• Aucun résultat trouvé

Track 300

N/A
N/A
Protected

Academic year: 2022

Partager "Track 300"

Copied!
14
0
0

Texte intégral

(1)

GRANDIN ET AL.: TRANSIENT DEFORMATION AT MANDA HARARO X - 55

40.

40.5˚

40.

40.9˚

12.

12.2˚

12.

12.6˚

12.

12.4˚

12.

12.

LOS

b

Dike d10 (October 2008) Track 28 (ascending) 15/10/2008 - 19/11/2008

40.

40.5˚

40.

40.9˚

12.0˚

12.2˚

12.

12.6˚

12.

12.4˚

12.

12.

LOS

a

Dike d7 (November 2007) Track 28 (ascending) 31/10/2007 - 09/01/2008

LOS LOS

0 2.82

-2.82

LOS (cm)

Figure S-1. Interferograms imaging the dike intrusions of November 2007 (d7, left) and October 2008 (d10, right). These two events are the most distant from the inferred central magma reservoir lying at 12.30N (Figure 1). A small subsidence signal at the same location as sources W2 and W3 (black circle) is caused by co-diking deflation of the suspected magma source [Hamling et al., 2009; Grandin et al., 2010].

D R A F T April 13, 2010, 10:43am D R A F T

(2)

X - 56 GRANDIN ET AL.: TRANSIENT DEFORMATION AT MANDA HARARO

2005/12/19−2006/01/23 +271

2005/12/19−2006/02/27 +44

2006/01/23−2006/02/27 −226

2005/12/19−2006/04/03 −168

2006/02/27−2006/04/03 −213

2006/04/03−2006/06/12 −350

2006/05/08−2006/06/12 +372

2006/05/08−2006/08/21 −135

2006/04/03−2006/09/25 −169

2006/06/12−2006/09/25 +180

2006/02/27−2006/10/30 −193

2006/04/03−2006/10/30 +19

2006/09/25−2006/10/30 +189

2006/09/25−2006/12/04 +50

2006/10/30−2006/12/04 −138

2006/06/12−2007/01/08 +111

2006/09/25−2007/01/08 −69

2006/12/04−2007/01/08 −119

2006/06/12−2007/02/12 −34

2007/01/08−2007/02/12 −145

2006/05/08−2007/04/23 +214

2007/02/12−2007/04/23 −123

2007/02/12−2007/05/28 −32

2007/04/23−2007/05/28 +91

2006/12/04−2007/07/02 −52

2007/01/08−2007/07/02 +67

2007/02/12−2007/07/02 +213

2007/05/28−2007/07/02 +245

2006/12/04−2007/08/06 +40

2007/07/02−2007/08/06 +92

2006/04/03−2007/09/10 −78

2007/08/06−2007/09/10 +0

2007/07/02−2007/10/15 +0

2007/09/10−2007/10/15 −91

2007/10/15−2007/11/19 −42

2007/09/10−2008/01/28 −4

2007/10/15−2008/01/28 +87

2007/11/19−2008/01/28 +129

2007/11/19−2008/04/07 +20

2008/01/28−2008/04/07 −109

2008/04/07−2008/06/16 −236

2007/05/28−2008/07/21 +7

2008/06/16−2008/07/21 +20

2008/01/28−2008/08/25 +62

2008/04/07−2008/08/25 +172

2008/04/07−2008/09/29 −110

2008/07/21−2008/09/29 +104

2008/08/25−2008/09/29 −283

2008/07/21−2008/11/03 +352

2008/08/25−2008/11/03 −36

2008/09/29−2008/11/03 +247

2008/07/21−2008/12/08 −54

2008/09/29−2008/12/08 −159

2008/11/03−2008/12/08 −407

2007/10/15−2009/01/12 −18

2008/09/29−2009/01/12 +114

2008/11/03−2009/01/12 −132

2008/12/08−2009/01/12 +274

2008/11/03−2009/02/16 −396

2008/12/08−2009/02/16 +10

2009/01/12−2009/02/16 −263

2008/12/08−2009/03/23 +78

2009/01/12−2009/03/23 −195

2009/02/16−2009/03/23 +68

2008/12/08−2009/04/27 − 64

2009/02/16−2009/04/27 − 74

2009/03/23−2009/04/27 −142

2005/12/19 2006/01/23 2006/02/27 2006/04/03 2006/05/08 2006/06/12 2006/07/17 2006/08/21 2006/09/25 2006/12/04 2007/01/08 2007/02/12 2007/04/23 2007/05/28 2007/07/02 2007/08/06 2007/09/10 2007/10/15 2007/11/19 2008/01/28 2008/04/07 2008/06/16 2008/07/21 2008/08/25 2008/09/29 2008/11/03 2008/12/08

2006/10/30 2009/01/12 2009/02/16 2009/03/23 2009/04/27

Track 300

Numbe r o f int er fe rog ram s

Time

80 70 60 50 40 30 20 10 0

2005 2006 2007 2008 2009

Num ber of in terf erogr ams

80 70 60 50 40 30 20 10 0

2005 2006 2007 2008 2009

2005/11/30−2006/02/08 −181

2006/02/08−2006/03/15 −94

2005/10/26−2006/04/19 +241

2006/03/15−2006/05/24 −144

2005/10/26−2006/06/28 −204

2006/04/19−2006/06/28 −445

2006/06/28−2006/08/02 −151

2006/04/19−2006/09/06 +494

2006/05/24−2006/09/06 −274

2006/04/19−2006/10/11 +451

2006/05/24−2006/10/11 −317

2006/09/06−2006/10/11 −42

2005/11/30−2006/11/15 +237

2006/05/24−2006/12/20 −85

2006/09/06−2006/12/20 +189

2006/10/11−2006/12/20 +232

2006/10/11−2007/01/24 −44

2006/12/20−2007/01/24 −277

2006/09/06−2007/05/09 −113

2006/10/11−2007/05/09 −70

2006/12/20−2007/05/09 −302

2007/01/24−2007/05/09 −25

2006/10/11−2007/06/13 +35

2007/01/24−2007/06/13 +80

2007/05/09−2007/06/13 +105

2006/12/20−2007/07/18 −74

2007/01/24−2007/07/18 +202

2007/06/13−2007/07/18 +122

2006/05/24−2007/08/22 −163

2007/07/18−2007/08/22 −3

2007/05/09−2007/10/31 +82

2007/06/13−2007/10/31 −23

2007/08/22−2007/10/31 −142

2007/08/22−2008/01/09 +16

2007/10/31−2008/01/09 +158

2007/05/09−2008/02/13 +2

2007/10/31−2008/02/13 −79

2008/01/09−2008/02/13 −238

2007/10/31−2008/04/23 +65

2008/02/13−2008/04/23 +145

2007/08/22−2008/05/28 +3

2008/01/09−2008/05/28 −12

2008/02/13−2008/05/28 +225

2008/04/23−2008/05/28 +80

2008/02/13−2008/07/02 −142

2008/04/23−2008/07/02 −288

2008/05/28−2008/07/02 −368

2008/04/23−2008/08/06 −38

2008/05/28−2008/08/06 −118

2008/07/02−2008/08/06 +250

2007/10/31−2008/09/10 −2

2008/05/28−2008/09/10 −148

2008/08/06−2008/09/10 −30

2008/07/02−2008/10/15 +181

2008/08/06−2008/10/15 −69

2008/09/10−2008/10/15 −38

2008/07/02−2008/11/19 −41

2008/10/15−2008/11/19 −222

2007/10/31−2008/12/24 −11

2008/09/10−2008/12/24 −8

2008/10/15−2008/12/24 +30

2008/11/19−2008/12/24 +252

2008/10/15−2009/01/28 +59

2008/11/19−2009/01/28 +281

2008/12/24−2009/01/28 +28

2008/11/19−2009/03/04 +139

2009/01/28−2009/03/04 −141

2008/11/19−2009/04/08 −62

2009/03/04−2009/04/08 −202

2005/10/26 2005/11/30 2006/02/08 2006/03/15 2006/04/19 2006/05/24 2006/06/28 2006/08/02 2006/09/06 2006/10/11 2006/11/15 2006/12/20 2007/01/24 2007/05/09 2007/06/13 2007/07/18 2007/08/22 2007/10/31 2008/01/09 2008/02/13 2008/04/23 2008/05/28 2008/07/02 2008/08/06 2008/09/10 2008/10/15 2008/11/19 2008/12/24 2009/01/28 2009/03/04 2009/04/08

Track 28

Figure S-2. InSAR data set used in this paper, for ascending tracks 28 and 300. Horizontal segments represent the time spanned by each interferogram. The black segments correspond to interferograms that image inter-diking deformation only. Grey segments represent interferograms that include deformation produced by at least one rifting event. The perpendicular baseline is indicated to the right of each segment. The dates of each SAR acquisition are shown at the bottom. The thick vertical line gives the date of the main 2005 rifting event. Thin dashed lines are for smaller subsequent rifting events.

D R A F T April 13, 2010, 10:43am D R A F T

(3)

GRANDIN ET AL.: TRANSIENT DEFORMATION AT MANDA HARARO X - 57

2005/12/02−2006/02/10 +31

2006/02/10−2006/03/17 +512

2005/10/28−2006/04/21 −391

2006/03/17−2006/04/21 +376

2006/02/10−2006/05/26 +89

2006/03/17−2006/05/26 −423

2005/10/28−2006/06/30 +246

2006/04/21−2006/06/30 +638

2006/03/17−2007/05/11 +64

2006/04/21−2007/05/11 −312

2006/03/17−2007/06/15 −20

2007/05/11−2007/06/15 −84

2007/06/15−2007/07/20 −21

2007/05/11−2007/08/24 +34

2007/06/15−2007/08/24 +119

2007/07/20−2007/08/24 +140

2007/07/20−2007/09/28 −84

2007/08/24−2007/09/28 −225

2006/04/21−2007/11/02 −164

2007/05/11−2007/11/02 +147

2007/08/24−2007/11/02 +113

2007/09/28−2007/12/07 −73

2007/11/02−2007/12/07 −412

2007/09/28−2008/02/15 −8

2007/12/07−2008/02/15 +64

2008/02/15−2008/04/25 +29

2008/04/25−2008/05/30 +36

2007/11/02−2008/07/04 +69

2008/05/30−2008/07/04 +351

2007/11/02−2008/08/08 −8

2008/05/30−2008/08/08 +273

2008/07/04−2008/08/08 −77

2007/12/07−2008/09/12 +0

2008/05/30−2008/09/12 −129

2008/08/08−2008/09/12 −403

2008/08/08−2008/10/17 −53

2008/09/12−2008/10/17 +349

2008/09/12−2008/11/21 +291

2008/10/17−2008/11/21 −58

2007/08/24−2008/12/26 −81

2008/09/12−2008/12/26 +216

2008/11/21−2008/12/26 −74

2008/08/08−2009/01/30 −355

2008/09/12−2009/01/30 +47

2008/10/17−2009/01/30 −301

2008/11/21−2009/01/30 −243

2008/12/26−2009/01/30 −169

2008/11/21−2009/03/06 +225

2008/12/26−2009/03/06 +299

2008/11/21−2009/04/10 +75

2008/12/26−2009/04/10 +149

2009/01/30−2009/04/10 +319

2009/03/06−2009/04/10 −149

2005/10/28 2005/12/02 2006/02/10 2006/03/17 2006/04/21 2006/05/26 2006/06/30 2007/05/11 2007/06/15 2007/07/20 2007/08/24 2007/09/28 2007/11/02 2007/12/07 2008/02/15 2008/04/25 2008/05/30 2008/07/04 2008/08/08 2008/09/12 2008/10/17 2008/11/21 2008/12/26 2009/01/30 2009/03/06 2009/04/10

Track 49 Nu m be r o f int erf ero gra ms

Time

60 50 40 30 20 10 0

2005 2006 2007 2008 2009

2006/03/11−2006/04/15 +326

2006/03/11−2006/05/20 +82

2006/04/15−2006/05/20 −244

2006/04/15−2006/06/24 +493

2006/06/24−2006/07/29 +376

2006/04/15−2006/09/02 +220

2006/06/24−2006/09/02 −273

2006/07/29−2006/09/02 −649

2006/03/11−2006/10/07 −52

2006/05/20−2006/10/07 −134

2006/10/07−2006/11/11 −442

2006/09/02−2007/01/20 −82

2007/01/20−2007/05/05 −82

2006/10/07−2007/07/14 +204

2007/05/05−2007/07/14 −229

2007/05/05−2007/08/18 −245

2007/07/14−2007/08/18 −15

2007/05/05−2007/09/22 +2

2007/07/14−2007/09/22 +232

2007/08/18−2007/09/22 +247

2006/05/20−2007/10/27 +13

2006/10/07−2007/10/27 +148

2007/08/18−2007/10/27 −40

2007/09/22−2007/10/27 −288

2007/08/18−2007/12/01 +188

2007/09/22−2007/12/01 −58

2007/10/27−2007/12/01 +229

2007/10/27−2008/05/24 +98

2007/12/01−2008/05/24 −130

2007/12/01−2008/06/28 −16

2008/05/24−2008/06/28 +114

2008/06/28−2008/08/02 +39

2008/05/24−2008/09/06 +32

2008/06/28−2008/09/06 −81

2008/08/02−2008/09/06 −120

2008/06/28−2008/10/11 −80

2008/08/02−2008/10/11 −119

2008/09/06−2008/10/11 +0

2007/09/22−2009/01/24 −197

2008/08/02−2009/01/24 −160

2008/09/06−2009/01/24 −40

2008/10/11−2009/01/24 −41

2008/10/11−2009/02/28 +190

2009/01/24−2009/02/28 +232

2009/01/24−2009/05/09 +150

2009/02/28−2009/05/09 −82

2006/03/11 2006/04/15 2006/05/20 2006/06/24 2006/07/29 2006/09/02 2006/10/07 2006/11/11 2007/01/20 2007/05/05 2007/07/14 2007/08/18 2007/09/22 2007/10/27 2007/12/01 2008/05/24 2008/06/28 2008/08/02 2008/09/06 2008/10/11 2009/01/24 2009/02/28 2009/05/09

Track 464 Num be r of interfe rograms

60 50 40 30 20 10 0

2005 2006 2007 2008 2009

Figure S-3. Same as Figure S-2 for descending tracks 464 and 49.

D R A F T April 13, 2010, 10:43am D R A F T

(4)

X - 58 GRANDIN ET AL.: TRANSIENT DEFORMATION AT MANDA HARARO

28 0 t

30

t t49

64 t4

40.2˚ 41.0˚

12.0˚

12.8˚

40.2˚ 41.0˚

12.0˚

12.8˚

LOS LOS

2 3

3 4

1

LOS LOS

40.2˚ 41.0˚

12.0˚

12.8˚

Figure S-4. Example of the result of the downsampling scheme used for elastic inversion of InSAR data. The original interferogram (left) contains hundreds of thousands of data points.

Downsampling is performed by averaging InSAR measurement over successively small square areas, with the size of each square depending on the distance from inferred active geological structures (center). Surface projections of sources of transient deformation discussed in this study are shown by white squares. The surface projection of the September 2005 dike model by Grandin et al. [2009] is shown by a black line. The resulting set of measurements contains less than 1000 points (right). Generally, downsampled data points are not located exactly at the center of the squares shown in the figure, but rather at the isobarycenter of the data points that were averaged in each square region. The interferogram used in this example is from track 49 (descending), and spans the period from 02/12/2005 to 10/02/2006. The areas imaged by the different ENVISAT tracks used in this study are shown on the left.

D R A F T April 13, 2010, 10:43am D R A F T

(5)

GRANDINETAL.:TRANSIENTDEFORMATIONATMANDAHARAROX-59

40.2

40.

25

40.

40.

12˚

12.25˚

12.

12.7

40.2

5 40.5˚ 12.75˚

40.

25 40.

40.

75˚

41˚

12.2

12.

12.75

˚

12.75˚

40.2

40.

40.

75˚ 41˚

12˚

12˚ 12.25˚

12.5˚

40.

75˚ 41˚

12˚

40.

75˚

40.

75˚

41˚ 41˚ 12˚

12.25˚

12.

12.7

LOS LOS

LOS LOS

Data Model Residue

AscendingDescending

−5 0 5 10 15

−5 0 5 10 15

-30 -20 -10 0 10 20 30

-30 -20 -10 0 10 20 30

DataModel DataModel Ascending Descending

LOS displacement (cm)

Distance across the rift (km) mask

40.25˚

40.2 5

40.

40.5

˚

12˚

12.2

12.

12.75˚ 40.

25 40.

12.

75˚ 40.

25 40.

40.

75˚

41˚

12.25˚

12.

12.75

˚

12.7

40.

25˚

40.

40.

75˚ 41˚

12˚

12˚

12.2

12.5˚

40.

75˚ 41˚

12˚

40.

75˚

40.

75˚

41˚ 41˚ 12˚

12.25

˚ 12.5

˚ 12.75˚

LOS LOS

LOS LOS

Data Model Residue

−5 0 5 10 15

−5 0 5 10 15

-30 -20 -10 0 10 20 30

-30 -20 -10 0 10 20 30

DataModel DataModel Ascending Descending

Distance across the rift (km) mask

40.25

˚ 40.

25

40.

40.

12˚

12.25˚

12.5˚

12.75˚ 40.

25 40.5˚

12.75˚ 40.

25 40.5˚

40.

75˚

41˚

12.25˚

12.

12.75˚

12.75˚

40.

25˚

40.

40.

75˚ 41˚

12˚

12˚

12.2

12.5˚

40.75˚ 41˚

12˚

40.

75˚

40.75

˚

41˚

41˚ 12˚

12.25˚ 12.5

˚ 12.75˚

LOS LOS

LOS LOS

Data Model Residue

−5 0 5 10 15

−5 0 5 10 15

-30 -20 -10 0 10 20 30

-30 -20 -10 0 10 20 30

DataModel DataModel Ascending Descending

Distance across the rift (km) mask

Interval a Interval b Interval c

i~20°

i~20°

i~20°

i~20°

i~20°

i~20° i~20° i~40°i~40°

i~20°

i~20°

i~20°

2005 2006 2007 2008 2009

d0 d1d2 d3 d4d5 d6 d7 d8 d9 d10 d11 d12

a b c d e f

ascending descending

2005 2006 2007 2008 2009

d0 d1d2 d3 d4d5 d6 d7 d8 d9 d10 d11 d12

a b c d e f

ascending descending

2005 2006 2007 2008 2009

d0 d1d2 d3 d4d5 d6 d7 d8 d9 d10 d11 d12

a b c d e f

ascending descending

FigureS-5.ResultofpreliminaryinversionofInSARdataforintervalsa,bandc.Left:data.

Middle:model.Right:residue.Toprows:ascendinganddescendingtracks.Profiles:cross-

sectionsintheareaofdeformationatthecenteroftheMandaHararorift(locationindicatedby

blacklineinupperpanels).Bottom:datesofimagesusedintheinversion.Doubleheadedarrows

showdirectionofsatellitetrajectory,withtheapproximatevalueofincidenceangleindicated

below. DRAFTApril13,2010,10:43amDRAFT

(6)

X-60GRANDINETAL.:TRANSIENTDEFORMATIONATMANDAHARARO

40.2

40.25

40.5

˚

40.5

˚

12˚

12.25˚

12.5˚

12.7

40.25

40.5 12. ˚

75˚ 40.2

5 40.5

˚

40.75

˚

41˚ 12.25˚

12.5˚ 12.75˚

12.75˚

40.

25˚

40.5˚

40.

75˚ 41˚

12˚

12˚

12.25˚

12.

40.

75˚12˚ 41˚

40.75˚

40.

75˚

41˚

41˚

12˚

12.25˚ 12.

12.7

LOS LOS

LOS LOS

−5 0 5 10 15

−5 0 5 10 15

-30 -20 -10 0 10 20 30

-30 -20 -10 0 10 20 30

DataModel DataModel Ascending Descending

mask

40.

25˚

40.2 5

40.5˚

40.5

˚

12˚

12.25˚

12.

12.75

˚ 40.2

5 40.5˚

12.75˚ 40.25

40.5

˚

40.75˚

41˚ 12.2

12.5˚

12.75˚

12.75˚

40.2

40.

40.

75˚ 41˚ 12˚

12˚

12.2

12.

40.

75˚ 41˚

12˚

40.75˚

40.7

41˚ 41˚

12˚

12.25˚

12.5˚

12.75˚ LOS

LOS

LOS LOS

−5 0 5 10 15

−5 0 5 10 15

-30 -20 -10 0 10 20 30

-30 -20 -10 0 10 20 30

DataModel DataModel Ascending Descending

mask

2005 2006 2007 2008 2009

d0 d1d2 d3 d4d5 d6 d7 d8 d9 d10 d11 d12

a b c d e f

ascending descending

2005 2006 2007 2008 2009

d0 d1d2 d3 d4d5 d6 d7 d8 d9 d10 d11 d12

a b c d e f

ascending descending

2005 2006 2007 2008 2009

d0 d1d2 d3 d4d5 d6 d7 d8 d9 d10 d11 d12

a b c d e f

ascending descending

40.2

40.25

40.5

˚

40.

5˚

12˚

12.2

12.

12.75˚ 40.25

40.

5˚

12.75˚ 40.25

40.5˚ 40.75˚

41˚ 12.2

12.5˚ 12.75˚

12.75˚

40.

25˚

40.

40.

75˚ 41˚

12˚

12˚

12.25˚

12.5˚

40.

75˚ 41˚ 12˚

40.

75˚

40.75

˚

41˚

41˚

12˚

12.25˚ 12.5˚ 12.75˚ LOS

LOS

LOS LOS

−5 0 5 10 15

−5 0 5 10 15

-30 -20 -10 0 10 20 30

-30 -20 -10 0 10 20 30

DataModel DataModel Ascending Descending

mask

Data Model Residue

AscendingDescendingLOS displacement (cm)

Distance across the rift (km)

Data Model Residue

Distance across the rift (km)

Data Model Residue

Distance across the rift (km)

Interval d Interval e Interval f

i~20°

i~20° i~20°i~20° i~20°i~20°

i~40°

i~40° i~20°i~20° i~40°i~40°

FigureS-6.SameasFigureS-5forintervalsd,eandf.

DRAFTApril13,2010,10:43amDRAFT

(7)

GRANDIN ET AL.: TRANSIENT DEFORMATION AT MANDA HARARO X - 61

1.4

1.5 1.6 1

2.0 4.0 6.0 8.0 10.0 12.0 14.0

1.4

1.5 1.6

2.0 4.0 6.0 8.0 10.0 12.0 14.0

1.4

1.5 1.6

1.4 1.5

1.0 2.0 3.0 4.0 5.0 6.0 7.0 2.0 3.0 4.0 5.0 6.0 7.0

Sill

Mogi

Sill Mogi

D1 - Interval a

G - Interval a

0.002 0.004 0.006 0.008 0.010

−0.050

−0.040

−0.030

−0.020

−0.010

Volume (km )3Volume (km )3

1.7

1.8 1.9 1.7

1.8

1.9 1.

10.0 15.0 20.0 25.0 30.0 10.0 15.0 20.0 25.0 30.0

1.5

1.6 1.5

1.6 .

1.0 2.0 3.0 4.0 5.0 6.0 7.0 2.0 3.0 4.0 5.0 6.0 7.0 D2 - Interval b

D2 - Interval b

H - Intervals a + b Sill

Mogi

Sill

Mogi

0.002 0.004 0.006 0.008 0.010

−0.180

−0.160

−0.140

−0.120

−0.100

−0.080

−0.060

−0.040

Depth (km) Depth (km)

Depth (km) Depth (km)

Figure S-7. RMS misfit between downsampled InSAR data and predicted LOS deformation as a function of depth and volume of sources D1 (shallow Dabbahu), D2 (deep Dabbahu), G (Gabho) and H (Hereru) in the periods that allow them to be best constrained. Contours are shown every 0.025 cm. See Figure S-5 and Table S-1 for definition of sources and time intervals. Only depth and volume of the specified source are allowed to change during each parameter exploration, and other parameters are fixed to best-fitting model deduced from non-linear inversion. Effect of changing source geometry (sill-like point-source or Mogi-source) does not change significantly the RMS misfit, while yielding different depth and volume for the best-fitting model.

D R A F T April 13, 2010, 10:43am D R A F T

(8)

X - 62 GRANDIN ET AL.: TRANSIENT DEFORMATION AT MANDA HARARO

Piecewise steady-state solution

Unconstrained solution 0.9

1.0 1.1

RMS misfit (cm)

Intensity of smoothing (log scale)rougher smoother

Non-negativity constraint on m No constraint on sign of m

Preferred solution

Figure S-8. Intensity of smoothing imposed in the inversion versus RMS misfit of the solution. A non-negativity constraint was applied on m (blue diamonds), but, for high degrees of smoothing, the non-negativity constraint was released to enhance the computational efficiency (red circles). The asymptote on the upper right corresponds to a steady-state solution on each interval separating two dike intrusions. The asymptote on the lower left represents the minimum RMS misfit that can be achieved with a completely unconstrained inversion.

D R A F T April 13, 2010, 10:43am D R A F T

(9)

GRANDIN ET AL.: TRANSIENT DEFORMATION AT MANDA HARARO X - 63

0 5 10 15

d1

d0 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12

O J A J O J A J O J A J O J A J

2006 2007 2008 2009

2005

0 200 400 600 800 1000 1200 1400

Days since main rifting event of 24/09/2005

Standard deviation (cm)

Data Residue

Figure S-9. Standard deviations of each downsampled interferogram (red lines) and residue after inversion (blue lines) for the preferred smoothing (Figure S-8). The length of each segment represents the time spanned by the interferogram (see also Tables S-2 and S-3).

D R A F T April 13, 2010, 10:43am D R A F T

(10)

X - 64 GRANDIN ET AL.: TRANSIENT DEFORMATION AT MANDA HARARO

100 101 102 103 104 105 106 0

10 20 30 40

RMS misfit (x10 km )3-3

d0 – d1 d3 – d4 d5 – d6 d6 – d7 d7 – d8 d8 – d9 d9 – d10 d10 – d11 d11 – d12 all cumulated

τ (days) τbest = 250 days

Figure S-10. RMS misfitversus characteristic time τ for the model of exponentially decaying activity of source W1 (see Appendix C for details). The RMS misfit between predicted activity rate of W1 and inflation rate deduced from inversion of InSAR data is calculated on each time interval as a function ofτ is indicated by the colour lines (unconstrained intervals following dikes d1, d2 and d4 are not shown). A minimum RMS is found for τbest ∼ 250 days (black dashed line).

D R A F T April 13, 2010, 10:43am D R A F T

(11)

GRANDIN ET AL.: TRANSIENT DEFORMATION AT MANDA HARARO X - 65

Table 1. Geometric features of the dislocation elements (D1, D2, G and W1) and Mogi sources (W2, W3 and H) used in the elastic time-series inversion.

Element Longitudea (N)

Latitudea (N)

Deptha (km)

Widthb (km)

Length (km)

Strike (N)

Dip (N)

D1 40.477 12.575 8.8 1.0 1.0 0.0 0.0

D2 40.469 12.600 4.9 1.0 1.0 0.0 0.0

G 40.540 12.681 3.8 1.0 1.0 0.0 0.0

W1 40.629 12.306 4.0 6.0 8.0 150.0 90.0

W2 40.614 12.302 4.0 n/d n/d n/d n/d

W3 40.614 12.302 25.0 n/d n/d n/d n/d

H 40.850 12.099 17.0 n/d n/d n/d n/d

a: location of the middle of the top of the dislocation.

b: width of dislocation along dip.

n/d: not defined.

D R A F T April 13, 2010, 10:43am D R A F T

(12)

X-66GRANDINETAL.:TRANSIENTDEFORMATIONATMANDAHARARO

Table S-1. Dates of acquisitions of master (T*A) and slave (T*B) SAR images used in the preliminary inversion of InSAR data for time intervals a to f (Figures S-5 and S-6), and average inflation rate for the three inflation modes at Wal’is (see Table 1 for details of the geometry of sources W1, W2 and W3).

Interval Ascending

track TAasc TBasc

Descending

track TAdesc TAdesc

W1 (×102 km3/month)

W2 (×102 km3/month)

W3 (×102 km3/month)

a 28 2005-11-30 2006-02-08 49 2005-12-01 2006-02-10 1.5 0.13 3.3

b 300 2006-02-27 2006-06-12 49 2006-02-10 2006-05-26 1.2 0.26 2.1

c 28 2007-01-24 2007-05-09 464 2007-01-20 2007-05-05 0.6 0.14 3.1

d 28 2008-08-06 2008-10-15 464 2008-08-02 2008-10-11 0.7 0.17 0.2

e 300 2008-11-03 2009-01-12 49 2008-11-21 2009-01-30 0.6 0.26 3.5

f 300 2009-02-16 2009-06-01 464 2009-02-28 2009-06-13 0.5 0.20 2.4

DRAFTApril13,2010,10:43amDRAFT

(13)

GRANDIN ET AL.: TRANSIENT DEFORMATION AT MANDA HARARO X - 67

Table S-2. Standard deviation of input data and residues for the time-series inversion.

Interferogram Number of points

Standard deviation of data vector

Standard deviation of residue vector

20051130-20060208 505 4.860 1.411

20060208-20060315 508 1.842 1.053

20051026-20060419 505 12.422 3.476

20060315-20060524 508 3.530 0.915

20051219-20060123 533 1.882 0.734

20051219-20060227 534 2.857 0.897

20060123-20060227 534 2.025 0.688

20051219-20060403 529 5.139 1.234

20060227-20060403 533 3.036 0.985

20060403-20060612 512 1.980 1.425

20060508-20060612 532 1.569 1.086

20060311-20060415 488 2.564 0.727

20060311-20060520 490 4.656 1.173

20060415-20060520 493 2.449 1.002

20051201-20060210 563 2.837 0.940

20060210-20060317 488 2.807 1.171

20051028-20060421 516 8.788 2.742

20060317-20060421 505 1.950 1.330

20060210-20060526 528 5.112 0.867

20060317-20060526 484 3.415 0.923

Total interval d0-d1 10288 4.252 1.402

20060729-20060902 480 1.018 0.752

Total interval d2-d3 480 1.018 0.752

20060925-20061030 508 2.132 0.874

20060925-20061204 533 3.310 0.772

20061030-20061204 509 1.224 0.699

20061007-20061111 506 2.830 0.848

Total interval d3-d4 2056 2.505 0.801

20070124-20070509 499 4.187 1.111

20070124-20070613 497 4.441 0.836

20070509-20070613 509 1.609 0.864

20070124-20070718 491 5.673 1.110

20070613-20070718 490 1.485 0.742

20070212-20070423 533 1.713 0.696

20070212-20070528 530 3.058 0.784

20070423-20070528 533 2.333 0.901

20070212-20070702 516 5.290 0.857

20070528-20070702 533 0.902 0.568

20070702-20070806 526 2.230 0.875

20070120-20070505 477 4.057 1.138

20070505-20070714 477 4.288 0.906

20070511-20070615 562 1.160 0.694

20070615-20070720 529 1.032 0.581

Total interval d5-d6 7702 3.071 0.856

20070822-20071031 493 3.196 1.624

20070910-20071015 532 1.635 1.096

20070818-20070922 476 1.661 1.119

20070818-20071027 477 2.176 0.984

20070922-20071027 485 1.147 0.791

20070824-20070928 528 4.444 1.581

20070824-20071102 529 1.992 0.863

Total interval d6-d7 3520 2.122 1.194

D R A F T April 13, 2010, 10:43am D R A F T

(14)

X - 68 GRANDIN ET AL.: TRANSIENT DEFORMATION AT MANDA HARARO

Table S-3. Standard deviation of input data and residues for the time-series inversion (continued).

Interferogram Number of points

Standard deviation of data vector

Standard deviation of residue vector

20080109-20080213 498 1.336 0.398

20071119-20080128 534 2.434 0.680

20071207-20080215 535 2.965 0.512

Total interval d7-d8 1567 1.813 0.545

20080423-20080528 505 3.372 1.041

20080423-20080702 497 3.626 0.946

20080528-20080702 495 5.416 0.677

20080407-20080616 531 2.366 0.839

20080524-20080628 486 1.171 0.682

20080425-20080530 536 1.591 0.722

20080530-20080704 535 0.976 0.667

Total interval d8-d9 3585 2.832 0.808

20080806-20080910 492 1.015 0.825

20080806-20081015 486 1.552 0.975

20080910-20081015 487 1.431 0.948

20080721-20080929 529 5.438 1.944

20080825-20080929 532 1.640 0.987

20080802-20080906 479 1.739 0.769

20080802-20081011 476 2.654 1.096

20080906-20081011 477 1.246 0.675

20080808-20080912 526 1.970 0.685

Total interval d9-d10 4484 2.163 1.064

20081119-20081224 490 3.350 0.751

20081119-20090128 487 4.946 0.713

20081224-20090128 494 1.899 0.595

20081103-20081208 521 1.588 0.694

20081103-20090112 521 3.286 0.545

20081208-20090112 530 3.565 0.548

20081121-20081226 533 0.993 0.438

20081121-20090130 528 3.204 0.637

20081226-20090130 536 2.316 0.460

Total interval d10-d11 4640 2.291 0.604

20090304-20090408 499 1.169 0.643

20090304-20090513 500 2.198 0.875

20090408-20090513 500 1.758 0.862

20090304-20090617 497 6.668 1.533

20090408-20090617 500 6.323 1.313

20090513-20090617 499 5.123 1.493

20090216-20090323 531 1.351 0.722

20090216-20090427 532 2.289 0.649

20090323-20090427 531 1.249 0.521

20090216-20090601 532 2.880 0.737

20090323-20090601 533 1.760 0.459

20090427-20090601 532 0.840 0.337

20090228-20090509 481 5.187 1.206

20090228-20090613 478 4.111 1.070

20090509-20090613 483 2.001 0.997

20090306-20090410 533 1.333 1.141

20090306-20090515 536 2.162 0.850

20090410-20090515 533 2.176 1.153

20090306-20090619 536 1.951 1.070

20090410-20090619 522 1.896 1.088

20090515-20090619 535 1.296 1.145

Total interval d11-d12 10823 2.827 0.993

Total all intervals 49145 3.339 1.036

D R A F T April 13, 2010, 10:43am D R A F T

Références

Documents relatifs

The distribution forms of the samples representing the durations of failure or preventive interventions give useful information on the global behaviour of the equipment in relation

If the intention of the central bank is to maximize actual output growth, then it has to be credibly committed to a strict inflation targeting rule, and to take the MOGIR

We derive, adopting a direct method, the luminosity function and the formation rate of long Gamma Ray Bursts through a complete, flux-limited, sample of Swift bursts which has a

In order to make the two sets of geodetic data comparable in time, we reconstructed the InSAR displacements at the epoch of the GPS measurements using the first principal component

Evapotranspiration is determined by integrating and solving the water mass balance equation, which relates land water storage (from GRACE), precipitation data (from the

The release of Rn from solids to pore space is often described using the Rn emanation coefficient (ε), which describes the fraction of Rn released from soil-sedimentary mineral

Changes in coefficient of determination, efficiency, optimum number of functional groups and Jaccard index in simulated datasets, versus relative error of ecosystem function and

Pour toutes ces raisons, par souci d’équité, le Conseil tient à souligner la nécessité de considérer l’ensemble des circonstances actuelles : celles dans