad shape ?) ; extensions for d >2 do not hold.

(34)

Conjecture (Nivat, 1997) For a 2D sequenceu :

∃(m0,n0) |pu(m0,n0)≤m0n0 ⇒ u periodic.

sequences of complexitymn+ 1 : characterized 2D sequences over{0,1};

proved for pu(m0,n0)≤ 161 m0n0;

converse is false (rectangle = bad shape ?) ; extensions for d >2 do not hold.

(35)

Conjecture (Nivat, 1997) For a 2D sequenceu :

∃(m0,n0) |pu(m0,n0)≤m0n0 ⇒ u periodic.

sequences of complexitymn+ 1 : characterized 2D sequences over{0,1};

proved for pu(m0,n0)≤ 161 m0n0;

converse is false (rectangle = bad shape ?) ; extensions for d >2 do not hold.

(36)

Geometric viewpoint

sequence 1D over{0,1} “curve” of the plane.

sequence 2D over{0,1} ?

“stepped surface” can be encoded by 2D sequences over{1,2,3}

1 1

3 1 2 1 3 2 1

2 2 1 3 2 1

2 2 1 3 2 1

3 2 3 2

1 2 1 2 1

3 2 1

1 3 2 1

3 2 1

3 1 3 2 1

2 3 2

3 3

2 1 3

1 1 3

1 2 1 3 2 1

3 3

(37)

Stepped planes are stepped surfaces. So : Conjecture

Sturmian planes = aperiodic nD sequences of minimal complexity amongstepped surfaces ?

Proposition

If this conjecture holds, then the Nivat conjecture also holds.

Converse ?

(38)

Proposition

Ifu is a 2D sequence which encodes a sturmian stepped plane, thenpu(m,n) =mn+m+n.

Characterization of the 2D sequence of complexitymn+m+n? Notice that Θ(σ) acts on stepped surfaces as well.

(39)
(40)
(41)
(42)
(43)

Références

Documents relatifs

Both the topological and measure-theoretic theory are just nascent, and raise two kind of questions inspired by the symbolic theory: we would like to build examples showing what kind

Sine x is Sturmian, there is a unique right speial fator of length.. n, whih is either 0w

We characterize all standard words occurring in any characteristic word (and so in any Sturmian word) using firstly morphisms, then standard prefixes and finally

For some applications, it is important not only to know whether a word ω has a finite or infinite index and how large this index (or critical exponent) is, but one also needs to

After introducing basic required notions in Sections 1 and 2, in Section 3 we describe the main tool for the proof, namely infinite special branches, and state the main theorem which

Now let e &gt; 0 be arbitrary small and let p,q be two multiplicatively independent éléments of H. It remains to consider the case where H, as defined in Theorem 2.2, does not

Abstract, - We détermine the minimum complexity of automatic non Sturmian séquences (fixed points of injective constant-length substitutions) on sets of two

Corresponding to the fact that ergodic group translations have entropy 0, one conjectures that the complexity of a Hartman sequence is