• Aucun résultat trouvé

Determining moisture content and calculating its effect on fire endurance

N/A
N/A
Protected

Academic year: 2021

Partager "Determining moisture content and calculating its effect on fire endurance"

Copied!
20
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Fire Study (National Research Council of Canada. Division of Building Research),

1967-08

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=852e1cc5-45fa-48d4-b149-fdb91505c8cf https://publications-cnrc.canada.ca/fra/voir/objet/?id=852e1cc5-45fa-48d4-b149-fdb91505c8cf

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/40001349

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Determining moisture content and calculating its effect on fire

endurance

(2)

NATIONAL RESEARCH COUNCIL O F CANADA DIVISION O F BUILDING RESEARCH

DETERMINING MOISTURE CONTENT AND CALCULATING I T S E F F E C T ON F I R E ENDURANCE

by

T. Z . H a r m a t h y

F i r e Study No. 17

of the

DIVISION O F BUILDING RESEARCH

OTTAWA August 1967

(3)

NATIONAL RESEARCH COUNCIL O F CANADA DIVISION O F BUILDING RESEARCH

DETERMINING MOISTURE CONTENT AND CALCULATING ITS E F F E C T ON FIRE ENDURANCE

by

T . Z. Harmathy

F o r some t i m e t h e r e h a s been a n effort t o s e t , by the t i m e of a f i r e t e s t , the m o i s t u r e content in f i r e t e s t specimens

close t o a l e v e l corresponding t o that in equilibrium with a surrounding atmosphere of 50 p e r cent relative humidity ( a t r o o m t e m p e r a t u r e ) . F o r a g r e a t many t e s t specimens, however, i t is impossible, a t l e a s t with the p r e s e n t conditioning techniques, t o achieve t h i s m o i s t u r e condition within a r e a s o n

-

ably s h o r t t i m e ( s a y in s i x months) without inhibiting some chemical p r o c e s s e s r e l a t e d t o the maturing of the specimen, o r i n other words, without falsifying the c h a r a c t e r i s t i c s of the m a t e r i a l . T o eliminate t h i s difficulty, i t h a s been

suggested that f i r e t e s t standards be modified and allow t e s t s t o be c a r r i e d out on specimens of m o i s t u r e contents

significantly higher than that pertaining t o 50 p e r cent equili- b r i u m relative humidity. The authorization of such relaxation of the t e s t r e q u i r e m e n t s would not be possible, however,

without knowing how the m o i s t u r e content in e x c e s s of the

"standard1' level affects the r e s u l t of the f i r e t e s t . Fortunately t h e r e is now enough information t o make possible the calcula- tion of the effect of m o i s t u r e content on the r e s u l t of f i r e t e s t s . Details of experimental observations and t h e o r e t i c a l

considerations concerning t h i s subject have been given e l s e w h e r e 1 2 ) . The application t o p r a c t i c a l p r o b l e m s of the conclusions derived in t h e s e publications will be d i s c u s s e d and i l l u s t r a t e d through examples.

(4)

SOME BASIC CONSIDERATIONS

During the p a s t f e w y e a r s i t h a s become g e n e r a l l y a c c e p t e d p r a c t i c e to m e a s u r e and r e p o r t a t l e a s t the m a x i m u m value of t h e eqriilibrium r e l a t i v e humidity i n s i d e f i r e t e s t s p e c i m e n s p r i o r t o f i r e t e s t s .

T h e p r a c t i c e of e x p r e s s i n g t h e d e g r e e of d a m p n e s s of f i r e t e s t s p e c i m e n s i n t e r m s of e q u i l i b r i u m r e l a t i v e humidity w a s adopted on M e n z e l l s suggestion ( 3 ) . T h e a d v a n t a g e s of t h i s p r a c t i c e a r e twofold: the e q u i l i b r i u m r e l a t i v e humidity h a s a n unambiguous meaning, and i t c a n be m e a s u r e d e a s i l y and with r e l a t i v e l y high a c c u r a c y .

T h e s h o r t c o m i n g s of t h i s p r a c t i c e , h o w e v e r , soon b e c a m e obvious. A p r i o r i c o n s i d e r a t i o n s , a s well a s t h e o r e t i c a l (1) and e x p e r i m e n t a l w o r k (2), c l e a r l y i n d i c a t e d t h a t the effect of m o i s t u r e on f i r e e n d u r a n c e is not r e l a t e d d i r e c t l y t o the e q u i l i b r i u m r e l a t i v e humidity, but t o the m o i s t u r e content e x p r e s s e d i n p e r cent by

volume within t h e a p p a r e n t b o u n d a r i e s of the solid c o n s t i t u e n t s . A s t h e r e l a t i o n s h i p between the v o l u m e t r i c m o i s t u r e content and

e q u i l i b r i u m r e l a t i v e humidity, the s o - c a l l e d "sorption r e l a t i o n ,

"

d e p e n d s v e r y m a r k e d l y on the individual m a t e r i a l , and e v e n f o r a given m a t e r i a l is not unique (due to the h y s t e r e s i s in s o r p t i o n ) , the a u t h o r h a s s u g g e s t e d (4) t h a t , in addition t o the e q u i l i b r i u m r e l a t i v e humidity, t h e a b s o l u t e m o i s t u r e content of f i r e t e s t s p e c i m e n s should a l s o be d e t e r m i n e d and r e p o r t e d .

D e t e r m i n i n g the v o l u m e t r i c m o i s t u r e content of f i r e t e s t s p e c i m e n s is, unfortunately, not always a routine p r o c e d u r e . Difficulties m a y a r i s e f o r two r e a s o n s : ( i ) in t h e c a s e of s o m e

m a t e r i a l s ( g e n e r a l l y t h o s e f o r m e d by h y d r a t i o n ) the m o i s t u r e content m a y not be uniquely definable; and ( i i ) s o m e t i m e s i t i s not p o s s i b l e t o obtain s a m p l e s of t h e t e s t s p e c i m e n i t s e l f f o r m o i s t u r e a n a l y s i s , t h e r e f o r e the a n a l y s i s m u s t be b a s e d , a t l e a s t p a r t i a l l y , on m e a s u r e - m e n t s c a r r i e d out on r e p r e s e n t a t i v e s a m p l e s .

T o o v e r c o m e t h e f i r s t difficulty, the " d r y weight" t o which the m o i s t u r e content of building m a t e r i a l s is r e f e r e n c e d m u s t be defined unambiguously. I t is s u g g e s t e d t h a t t h e weight of building m a t e r i a l s a f t e r being h e a t e d in a n oven a t 221 f 1

"F

(105 f 0. 5°C) f o r a sufficiently long p e r i o d so that no f u r t h e r weight change can be detected ahould be regarded ae t h e l r d r y weight. (Thie method of d e t e r m i n i n g the d r y weight is not a p p l i c a b l e t o g y p s u m products.

(5)

thc p r e s e n c e of m o i s t u r e usually h a s 110 s i ~ n i f i c i i l i l cffcct o n the

f i r e test,. ) Dependent on the size of thc specimen the drying p r o c e d u r e m a y take f r o m one clay to one week.

In a l l the work done in the DDR l a b o r a t o r y in connection with studying the effect of m o i s t u r e on f i r e endurance the m o i s t u r e content w a s r e f e r e n c e d t o d r y weight m e a s u r e d i n the way just d e s c r i b e d , t h e r e f o r e s o m e c o n c l u s i o r ~ s m a y not be applicable if

the m o i s t u r e content i s d e t e r m i n e d by s o m e d i f f e r e n t d r y i n g method. In s e l e c t i n g t h i s method the DBR l a b o r a t o r y t r i e d t o comply with the m o s t commonly followed p r a c t i c e s . In the c a s e of c o n c r e t e s , which a r e p r a c t i c a l l y the only m a t e r i a l s s e n s i t i v e t o the drying p r o c e d u r e , drying a t 221 " F g i v e s a p p r o x i m a t e l y the s a m e d r y weight a s that obtained by the "dry i c e method" (5) which is t a c i t l y accepted a s the s t a n d a r d drying method in scientific l a b o r a t o r i e s .

It i s i m p o r t a n t to understand t h a t although q, s a m p l e oven- d r i e d a t 2 2 1 ° F can be r e g a r d e d a s containing no m o r e m o i s t u r e o r a s it is often t e r m e d "evaporable w a t e r , I' i t m a y s t i l l contain

a c o n s i d e r a b l e amount of "non-evaporable w a t e r ,

"

i. e.

,

w a t e r attached t o the c r y s t a l l i n e l a t t i c e by v a r i o u s c h e m i c a l bonds. T h e non-evaporable w a t e r m a y a l s o have a m a r k e d effect on the f i r e e n d u r a n c e t h i s effect, however, will not be c o n s i d e r e d i n t h i s Note.

A s a l r e a d y mentioned, obtaining s a m p l e s r e p r e s e n t a t i v e of t h e t e s t s p e c i m e n m a y p r e s e n t a n o t h e r difficulty i n d e t e r m i n i n g i t s v o l u m e t r i c m o i s t u r e content. Whether o r not t h i s difficulty a r i s e s , depends l a r g e l y on t h e type of m a t e r i a l u s e d i n the construction. B e f o r e d i s c u s s i n g s o m e methods of o v e r c o m i n g t h e s e difficulties, i t m a y be useful t o e x a m i n e briefly how i m p o r t a n t the " m o i s t u r e problem" r e a l l y is i n the f i r e t e s t i n g of v a r i o u s building m a t e r i a l s .

If spalling is not liable t o o c c u r , the p r e s e n c e of m o i s t u r e

is beneficial f r o m t h e point of view of f i r e endurance. A s a f i r s t a p p r o x i m a t i o n , one m a y expect about 5 p e r cent i n c r e a s e in f i r e e n d u r a n c e due t o e v e r y p e r cent (by volume) of m o i s t u r e . Since the reproducibility of f i r e t e s t r e s u l t s is g e n e r a l l y ' n o t m u c h b e t t e r than f 5 p e r cent (2,6), the effect of m o i s t u r e on f i r e e n d u r a n c e cannot be expected to s h o w up clearly in the c a a e of c o n s t r u c t i o n s

made f r o m m a t e r i a l s which a t the t i m e of the f i r e t e s t d o not hold m o r e than 1 p e r cent (by volume) of m o i s t u r e .

(6)

c o m m o n l y u s e d 1,uiltlirig m ; ~ t ~ ~ ~ . i ; l l s ir~tiic.;~l rtl ( 7 ) 111at liytl1-a1:crl portlancl cclrlent i s tlie only i~iorl?;;l~lic. l ) ~ l j l ( l i l l j : 171;1t.(?ria I of

p r a c t i c a l i m p o r t a n c e which, in e q u i l i l , r i u ~ ~ l with a 50 p e r c e n t r e l a t i v e h u m i d i t y e n v i r o n m c - n ( , can hold s i g n i f i c a n t l y m o r e than 1 p e r c c n t (by v o l u m e ) of rnoist.ure. It. i s a l s o t h e only i m p o r t a n t building m a t e r i a l , f o r which t h e " a i r d r y " condition (which

c o r r e s p o n d s r o u g h l y t o t h e 50 p e r c e n t c q u i l i b r i u r n r e l a t i v e h u m i d i t y condition) i s not r e a d i l y a t t a i n a b l e without f a l s i f y i n g i t s b a s i c p r o p e r t i e s . C o n s e q u e n t l y , d e t e r m i n i n g t h c e f f e c t of m o i s t u r e 011 t h e f i r e e ~ i d r r r a n c e is of p r a c t i c a l i n t e r e s t only in the c a s e of c o n s t r u c t i o n s c o n t a i i l i ~ l g a s i g n i f i c a n t a m o u n t ( m o r e t h a n 5 p c r c e n t by v o l u m e ) of h y d r a t e d p o r t l a n d c e m e n t . C o n s t r u c t i o n s m a d e with l e s s t h a n 5 p e r c e n t c e m e n t p a s t e , e . g . , b r i c k w a l l s m a d e with c e m e n t m o r t a r , o r f l o o r c o n s t r u c t i o n s containing l e s s t h a n 20 p e r c e n t (by v o l u m e ) c o n c r e t e , u s u a l l y c a n n o t hold m o r e t h a n 1 p e r c e n t m o i s t u r e a f t e r conditioning f o r two o r t h r e e m o n t h s , c o n s e q u e n t l y c a n be s u b j e c t e d t o f i r e t e s t s without paying a t t e n t i o n t o t h e i r a c t u a l m o i s t u r e condition. T h e above c o n s i d e r a t i o n s n a r r o w t h e r a n g e of c o n s t r u c t i o n s f o r which t h e e f f e c t of m o i s t u r e on f i r e e n d u r a n c e d e f i n i t e l y d e s e r v e s a t t e n t i o n t o t h o s e built p r e d o m i n a n t l y f r o m p o r t l a n d c e m e n t p r o d u c t s . T h u s t h e p r o b l e m of o b t a i n i n g r e p r e s e n t a t i v e s a m p l e s a l s o n a r r o w s down t o f i r e t e s t s p e c i m e n s e m p l o y i n g p o r t l a n d c e m e n t p r o d u c t s , g e n e r a l l y i n t h e f o r m of c o n c r e t e . S e v e r a l y e a r s a g o a s i m p l e t e c h n i q u e w a s d e s c r i b e d (4) f o r obtaining s a m p l e s of m a t e r i a l of t h e t e s t s p e c i m e n f o r m o i s t u r e a n a l y s i s . T h i s t e c h n i q u e h a s been s u c c e s s f u l l y u s e d i n c o n n e c t i o n w i t h s p e c i m e n s built f r o m v a r i o u s lightweight c o n c r e t e s . U n f o r t u - n a t e l y t h i s m e t h o d could n o t b e a p p l i e d e a s i l y i n t h e c a s e of t e s t s p e c i m e n s b u i l t f r o m n o r m a l ( d e n s e ) c o n c r e t e . If t h e m a t e r i a l of t h e s p e c i m e n cannot b e r e a d i l y s a m p l e d , t h e r e a r e f o u r p o s s i b l e m e t h o d s t h a t t h e t e s t i n g l a l ~ o r a t o r y m a y follow to d e t e r m i n e

the

m o i s t u r e content of f i r e t e s t s p e c i m e n s .

1. "Calculation method".

-

I t i s p o s s i b l e t o o b t a i n a f a i r e s t i m a t e of t h e d e s o r p t i o n c u r v e of c o n c r e t e by c a l c u l a t i o n s d e s c r i b e d i n d e t a i l e l s e w h e r e (7). T h e knowledge of t h i s c u r v e m a k e s i t p o s s i b l e t o c a l c u l a t e t h e m o i s t u r e c o n t e n t and i t s d i s t r i b u t i o n

i n the f i r e ten1 ~ p s c i r n o n , i f the v a l u a a of tho equilibrium

r e l a t i v e h u m i d i t y a r e known, e . g . , by m e a n s of t h e m e t h o d d e s c r i b e d by M e n z e l ( 3 ) .

(7)

2. "Mt*tllorl of c . , ~ l l , c . t l c l ( . t l s , ~ l ~ i l ) l c . s " .

-

A ( t l ~ c titt~c. o f j>l;~c.il~t( th(1 c o n c r c t c , c - y l i ~ l t l r i c a l h o l c s o i 1: t o L in. in d i , ~ n ~ c , t c r , rc.;aching t o suificicrlt rlcpths, a r c lcft i n the t e s t s p e c i m e n a t a few w e l l s e l e c t e d l o c a t i o n s . Into t h e s e h o l e s , a f t e r t h e r e r n o v a l of the f o r m s , c y l i ~ l d r i c a l s a m p l e s of c o n v e n i e n t s i z e s , p r e p a r e d of t h e s a l n c c o l l c r c t c will be s e a l c d , c . g . , with s o m e putty. On t h e d a y of t h e f i r e t e s t t h e s e c y l i n d r i c a l s a m p l e s h a v e t o he r e m o v e d and a n a l y s c d both f o r e q u i l i b r i u m r e l a t i v e h u m i d i t y a n d m o i s t u r e c o n t e n t in a way d e s c r i b e d i n Ref. (4).

3. "Substitution method".

-

T h e t e s t i n g l a b o r a t o r y m a y build a I ) s a m p l e s p e c i m e n " w h i c h i s l a r g e enough t o r e p r e s e n t

a c c u r a t e l y t h e c r o s s - s e c t i o n a l d e t a i l s of t h e f i r e t e s t s p e c i m e n , but i s s c a l e d down i n one o r two d i r e c t i o n s s o t h a t i t c a n he

o v e n - d r i e d i n a l a r g e r l a b o r a t o r y oven. If t h i s s a m p l e s p e c i m e n h a s b e e n conditioned t o g e t h e r with t h e f i r e t e s t s p e c i m e n , one c a n e x p e c t t h a t t h e v a l u e of t h e a v e r a g e m o i s t u r e c o n t e n t

o b t a i n e d by p e r f o r m i n g t h e n e c e s s a r y weight m e a s u r e m e n t s on t h e s p e c i m e n w i l l a g r e e r e a s o n a b l y w e l l with what could he o b t a i n e d if t h e t e s t s p e c i m e n could b e s u b j e c t e d t o t h e s a m e m e a s u r e m e n t s .

4. "Combined weighing method".

-

T h e t e s t i n g l a b o r a t o r y m a y t a k e s a m p l e s f r o m t h e c o n c r e t e u s e d i n t h e t e s t s p e c i m e n , w h i c h a r e s i g n i f i c a n t l y s m a l l e r t h a n the one d e s c r i b e d b e f o r e , and d o not follow t h e g e o m e t r i c a l d e t a i l s of t h e t e s t s p e c i m e n . In t h i s c a s e t h e a v e r a g e m o i s t u r e c o n t e n t of t h e t e s t s p e c i m e n c a n b e d e t e r m i n e d f r o m weight m e a s u r e m e n t s p e r f o r m e d on b o t h t h e s a m p l e s a n d t h e t e s t s p e c i m e n . T h e f i r s t t w o m e t h o d s e x c e l i n t h e i r s i m p l i c i t y . T h e y h a v e t h e c o m m o n d i s a d v a n t a g e , h o w e v e r , t h a t t h e t e s t i n g l a b o r a t o r y m u s t r e l y on t h e a s s u m p t i o n t h a t t h e a v e r a g e m o i s t u r e c o n t e n t of t h e e n t i r e c o n c r e t e t e s t s p e c i m e n c a n be c a l c u l a t e d f r o m d a t a p e r t a i n i n g t o a few p a r t i c u l a r l o c a t i o n s . T h i s d i f f i c u l t y , h o w e v e r , i s o b v i o u s l y not c h a r a c t e r i s t i c of t h e s e m e t h o d s a l o n e . T h e t e s t i n g l a b o r a t o r i e s h a v e t o f a c e t h e s a m e p r o b l e m e v e n when u s i n g M e n z e l ' s m e t h o d ( 3 ) o r t h e t e c h n i q u e d e s c r i b e d in Ref. (4). With t h e "method of e m b e d d e d s a m p l e s " t h e r e is a n o t h e r d i f f i c u l t y t h a t t h e s m a l l c y l i n d r i c a l s a m p l e s u s u a l l y c o n t a i n s o m e w h a t l e s s c o a r s e a g g r e g a t e than t h e c o n c r e t e in t h e t e s t o p e e l m e n . T h i e difficulty, h o w e v e r , c a n be eliminated b y eoneiclaritrg t h a t i n d e n s e c o n c r e t e s t h e a m o u n t of m o i s t u r e h e l d by t h e a g g r e g a t e s

(8)

i s always negligible. By del;ern~itling the density i n g r e e n condition

of both the specimen concrete a n d s a m p l e c o n c r e t e the volume

percentage of portland cement paste in both the specimen and the

s a m p l e s can be calculated [ s e e Eqs. (6) and (7)]. Then the m o i s t u r e

content of the specimen-concrete is obtained a s

With the aid of both the "substitution method1' and the

I I combined weighing method" suitable values of a v e r a g e m o i s t u r e

contents can be established. Although the f i r s t of t h e s e two s e e m s t o be s i m p l e r and m o r e convenient, under c e r t a i n c i r c u m s t a n c e s the l a t t e r can be expected t o give higher accuracy.

T o be able t o employ the combined weighing method the testing l a b o r a t o r y m u s t have f a c i l i t i e s t o weigh the e n t i r e f i r e t e s t

specimen. The weighing m a y be conveniently done by suspending the

specimen on a load cell. The metk~od of weighing a wall specimen

in the DBR l a b o r a t o r y is shown in F i g u r e 1.

A p r o b l e m that m a y a r i s e in connection with the combined

weighing method is that the t e s t specimen is often built in a f r a m e

o r on a s i l l the weight of which may a l s o be subject t o changes

induced by variations in the a t m o s p h e r i c conditions. The testing

l a b o r a t o r i e s have t o study how significant t h e s e weight changes may

be throughout the y e a r . If i t is found that t h e s e changes m a y

significantly falsify the r e s u l t s of m o i s t u r e m e a s u r e m e n t , vapour b a r r i e r coatings m a y be applied on t h e s e f r a m e s o r s i l l s , o r they m a y be replaced by o t h e r s built f r o m m a t e r i a l s of m o r e favourable w a t e r sorption p r o p e r t i e s . (It is often possible t o build t h e s e

components with protected o r unprotected steel. )

The Combined W e i ~ h i n e Method

The principal advantage of the combined weighing method is

t h a t the p r o c e s s of drying is d e t e r m i n e d f r o m m e a s u r e m e n t s

p e r f o r m e d on the ( c o n c r e t e ) f i r e t e s t specimen itself. The principal difficulty is that the "dry weight1' of the t e s t specimen is not

available s o that without a u x i l i a r y m e a s u r e m e n t s , weight changes cannot be e x p r e s s e d in t e r m s of m o i s t u r e content. T h i s information

haa to be d e t e r m i n e d by using a eampla of the c o n c r e t e ( c o n v e n i e n t l y

a s t a n d a r d c o m p r e s s i o n t e s t s a m p l e ) which h a s been conditioned, together with the t e s t specimen. T h i s s a m p l e , however, because of

(9)

i t s s m a l l s i z e , i s probably of slightly diffcrcnt aggregate content and will probably d r y slightly f a s t e r than the t e s t specimen. T h i s p r o b l e m can be overcome by weighing both the specimcn and s a m p l e i n the "green" condition, immediately a f t e r the removal of f o r m s ( o r m o l d s ) , and making u s e of the f a c t that a t t h i s stage the portland cement paste is s t i l l completely s a t u r a t e d with w a t e r , thus it is in a well -defined condition.

T o be able t o calculate the a v e r a g e m o i s t u r e content of the t e s t specimen, the following weights should be determined.

( a )

B y

suspending the t e s t specimen on a load cell:

W

=

weight of the g r e e n c o n c r e t e in the t e s t specimen, lb, g

W

=

weight of concrete in the t e s t specimen on the day p r i o r t o the f i r e t e s t , lb.

(b)

B y

conventional weighing methods:

W'

=

weight of g r e e n c o n c r e t e s a m p l e , lb, g

W'

=

weight of s a m p l e , a f t e r having been kept c l o s e t o the d

t e s t specimen during the conditioning period and oven-dried ( a t 221 f

1°F)

a t about the t i m e of f i r e t e s t , lb,

d

=

bulk density of g r e e n c o n c r e t e , m e a s r e d during the

Y

placement of c o n c r e t e by using a 1 ft c o n t a i n e r , lb/ft3.

With the a i d of t h i s information, the following can be calculated. (The f o r m u l a e given below a r e based on obvious principles; the r e a d e r can e a s i l y prove t h e i r c o r r e c t n e s s . )

Volume of c o n c r e t e in the t e s t specimen:

Specific g r a v i t y of g r e e n c o n c r e t e in the t e s t specimen and i n the sample:

(10)

Specific gravity of g r e e n portland k-ement paste:

Volume fraction of cement paste in the concrete of the t e s t specimen and in the sample concrete:

Specific gravity of sample in oven -dry condition:

4

= w;/62.4V8

Specific gravity of cement paste in oven-dry condition:

-

-

'a

-

(pa

-

pb)/vl

Specific gravity of concrete in the t e s t specimen:

-

'd

-

VPpd -I. ( 1 - 4 Pa

Oven-dry weight of the concrete of the t e s t specimen:

Volumetric moisture content of the concrete in the f i r e t e s t specimen a t the t i m e of f i r e test:

It may be added that, in general, the volumetric moisture content can be calculated f r o m the moisture content (by weight) as:

Obviously i t h a s not been assumed in deriving these formulae, that the sample concrete and the specimen concrete are of the same

(11)

assuinccl, howcvcr, that t h c h y d r a t i 0 1 1 o l c c m c n t p a s t e p r o c c c d s in the s a m p l e a t the s a i n c rat:c a s it) thc t e s t specimen. A s the r a t e of hydration r e a c t i o n s dcpends on thc e q u i l i b r i u m r e l a t i v e humidity i n the c o n c r e t e (8), a n d in t u r n on the m o i s t u r e content, one can

count on the approximately equal m a t u r i t y of the cement p a s t e in the two c o n c r e t e s only i f t h e i r m o i s t u r e contents a t the t i m e of the f i r e t e s t ( a s e s t i m a t e d f r o m t h e i r p e r c e n t a g e d e c r e a s e in weight d u r i n g the conditioning p e r i o d ) a r e not too significantly different.

The calculation p r o c e d u r e m a y be b e t t e r understood by studying the following s a m p l e calculation.

E x a m p l e 1.

-

F o r a wall f i r e t e s t a s s e m b l y built f r o m d e n s e c o n c r e t e , t h e following weights (of c o n c r e t e only) have been m e a s u r e d :

A s t a n d a r d c o m p r e s s i o n t e s t s p e c i m e n h a s been u s e d as a s a m p l e , f o r which A w a t e r - c e m e n t r a t i o of w d c

=

0.572 w a s m e a s u r e d . It is known, f u r t h e r m o r e , t h a t t h e v a l u e s PC

=

3.15 and p a

=

2.65 a r e applicable t o m o s t commonly m e t c a s e s . CALCULATIONS f r o m

Eq. ( 2 )

f r o m Eq. (3) f r o m Eq. (4) f r o m Eq. (5)

(12)

f r o m Eq.

(6)

f r o m Eq. (7)

~h

=

27.862/62.4 x 0.19635

=

2.2741 f r o m Eq. (8) P ~ d

=

2.65

-

(2.65

-

2.2741)/0.2739

=

1.2776 f r o m Eq. (9) Pd

=

0.2474 x 1.2776

+

(100.2474) x 2.65 2 2.3105 f r o m Eq. (10) W

=

62.4 x 44.5 x 2.3105 = 6423 1b d f r o m Eq. (11) f r o m Eq. (12)

Some additional calculations indicated t h a t the end r e s u l t of t h e s e calculations depends only slightly on the s e l e c t i o n of the value of pa. Selecting pa

=

2.65, which s e e m s t o be a good a v e r a g e f o r a v a r i e t y of a g g r e g a t e s , will t h u s probably suffice i n m o s t p r a c t i c a l c a s e s . It w a s a l s o found, however, t h a t the end r e s u l t depends v e r y significantly on the a c c u r a c y of the load c e l l m e a s u r e m e n t s . With t h e load c e l l u s e d i n the DBR l a b o r a t o r y (20,000-lb capacity) a n a c c u r a c y of f 10 lb can be expected.

Calculation of the Effect of M o i s t u r e

T h e gain in f i r e e n d u r a n c e due t o m o i s t u r e ( a s r e f e r r e d t o m o i s t u r e l e s s , i. e., o v e n - d r y condition) c a n be d e t e r m i n e d with the aid of the n o m o g r a m in F i g u r e 2. T h i s s a m e n o m o g r a m can a l s o be u s e d t o c o r r e c t the r e s u l t of f i r e endurance t e s t s , when the t e s t w a s c a r r i e d out a t a n o n - s t a n d a r d m o i s t u r e level,

or

t a d e t e r m i n e the value

of

f i r e endurance f o r any o t h e r m o i s t u r e l e v e l of i n t e r e s t .

When the m o i s t u r e is supposedly s y m m e t r i c a l l y d i s t r i b u t e d with r e g a r d to the c e n t r a l plane of the f i r e t e s t s p e c i m e n , the

p a t t e r n of the a c t u a l m o i s t u r e d i s t r i b u t i o n is i m m a t e r i a l , and should be i n t e r p r e t e d a s the a v e r a g e v o l u m e t r i c m o i s t u r e content of the t e s t specimen.

(13)

m o i s t u r e content, 'pa, the f i r e cndlirancc of a t e s t s p e c i m e n w a s found t o be T ~ , what would b e i t s f i r e e n d u r a n c e a t an a v e r a g e m o i s t u r e content m ? T o calculate T the f i r e endurance of the

P

B '

s p e c i m e n in m o i s t u r e l e s s (oven-dry) condition, T h a s f i r s t t o be d e t e r m i n e d . d

'

1 T h e calculation p r o c e d u r e is a s follows. F i r s t c a l c u l a t e w h e r e b

=

5.5 f o r d e n s e and gun-applied c o n c r e t e s , 8.0 f o r lightweight c o n c r e t e s , 10.0 f o r c e l l u l a r c o n c r e t e s .

T h e n in the n o m o g r a m in F i g u r e 2 d r a w a line f r o m point A to the a p p r o p r i a t e value of b r b on the right-hand side s c a l e . D r a w a n o t h e r line, p a r a l l e l t o t h i s , f r o m the point indicating the e x p e r i m e n t a l l y obtained f i r e e n d u r a n c e value, T ~ on the left-hand side s c a l e . , A

h o r i z o n t a l line d r a w n f r o m the point w h e r e the l a t t e r line i n t e r s e c t e d the c u r v e of the n o m o g r a m , will yield the value of ~d (the f i r e

e n d u r a n c e i n m o i s t u r e l e ss condition) on the left -hand side s c a l e . T o find the f i r e endurance of the s a m e t e s t s p e c i m e n , T 8 8 a t

s o m e o t h e r m o i s t u r e content rDB, calculate bcp and connect t h i s value

P

on the right-hand side s c a l e with point A. D r a w a line p a r a l l e l t o t h i s f r o m the point obtained previously on the c u r v e of the nomogram. T h e i n t e r s e c t i o n of t h i s line with the left-hand s i d e s c a l e will yield T

B

'

If the m o i s t u r e distribution i n the t e s t s p e c i m e n is m a r k e d l y a s y m m e t r i c a l (this is g e n e r a l l y due t o the g e o m e t r y of the construction,

not

ta the: conditiarring procadiire), calculate firet the "equivalent

e y m m e t r i c a l " m o i s t u r e content a s w h e r e M, t h e " m o i s t u r e m o m e n t , " is r e f e r r e d t o t h e exposed s i d e ( w h e r e x

=

o ) and is defined as

a

Thie may a l s o be w r i t t e n as n

(14)

In t h e s c calculations a continuous a i r lnycr ( of any t h i c k n e s s ) should be r e g a r d e d a s a 1-in. -thick< m o i s t u r e l e s s layer.

The m o i s t u r e level of p a r t i c u l a r i n t e r e s t i s that pertaining t o 50 p e r cent equilibrium relative humidity. The m o i s t u r e content of a reasonably m a t u r e portland cement paste in equilibrium with an a t m o s p h e r e of 50 p e r cent relative, humidity a t r o o m t e m p e r a t u r e is g e n e r a l l y between 10 and 20 p e r cent by volume. Since, a s mentioned e a r l i e r , in a concrete the moisture-holding capacity of the a g g r e g a t e s is usually v e r y s m a l l , one can w r i t e that the volumetric m o i s t u r e content of c o n c r e t e s in "standard" ( a i r -dry) condition is

The wideness of t h i s range is due p r i m a r i l y t o h y s t e r e s i s effects, and only i n a l e s s e r d e g r e e t o the c h a r a c t e r i s t i c s of the anhydrous cement used. If during the conditioning period the f i r e t e s t specimen was always subjected t o desorption, in other w o r d s , w a s

'

continuously losing weight, the upper half of the above range should be used.

The p r o c e d u r e of "correcting" f i r e endurance t e s t r e s u l t s f o r

I I standard" m o i s t u r e level is i l l u s t r a t e d by the following two examples.

Example 2.

-

The wall f i r e t e s t a s s e m b l y d e s c r i b e d in Example 1 yielded ra

=

3.33 h r f i r e endurance. What would be i t s f i r e endurance a t "standard" m o i s t u r e level?

The m o i s t u r e distribution in wall t e s t s p e c i m e n s is always reasonably closely s y m m e t r i c a l . F o r heavy c o n c r e t e b

=

5.5, thus,

bqa = 48.1. With t h i s and

--ra

=

3.33 h r one obtains ( s e e F i g u r e 2) that

the f i r e endurance i n m o i s t u r e l e s s condition is T

=

2.58 h r . d

F o r t h i s c o n c r e t e v

=

0.2474 (volume p e r cent of cement p a s t e ) w a s previously calculated. Assuming (by m e a n s of Eq. (17)) t h a t in the a i r - d r y condition the volumetric

moisture

content is 15v, one g e t s CQB 1 5 ~ 0 . 2 4 7 4

=

3.71% by vol.

(A

c l o s e r e s t i m a t e could be obtained by calculating ( s e e Ref. (7)) o r experimentally determining the desorption c u r v e of the m a t e r i a l . ) With t h i s

l

m

=

20.4, and

again using F i g u r e 2 one obtains T

a

=

2.90 h r , whi@h is t h e r e f o r e t h e

expected p e r f o r m a n c e of the wall in the "standard condition. I'

Example 3.

-

A steel-jointed floor construction, sketched in F i g u r e 3a, yielded T~

=

2.6 h r ( t h e r m a l ) f i r e endurance. With the aid of "embedded samples" a m o i s t u r e distribution shown i n F i g u r e 3b

(15)

h a s b e e n found in the c o n c r e t e l a y e r p r i o r to the f i r e test. What would be the f i r e endurance of this construction i f tested in a i r - d r y condition?

The model of the construction, a s simplified f o r t h e s e kinds of calculations, is shown in F i g u r e 3b. In t h i s sketch the thickness of the a i r l a y e r h a s been reduced to 1 in. in accordance with what was said in connection with Eq. (1 6). The m o i s t u r e in the gypsum p l a s t e r h a s been neglected.

With the notation u s e d in F i g u r e 3b the m o i s t u r e moment can be calculated a s follows:

M = x c p &

+

x c p m

+

x r p A x 3 + x c p A x 1 1 1 2 2 2 3 3 4 4 4

+

x5CD5m5 where x

=

0.3125 in. 1

wl

=

0

axl

= 0.625 in. x

=

0.8125 in. 2

m2

=

1.0 in. x

=

2.125 in. CP3 = 5.80 3 Ax3

=

l o o in* x

=

3.125 in. 4 cp4

=

4.65 Ax4

=

1.0 in. x

=

4.125 in. 5 cp5

=

3.80 Ax5

=

1.0 in. T h e r e f o r e M

=

2 . 1 2 5 ~ 5 . 8 0 x 1 , 0 + 3 . 1 2 5 ~ 4 . 6 5 ~ 1 . 0 + 4 . 1 2 5 ~ 3 . 8 0 x 1.0

=

42.531 in. vol

%

and the equivalent s y m m e t r i c a l m o i s t u r e content

-.

is

Since b

=

5.5 a g a i n , b@a

=

21.9. By making u s e of F i g u r e 2 one

obtaine

r

=

2.3

hr.

d

It h a s been established by e x p e r i m e n t s that the m o i s t u r e content of the c o n c r e t e u s e d i n the construction in a i r - d r y condition is 3.0 p e r cent by volume. Thus the m o i s t u r e moment pertaining t o a i r - d r y conditions is ( s e e F i g u r e 3b):

and the equivalent s y m m e t r i c a l m o i s t u r e content in a i r - d r y condition is:

@

=

2 r 2 8 . 1 ~ 5 / 4 . 6 2 5 ~

=

2.63% by vol.

(16)

With t h i s b13

=

14. 5. Again using F i g u r e 2 one obtains, f o r the a i r - d r y conftruction, r = 2. 5 hr.

8

NOTATION

I

Symbols denoted by the s u p e r s c r i p t r e f e r t o a sample.

m o i s t u r e content,

7'0

by weight e m p i r i c a l value

bulk density, lb/ft 3

o v e r - a l l thickness of f i r e t e s t specimen ( c o r r e c t e d when continuous a i r l a y e r i s p r e s e n t ) , in.

m o i s t u r e moment, in. 2 vol.

%

number of s t r i p s ( s e e F i g u r e 3b)

volume f r a c t i o n of portland cement paste volume of c o n c r e t e , f t 3

water -cement r a t i o , lb/lb

W

=

weight of concrete; without subscript:

weight of c o n c r e t e on day of f i r e t e s t , lb. x

=

d i s t a n c e f r o m s u r f a c e exposed t o f i r e , in. Ax

=

width of s t r i p ( s e e F i g u r e 3b), in. G r e e k L e t t e r s p

=

specific g r a v i t y r

=

f i r e endurance, h r cp

-

= m o i s t u r e content,

%

by volume

cp

=

"equivalent s y m m e t r i c a l " m o i s t u r e content,

%

by volume

S u b s c r i p t s

a

=

of aggregate

c = of anhydrous portland cement

d

=

of d r y c o n c r e t e , in m o i s t u r e l e s s (oven-dry) condition

g

=

of g r e e n c o n c r e t e i

=

l , 2 , 3 , . .

.

pg

=

of g r e e n portland cement p a s t e pd

=

of d r y portland cement p a s t e

a

=

i n s o m e

a

condition (generally i n the condition a r i s i n g during f i r e t e s t )

(17)

REFERENCES

1.

Harmathy, T. Z. Ef::ect of m o i s t u r e on the f i r e endurance of building elements. ASTM Spec. Tech. Pul)l. No. 385, 1965, p. 74.

2. Harmathy, T. Z. F i r e Technology, E x p e r i m e n t a l study on m o i s t u r e and f i r e endurance.

-

2, 52 (1966).

3. Menzel, C. A. A method f o r determining the m o i s t u r e condition of hardened c o n c r e t e in t e r m s of r e l a t i v e humidity. p. 1085-

1109, P r o c . ASTM, -9 55 1 (1955).

4, Harmathy,

T.

Z. and E. 0. P o r t e o u s . Sampling method f o r m e a s u r i n g the m o i s t u r e distribution in f i r e t e s t specimens. Natl. R e s , Council, Pivision of B ~ i l d i n g R e s e a r c h , Building R e s e a r c h Note 4 2 , July 1963.

5. Copeland, L. E. and 3. C. Hayes. Determination of non- evaporable w a t e r in hardened portland-cement paste. ASTM Bulletin, No. 194, Dec. 1953, p. 70-74.

6. S h o r t e r , G. W. and J, A. C. Blanchard. Some f a c t o r s influencing the p e r f o r m a n c e of c o n c r e t e m a s o n r y unit walls i n ASTM E l 19 f i r e t e s t s (in preparation).

7, Harmathy, T. 2. Moisture sorption of building m a t e r i a l s (paper in preparation).

8.

Gopeland,

L.

E,

and

R.

H,

Bragg.

Self-desiccation in portland-

cement

pastes,

ASTM

Bulletin,

No. 204,

ITebruary

1955,

(18)
(19)

F I G U R E

2

N O M O G R A M FOR C A L C U L A T I O N O F THE EFFECT O F M O I S T U R E

(20)

@

G y p s u m p l a s t e r

@

S t e e l d e c k

@

S t e e l j o i s t

@

H e a v y c o n c r e t e

o n c r e t e

, i

r gap

P l a s t e r

F I G U R E 3

l

L L U S T R A T I N G E X A M P L E

3

Figure

Figure  1  Weighing  of  a wall  specimen

Références

Documents relatifs

This study examines the international climate policy process and overlapping national policy processes in the United States, Japan, and the Netherlands through the lens

Los gestores directos eran en su mayoría actores locales, empresas y la sociedad civil, mientras que los gestores indirectos eran a menudo organizaciones de alcance nacional y

A ce titre et compte tenu de l’importance de l’investissement dans le monde moderne, les pays développés et ceux en voie de développement tendent à promouvoir le volume

- To assess the rate of prescribing and conduct of RAS gene mutation tests (KRAS and NRAS exons 2, 3 and 4) in patients recently diagnosed with metastatic colorectal cancer

Keywords Fractured porous medium · Three-dimensional upscaling · Equivalent hydraulic conductivity · Numerical simulations · Darcy · Random fracture sets · Network connectivity..

Dans cette partie du travail, je vais analyser les propos récoltés dans mes entretiens à partir des différentes valeurs qui fondent les communautés et le

Nous avons alors orienté notre recherche sur l'aspect d’ordre psychologique et affectif qui est contenu dans ces termes ; nous savons que celui-ci est présent dans l’apprentissage

Principle To build waveforms with the highest score defined in Eq. 4, we per- form a stochastic optimization based on a genetic algorithm. To narrow down the search space,