• Aucun résultat trouvé

Chromatin-remodeling enzymes in control of Schwann cell development, maintenance and plasticity

N/A
N/A
Protected

Academic year: 2021

Partager "Chromatin-remodeling enzymes in control of Schwann cell development, maintenance and plasticity"

Copied!
7
0
0

Texte intégral

(1)

Chromatin-remodeling

enzymes

in

control

of

Schwann

cell

development,

maintenance

and

plasticity

Claire

Jacob

Generegulationisessentialforcellulardifferentiationand

plasticity.Schwanncells(SCs),themyelinatinggliaofthe

peripheralnervoussystem(PNS),developfromneuralcrest

cellstomaturemyelinatingSCsandcanatearlydevelopmental

stagedifferentiateintovariouscelltypes.AfteraPNSlesion,

SCscanalsoconvertintorepaircellsthatguideandstimulate

axonalregrowth,andremyelinateregeneratedaxons.What

controlstheirdevelopmentandversatilenature?Severalrecent

studieshighlightthekeyrolesofchromatinmodifiersinthese

processes,allowingSCstoregulatetheirgeneexpression

profileandtherebyacquireorchangetheiridentityandquickly

reacttotheirenvironment.

Address

DepartmentofBiology,UniversityofFribourg,CheminduMuse´e10,

1700Fribourg,Switzerland

Correspondingauthor:Jacob,Claire(claire.jacob@unifr.ch)

Introduction

SCsoriginatefromneuralcrestcellsthatalsogiveriseto othercelltypesincludingsensoryneurons,chondrocytes, melanocytes, smooth-muscle cells [1,2].After specifica-tion in SC precursors, thelineage further differentiates into immature SCs that encircle bundles of axons of different calibers. Next, big caliber axons are sorted in a one-to-one relationship with SCs by a process called radial sorting which leads to the promyelinating stage. The last step of maturation is the myelination process where SCs build a thick myelin sheath rich in lipids aroundaxons(Figure1).Meanwhile,smallcaliberaxons remainin bundlesassociatedwith non-myelinatingSCs and persist as Remak bundles in adult nerves [3,4]. Myelin provides axonal insulation and fast conduction ofelectricsignalsalongaxons;itsformationand mainte-nancearethuscriticalforneuronalfunctions.Bycontrast, myelin is detrimental for axonal regrowth after lesion,

becauseitcontains growthinhibitoryproteins [5]. How-ever, SCsreactquickly to anaxonal lesionby dediffer-entiating,digestingtheirown myelin—aprocesscalled myelinophagy[6]—andconvertingintorepaircells[7,8] thatfosteraxonalregrowthandguideaxonsbacktotheir former target [9,10]. SCs then remyelinate regenerated axons(Figure2).ThisremarkableSCplasticityallowsthe PNStofunctionallyregenerateafter lesion.

Thisreviewisfocusedonthemechanismsof SC devel-opment, maintenance and plasticity after lesion con-trolled by chromatin-remodeling enzymes. Chromatin remodeling regulates the accessibility of genes for the transcriptional machinery, and thereby gene activation and repression. Changes of chromatin architecture are controlled by ATP-dependent nucleosome remodeling andbycovalentmodifications, eitheronDNAby meth-ylationoronhistonesbyvariouspost-translational mod-ificationsincludingacetylation,methylation, phosphory-lation, ubiquitination, SUMOylation, ADP-ribosylation. Althoughourknowledgeonthesemechanismsisstillvery sparse, recent findings on the functions of chromatin-remodeling enzymeshavesignificantlycontributed to a betterunderstandingof theircriticalfunctionsin SCs.

Chromatin-remodeling

factors

controlling

SC

development,

maintenance

and

plasticity

after

lesion

Nucleosome-remodeling complexes,DNA methylation/ demethylation, histone acetylation/deacetylation and methylation/demethylation enzymes have been shown tohold keyfunctionsinSCs(Figures1 and2).

Nucleosome-remodelingcomplexes

Nucleosome-remodelingcomplexesuseATPto destabi-lize the interaction between DNA and histones. This local chromatin destabilization results in nucleosome sliding and repositioning that can also leadto adjacent nucleosomeejectionorinsertion.Thesechangesof chro-matinstructuremodifyDNAaccessibility,andcanleadto either transcriptional activation or repression. Nucleo-some-remodeling complexesareclassified intodifferent families, based ontheir composition and activity: SWI/ SNF, ISWI, INO80/SWR1 and NuRDcomplexes [11]. Amongthose,theSWI/SNF andthe NuRDcomplexes are known to regulate aspects of SC development and plasticity after lesion (Figures 1 and 2). Two subtypes BAFandPBAFofSWI/SNFcomplexesareknown;they owe their enzymatic activity to their ATPase subunit BRM or BrG1 [12]. The NuRD complex comprises

http://doc.rero.ch

Published in "Current Opinion in Neurobiology 47 (): 24–30, 2017"

which should be cited to refer to this work.

(2)

CHD3orCHD4asATPasesubunit,andhasinaddition deacetylase activityby therecruitment of HDAC1 and HDAC2[13].

DNAmethyltransferases(DNMTs)

DNMTstransfer amethyl group from amethyl donor, generally S-adenosylmethionine (SAMe) to the carbon 5 of cytosines located within CpG dinucleotides [14]. Most CpGs in mammalian genomes are maintained

methylatedacrossgenerationsbyDNMT1.Bycontrast, CpG islands in promoters and enhancers often remain unmethylated through active DNMTs exclusion. This usuallyrequiresrecruitmentofatranscriptionfactorand otherpartnerssuchashistoneH3lysine4(H3K4) methyl-transferases(HMTs),aTET dioxygenaseand a thymi-dine DNA glycosylase that erase/prevent methylation. Promoter silencing can however occur through de novo methylationatCpGislandsbyDNMT3AorDNMT3B,

Figure1

Current Opinion in Neurobiology

Chromatin-remodelingenzymesandassociatedmechanismsregulatingSCdevelopmentandmaintenance.Activatingmechanismsaredepicted

aboveandinactivatingmechanismsunderneathSCstages.Thetablelistsmousemutantsandtheirphenotypesusedtoidentifythese

mechanisms.

Figure2

Current Opinion in Neurobiology

Chromatin-remodelingmechanismsregulatingSCplasticityafterlesion.Activatingmechanismsaredepictedaboveandinactivatingmechanisms

underneathregenerationstages.Thetablelistsmousemutantsandtheirphenotypesusedtoidentifythesemechanisms.

(3)

andisusuallyprecededbyrepressiveH3K9methylation marks.Interestingly,inthecaseofverylowavailabilityof methyldonor,DNMT3A/BcannotmethylateCpGs,but in contrasthavebeenreportedto activelyparticipatein DNAdemethylation[15].

Histoneacetylationanddeacetylationenzymes

Histoneacetyltransferases (HATs) addacetyl groups to lysines of histone tails, which loosens the attraction between histones and DNA and results in chromatin decompactionthatfacilitatestheaccessforthe transcrip-tional machinery. By contrast, HDACs remove these acetylgroups,whichleadstoamorecondensedchromatin thatrestrictsDNAaccess[16].HATsarethuscommonly thought to act as transcriptional co-activators, whereas HDACs as transcriptional co-repressors. However, sev-eralstudieshaveshownthatHDACscanalsoparticipate in transcriptionalactivation[17–19].HATsandHDACs cannotbindDNAdirectlyandthusneedaDNA-binding partner to modify histones. In addition, these enzymes can acetylate and deacetylate and thereby control the activityofnon-histonetargetsincludingseveral transcrip-tion factors[20]; they are thus very powerful transcrip-tional regulators. Eighteen known mammalian HDACs aresubdividedintofourclasses,basedontheirstructure [21].HDAC1andHDAC2,twohighlyhomologousclassI HDACs thatcanusuallycompensateeachother’s func-tions, havebeenextensivelystudied inSCs.

Histonemethylationanddemethylationenzymes HMTs catalyzetheaddition of methylgroups to target residues,whereashistonedemethylases(HDMs)remove thesemethylgroups.Histonescanbemethylatedonthe threebasicresidues K,arginine(R)andhistidine(His), althoughHismethylationisrare.Activatingmethylation marksarelocatedonH3K4,H3K36,H3K79,H3R17and H3R26, and repressive methylation marks on H3K9, H3K27, H4K20 and H3R8, whereas methylation of H3R2andH4R3leadseithertotranscriptionalactivation or repression, depending on the exact location of the methylgroup. Thereareseveral familiesof HMTsand KHDMs,buttheexistenceofRHDMsisnotclear[22].

Functions

of

chromatin-remodeling

enzymes

in

SC

development

and

maintenance

of

PNS

integrity

SC development from specification of the lineage to terminaldifferentiationintomyelinatingcellsand main-tenanceofmyelinationrequiretranscriptionalactivation ofgenes thatinducelineagedifferentiationand acquisi-tionandmaintenanceofcellstageidentity.HDAC1and HDAC2 (HDAC1/2) and theBAF complex hold major functions in theseprocesses. For differentiation to pro-ceed,inactivatinginhibitorymechanismsofSC differen-tiation is also necessary. In addition, preventing over-myelination is required for stable myelination and optimal nerveconduction. TheNuRD complexas well

asDNAandhistone methylationregulatethese mecha-nisms. Current knowledge on this topic is discussed belowandsummarized inFigure 1.

HDAC1/2controlSClineagespecification

ThetranscriptionfactorSox10isessentialforSClineage specification and the entire SC developmental process [23].However,Sox10isexpressedinallneuralcrestcells. Thus, additional mechanisms direct Sox10-dependent specification into the SC lineage. Indeed, ablation of HDAC1/2inneuralcrestcellsbycrossingHdac1/2floxed mice with mice expressing the Cre recombinase (Cre) undercontroloftheWnt1promoter(Wnt1-Cre)prevents peripheralgliaspecification[24].WeshowthatHDAC1/2 andSox10 interactto activatethepromoterof theearly lineagemarkerMyelinproteinzero(P0[25])andof Pax3, another key transcription factor for SC specification [26,27]. In turn, Pax3 and Sox10 activate the Sox10 MCS4enhancer(alsocalledU3[28,29])tomaintainhigh levelsofSox10,whichinducesexpressionofP0andFatty acidbindingprotein7(Fabp7),anotherearlyperipheralglia marker[30].

HDAC1/2regulateradialsorting,SCsurvival,induction andmaintenanceofmyelination

HDAC1/2havealsoessentialfunctionsatlater develop-mentalstagesandinthemaintenanceofintegrityinadult nerves.AblationofHDAC1/2inSCprecursors(by cross-ingHdac1/2floxedmicewithmiceexpressingCreunder controloftheDhhpromoter)leadstoradialsortingdelay and virtualabsence of myelin, followedby massiveSC apoptosis[31]. Weshowedthat HDAC1/2maintainSC survivalbylimitingactive-beta-catenin(ABC)levelsand thattheyinteractwithSox10toactivatetheSox10andP0 promotersandtheKrox20MSE(myelinatingSCelement [32]), a critical enhancer for expression of the major transcription factor of SC myelination Krox20 [33]. In adult SCs, ablation of HDAC1/2 (using the tamoxifen-inducible CreERT2 under control of theP0 promoter) leads to disruption of paranodal and nodal structures, followed by moderate demyelination due to 50% loss of P0 expression, presumablycaused by impairment of Sox10-mediatedactivationoftheP0promoter[34].Chen et al. [35] also showedthat HDAC1/2 interact with the transcriptionfactorNFkBtoactivatetheSox10promoter in SCs during developmental myelination. However in vivoNFkBinactivationleadsto minoreffectson myeli-nation[36],thereforethismechanismmayhaveaminor controloverinvivomyelination.

TheBAFcomplexATPaseBrG1isrequiredforradial sortingandmyelination

AblationofBrG1inSCprecursors(usingfloxedBrg1and Dhh-Cremouselines)preventsradialsortingand myelina-tion[37,38].Limpertandcolleagues(2013)showthatBrG1 interactswithNFkB toactivatetheSox10 promoterand suggestthatthismechanismcontrolsBrG1-dependentSC

(4)

myelination[37].However, giventhe minoreffect ofin vivoNFkBinactivationonmyelination[36],BrG1 inter-actionwithNFkBislikelytohaveminorfunctionsonSC myelination.Furthermore,whileSox10levelsare moder-ately[37]ornot[38]affectedintheabsenceofBrG1inSCs, Oct6,Krox20andP0arevirtuallyabsent.Indeed,theBAF complex is recruited by Sox10 to the Oct6 SCE (SC enhancer[39]),theKrox20MSEandtheP0promoterto induce Oct6, Krox20 and P0 expression [38–40], and therebycontrolsthemyelinationprocess.

TheNuRDcomplexregulatesradialsortingand myelination

As mentioned earlier, Krox20 is a major transcription factor of SC myelination, which is absolutely required fortheactivationofmyelingenesandtheproductionof peripheralmyelin[33].Interestingly,Krox20canalsoact asatranscriptionalrepressor.Indeed,Krox20caninteract withthetranscriptionalrepressorsNAB1/2,whichrecruit theNuRDcomplextosilenceexpressionofinhibitorsof myelinationincludingId2,Id4andcJunatalate myelina-tionstage [41–43]. Consistently, ablationof theNuRD complexATPaseCHD4in immatureSCs(usingfloxed Chd4andP0-Cremouselines)leadstoincreased expres-sionofinhibitorsofmyelinationandtohypomyelination [43]. Ablation of CHD4 also leads to delayed radial sorting [43]. At this earlier developmental stage, the NuRD complex may allow radial sorting by silencing the transcription of Sox2, Hey2 and Ednrb [44,45], otherinhibitorsof SC differentiation,together withthe transcriptionfactorZeb2.Indeed,Zeb2hasbeen shown torecruittheNuRDcomplexinSCs[44]andablation ofZeb2inSCprecursors(usingfloxedZeb2andDhh-Cre mouse lines) leads to upregulation of Sox2, Hey2 and Ednrb and prevents radial sorting and myelination [44,45].However,ablationofZeb2results inamore severephenotypeascomparedtoablationofCHD4[43], suggestingthatZeb2 actsalso through CHD4-indepen-dent mechanisms. Alternatively, the different levels of phenotypeseveritybetweenZeb2andChd4mutantmice could bedue to the differentCre mouse lines used to generatethesemutants.

DNAdemethylationadjustsmyelinthickness

DNAdemethylationofselectedgenesappearsnecessary for appropriate developmental myelination. Indeed, DNAdemethylationatpromotersandenhancersof mye-lingenes(Mbp,Pmp22,Prx,Cnp),transcriptional regula-torsofmyelination(Lgi4,Nab1,Nfatc1)andlipid metab-olismgenes(Scap,Srebf1,Hmgcr,Mvk,Pmvk,Dgat1,Lipe, Scd1, Abca2and Elovl7) correlates with upregulation of these genes during myelination [46]. Simultaneously, expression of DNMTs decreases and expression of Gadd45a(growtharrestandDNAdamage45a),Gadd45b, and Apobec1 (apolipoprotein B mRNA editing enzyme catalyticsubunit1),whichpromoteDNAdemethylation [47],increases[46].TheprincipalmethyldonorSAMe

isconvertedintoS-adenosylhomocysteineand N-methyl-glycinebyGlycine N-methyltransferase(GNMT,[48]). Ablation of GNMT impairs this conversion and thus increasestheavailabilityofSAMe,whichresultsinathin myelin phenotype in constitutive Gnmt mutant mice [46,48]. These data provide further evidence that DNA demethylation of myelin-related genes allows SCs to build myelin sheaths of appropriate thickness duringdevelopment.

Involvementofrepressivehistonemethylationmarksin regulatingmyelination

Other repressive mechanisms mediated by H3K27me3 marksongenepromotershavebeenreportedduringthe myelinationprocess.Nessandcolleagues(2016)identify Nuc-ErbB3,anuclearvariantofErbB3,asa DNA-bind-ingproteinthatpromotesH3K27me3atgenepromoters presumablyby activatingthe HMT EZH2. This study reports that loss of Nuc-ErbB3 (constitutive mouse mutant)leads to developmentalhypermyelination [49]. Consistently,ablationofthePRC2subunitEedin imma-tureSCs(usingfloxedEedandP0-Cremouselines),that leads to inactivation of the PRC2 complex (mediating H3K27me3through itsHMT EZH2), results in hyper-myelination in adults [50]. This is due to impaired repression of Igfbp2 that maintains the activation of Akt-dependent myelination [50]. However, no defect in developmental myelination occurs in Eed mutants [50]. A thirdstudy conducted in SC culturesproposes thatlossofEZH2leadsincontrasttotheinhibitionofthe myelination process through impaired inactivation of p75kip2 transcription that promotes expression of the inhibitorofmyelinationHes5[51].Theseinconsistencies needto beresolvedwith additionalinvivostudies.

Functions

of

chromatin-remodeling

enzymes

in

SCs

after

lesion

RegenerativepropertiesofthePNSafterlesionaretoa large extent due to the plasticity of SCs that first de-differentiateandconvertintorepaircellsin responseto injurytofosterandguideaxonalregrowth,andsecond re-differentiatetoremyelinateregeneratedaxons[3,5,7,10]. These different key steps of the regeneration process involvethedynamicregulationof manygenesand thus thetimedactionofseveraltranscriptionfactors,whichare known to promote either SC de-differentiation or re-differentiationafterlesion.Incomparison,ourknowledge onthefunctionsof chromatin-remodeling enzymesand their coordinated action with transcription factors after lesion is just emerging with recently published studies thatarediscussedbelowand illustratedinFigure 2. HATs,HDACs,HMTsandHDMscontroltheconversion intorepaircells,theircellcycleandfunctionsafter lesion

Inadultnerves,injury-inducedgenesaresilencedbythe PRC2complex,whichaddsrepressiveH3K27me3marks

(5)

attheirpromoter[52].Uponinjury,thesegenesare de-repressed by H3K27 demethylation and activated by H3K4 methylation at promoter regions and by H3K27 acetylation at enhancers, the latter correlating with recruitment of the transcription factor cJun [52,53], a majorinducerofSCconversionintorepaircells[54].This mechanismallowstheexpressionofinjury-inducedgenes includingShhandtheneurotrophicfactorGdnf[52],and thuspromotesaxonalregrowth afterlesion.

De-differentiatedSCsre-enterthecellcycleafterinjury. TopreventSCoverproliferationthatcouldleadtotumor formation,theArf/Ink4locusisde-repressedbytheHDM JMJD3 that demethylates H3K27 at the promoter of p19Arfandp16Ink4aandpotentiallyalsoatthep15Ink4b promoter. These tumor-supressor proteins then inacti-vateSCproliferation[55].

EventhoughtheconversionofSCsintorepaircellsafter lesion isefficient, it isinteresting to point outthatthis process is not optimal and can be improved. Indeed, shortly after injury, HDAC2 is upregulated in SCsand mediatestheassemblyofaproteincomplexwiththetwo H3K9 HDMsKDM3A and JMJD2C andthe transcrip-tionfactorSox10,whichisrecruitedto theOct6SCEto demethylateH3K9andinduceOct6transcription.Inturn, Oct6slowsdowntheupregulationofcJun[56]. Consis-tently, ablation of HDAC1/2 in adult SCs (using the tamoxifen-inducible P0-CreERT2 mouse line) or a short-termtreatmentwiththeHDAC1/2inhibitor Moce-tinostatdelaysOct6upregulationafterlesionandleadsto higher and earliercJun upregulation, earlier conversion intorepaircellsandfasteraxonalregrowth[56]. HDAC1/2andtheNuRDcomplexpromoteremyelination afterlesion

At the remyelination stage, the same protein complex assembled by HDAC2after lesion (described above) is recruitedto theKrox20MSEtodemethylateH3K9and activateKrox20transcription[56].Krox20theninduces remyelination.IntheabsenceofHDAC1/2inadultSCs, Krox20 expression is strongly reduced. This results in impairedremyelination[56],indicatingthatHDAC1/2 are necessaryfortheremyelination process afterlesion. Ofnote,ashort-termHDAC1/2inhibitortreatmentafter lesion (during the 3 days following lesion) does not interfere with the remyelination process, but leads to fasterfunctionalrecoveryduetofasterandmoreefficient axonalregeneration,asmentionedabove[56],thereby identifyinganoveltreatmenttoacceleratePNS regener-ationafterlesion.

Toenableremyelinationafterlesion,itisalsonecessary to downregulateinhibitorsof myelinationsuchas Sox2, Hey2andId2.SimilartoitsfunctionindevelopingSCs, the transcription factorZeb2 represses the promoter of thesegenes in conjunctionwith theNuRDcomplex to

silencetheirexpressionandtherebyallowremyelination [44,45].

Conclusion

Insummary,eachstepof SCdevelopment,the mainte-nance of integrity in adult nerves and theregeneration process afteraPNS lesionare controlledby chromatin-remodelingenzymesthateithermodifyhistones,DNAor remodel nucleosomes. The recent studies discussed in this review show that several chromatin-remodeling enzymes or events act in sync to regulate one cellular process.Itappearsalsoincreasinglyobviousthat chroma-tin-remodelingenzymesare often targeted to aspecific setof genesthroughtheirinteraction withtranscription factors,andtherebyactasco-factorsofthesetranscription factorstoenabletheregulationof theirtargetgenes. Althoughrecentfindingshaveimprovedour understand-ing of chromatin-remodeling enzymes functions in SC development, maintenance and plasticity, a lot more work—preferentiallycarriedoutinvivo—is necessary to fully understand their functions and mechanisms of action, resolve inconsistencies, and potentially use and controlthemindiseasecontexts.Inparticular,itwillbeof majorimportanceinfuturestudiestoanalyzethe coordi-natedactionof differenttypesof chromatin-remodeling enzymes, and elucidate their mode of activation and recruitmentto specific targetgenes. Mass spectrometry combinedwithchromatinimmunoprecipitationanalyses will certainly reveal instrumental to identify dynamic protein complex formation and recruitment to specific loci depending on the developmental or regeneration stage.

Conflict

of

interest

statement

Nothingdeclared.

Acknowledgements

ResearchintheJacoblabissupportedbytheSwissNationalScience

Foundation(grantnumbers:PP00P3_163759and31003A_173072),the

InternationalFoundationforResearchinParaplegia/OPO-Stiftung(grant

number:IRP-P147),theNovartisFoundation(grantnumber:15C191),and

theForschungspoolofFribourgUniversity.

References

and

recommended

reading

Papersofparticularinterest,publishedwithintheperiodofreview,

havebeenhighlightedas:

 ofspecialinterest

ofoutstandinginterest

1. GrahamA:Theneuralcrest.CurrBiol2003,13:R381-R384.

2. GreenSA,Simoes-CostaM,BronnerME:Evolutionof vertebratesasviewedfromthecrest.Nature2015, 520:474-482.

3. JessenKR,MirskyR,LloydAC:Schwanncells:development androleinnerverepair.ColdSpringHarbPerspectBiol2015,7: a020487.

4. JessenKR,MirskyR:Theoriginanddevelopmentofglialcells inperipheralnerves.NatRevNeurosci2005,6:671-682.

(6)

5. BrosiusLutzA,BarresBA:Contrastingtheglialresponseto axoninjuryinthecentralandperipheralnervoussystems.Dev Cell2014,28:7-17.

6. Gomez-SanchezJA,CartyL,Iruarrizaga-LejarretaM, Palomo-IrigoyenM,Varela-ReyM,GriffithM,HantkeJ,Macias-CamaraN, AzkargortaM,AurrekoetxeaIetal.:Schwanncellautophagy, myelinophagy,initiatesmyelinclearancefrominjurednerves. JCellBiol2015,210:153-168.

7. JessenKR,MirskyR:TherepairSchwanncellanditsfunctionin regeneratingnerves.JPhysiol2016,594:3521-3531.

8. NapoliI,NoonLA,RibeiroS,KeraiAP,ParrinelloS,RosenbergLH, CollinsMJ,HarrisinghMC,WhiteIJ,WoodhooAetal.:Acentral rolefortheERK-signalingpathwayincontrollingSchwanncell plasticityandperipheralnerveregenerationinvivo.Neuron 2012,73:729-742.

9. CattinAL,BurdenJJ,VanEmmenisL,MackenzieFE,HovingJJ, GarciaCalaviaN,GuoY,McLaughlinM,RosenbergLH, QueredaVetal.:Macrophage-inducedbloodvesselsguide Schwanncell-mediatedregenerationofperipheralnerves.Cell 2015,162:1127-1139.

10. CattinAL,LloydAC:Themulticellularcomplexityofperipheral nerveregeneration.CurrOpinNeurobiol2016,39:38-46.

11. BeckerPB,WorkmanJL:Nucleosomeremodelingand epigenetics.ColdSpringHarbPerspectBiol2013,5:a017905.

12. WilsonBG,RobertsCW:SWI/SNFnucleosomeremodellersand cancer.NatRevCancer2011,11:481-492.

13. LaiAY,WadePA:CancerbiologyandNuRD:amultifaceted chromatinremodellingcomplex.NatRevCancer2011, 11:588-596.

14. SmithZD,MeissnerA:DNAmethylation:rolesinmammalian development.NatRevGenet2013,14:204-220.

15. vanderWijstMG,VenkiteswaranM,ChenH,XuGL,Plo¨schT, RotsMG:Localchromatinmicroenvironmentdetermines DNMTactivity:fromDNAmethyltransferasetoDNA demethylaseorDNAdehydroxymethylase.Epigenetics2015, 10:671-676.

16. HodawadekarSC,MarmorsteinR:Chemistryofacetyltransfer byhistonemodifyingenzymes:structure,mechanismand implicationsforeffectordesign.Oncogene2007,26:5528-5540.

17. DeckertJ,StruhlK:Histoneacetylationatpromotersis differentiallyaffectedbyspecificactivatorsandrepressors. MolCellBiol2001,21:2726-2735.

18. WangZ,ZangC,CuiK,SchonesDE,BarskiA,PengW,ZhaoK: Genome-widemappingofHATsandHDACsrevealsdistinct functionsinactiveandinactivegenes.Cell2009, 138:1019-1031.

19. GreerCB,TanakaY,KimYJ,XieP,ZhangMQ,ParkIH,KimTH: Histonedeacetylasespositivelyregulatetranscription throughtheelongationmachinery.CellRep2015, 13:1444-1455.

20. GlozakMA,SenguptaN,ZhangX,SetoE:Acetylationand deacetylationofnon-histoneproteins.Gene2005,363:15-23.

21. JacobC,Lebrun-JulienF,SuterU:Howhistonedeacetylases controlmyelination.MolNeurobiol2011,44:303-312.

22. PattaroniC,JacobC:Histonemethylationinthenervous system:functionsanddysfunctions.MolNeurobiol2013, 47:740-756.

23. WeiderM,WegnerM:SoxEfactors:transcriptionalregulators ofneuraldifferentiationandnervoussystemdevelopment. SeminCellDevBiol2017,63:35-42.

24. JacobC,Lo¨tscherP,EnglerS,BaggioliniA,VarumTavaresS, Bru¨ggerV,JohnN,Bu¨chmann-MøllerS,SniderPL,ConwaySJ etal.:HDAC1andHDAC2controlthespecificationofneural crestcellsintoperipheralglia.JNeurosci2014,34:6112-6122.

25. HagedornL,SuterU,SommerL:P0andPMP22marka multipotentneuralcrest-derivedcelltypethatdisplays

communityeffectsinresponsetoTGF-betafamilyfactors. Development1999,126:3781-3794.

26. AuerbachR:Analysisofthedevelopmentaleffectsofalethal mutationinthehousemouse.JExpZool1954,127:305-329.

27. FranzT:Defectiveensheathmentofmotoricnervesinthe Splotchmutantmouse.ActaAnat1990,138:246-253.

28. AntonellisA,HuynhJL,Lee-LinSQ,VintonRM,RenaudG, LoftusSK,ElliotG,WolfsbergTG,GreenED,McCallionAS, PavanWJ:Identificationofneuralcrestandglialenhancersat themouseSox10locusthroughtransgenesisinzebrafish. PLoSGenet2008,4:e1000174.

29. WahlbuhlM,ReiprichS,VoglMR,Bo¨slMR,WegnerM: TranscriptionfactorSox10orchestratesactivityofaneural crest-specificenhancerinthevicinityofitsgene.NucleicAcids Res2012,40:88-101.

30. KurtzA,ZimmerA,Schnu¨tgenF,Bru¨ningG,SpenerF,Mu¨llerT: Theexpressionpatternofanovelgeneencodingbrain-fatty acidbindingproteincorrelateswithneuronalandglialcell development.Development1994,120:2637-2649.

31. JacobC,ChristenCN,PereiraJA,SomandinC,BaggioliniA, Lo¨tscherP,Ozc¸elikM,TricaudN,MeijerD,YamaguchiTetal.: HDAC1andHDAC2controlthetranscriptionalprogramof myelinationandthesurvivalofSchwanncells.NatNeurosci 2011,14:429-436.

32. GhislainJ,Desmarquet-Trin-DinhC,JaegleM,MeijerD, CharnayP,FrainM:Characterisationofcis-actingsequences revealsabiphasic,axon-dependentregulationofKrox20 duringSchwanncelldevelopment.Development2002, 129:155-166.

33. TopilkoP,Schneider-MaunouryS,LeviG,Baron-Van

EvercoorenA,ChennoufiAB,SeitanidouT,BabinetC,CharnayP: Krox-20controlsmyelinationintheperipheralnervous system.Nature1994,371:796-799.

34. Bru¨ggerV,EnglerS,PereiraJA,RuffS,HornM,WelzlH,Mu¨ngerE, Vaquie´ A,SidiropoulosPN,EggerBetal.:HDAC1/2-dependent P0expressionmaintainsparanodalandnodalintegrity independentlyofmyelinstabilitythroughinteractionswith neurofascins.PLoSBiol2015,13:e1002258.

35. ChenY,WangH,YoonSO,XuX,HottigerMO,SvarenJ,NaveKA, KimHA,OlsonEN,LuQR:HDAC-mediateddeacetylationof NF-kBiscriticalforSchwanncellmyelination.NatNeurosci2011, 14:437-441.

36. MortonPD,DellaroleA,TheusMH,WaltersWM,BergeSS, BetheaJR:ActivationofNF-kBinSchwanncellsis

dispensableformyelinationinvivo.JNeurosci2013, 33:9932-9936.

37. LimpertAS,BaiS,NarayanM,WuJ,YoonSO,CarterBD,LuQR: NF-kBformsacomplexwiththechromatinremodelerBRG1 toregulateSchwanncelldifferentiation.JNeurosci2013, 33:2388-2397.

38. WeiderM,Ku¨spertM,BischofM,VoglMR,HornigJ,LoyK, KosianT,Mu¨llerJ,Hillga¨rtnerS,TammERetal.: Chromatin-remodelingfactorBrg1isrequiredforSchwanncell differentiationandmyelination.DevCell2012,23:193-201.

39. JagalurNB,GhazviniM,MandemakersW,DriegenS,MaasA, JonesEA,JaegleM,GrosveldF,SvarenJ,MeijerD:Functional dissectionoftheOct6Schwanncellenhancerrevealsan essentialrolefordimericSox10binding.JNeurosci2011, 31:8585-8594.

40. MaratheHG,MehtaG,ZhangX,DatarI,MehrotraA,YeungKC,de laSernaIL:SWI/SNFenzymespromoteSOX10-mediated activationofmyelingeneexpression.PLoSOne2013,8: e69037.

41. MagerGM,WardRM,SrinivasanR,JangSW,WrabetzL, SvarenJ:ActivegenerepressionbytheEgr2.NABcomplex duringperipheralnervemyelination.JBiolChem2008, 283:18187-18197.

42. SrinivasanR,MagerGM,WardRM,MayerJ,SvarenJ:NAB2 repressestranscriptionbyinteractingwiththeCHD4subunit

(7)

ofthenucleosomeremodelinganddeacetylase(NuRD) complex.JBiolChem2006,281:15129-15137.

43. HungH,KohnkenR,SvarenJ:Thenucleosomeremodelingand deacetylasechromatinremodeling(NuRD)complexis requiredforperipheralnervemyelination.JNeurosci2012, 32:1517-1527.

44.

 WuZweierLM,C,WangAyeeJ,BG,ConidiMaurelA,PZhaoetal.:C,Zeb2WangrecruitsH,FordHDAC-NuRDZ,ZhangL,to inhibitNotchandcontrolsSchwanncelldifferentiationand remyelination.NatNeurosci2016,19:1060-1072.

Thisstudy(togetherwith[40])identifiesthetranscriptionfactorZeb2asa

majorrepressorofinhibitorsofmyelinationincludingSox2andtheNotch

effectorHey2.Zeb2functionisessentialinSCs,radialsorting,

develop-mentalmyelinationandremyelinationafterlesionbeingimpairedinthe

absence of this transcription factor. The authors show that Zeb2

repressesSox2andHey2byrecruitingtheNuRDcomplex.

45.

 QuintesTarabykinS,V,BrinkmannHuylebroeckBG,D,EbertMeijerM,D,Fro¨bSuterF,KunglUetal.:T,Zeb2ArltFA,is essentialforSchwanncelldifferentiation,myelinationand nerverepair.NatNeurosci2016,19:1050-1059.

Thisstudy(togetherwith[39])showsthat Zeb2is essentialforradial

sorting,SCmyelinationandremyelinationafterinjury.Theauthorsshow

thatZeb2repressesthetranscriptionofinhibitorsofmyelinationincluding

Sox2,Hey2andEdnrbduringdevelopment.Duringremyelinationafter

lesion,theauthorsfindpersistenceofSox2,Hey2andId2expressionin

Zeb2mutantperipheralnerves.

46.

 Varela-ReyFernandezAF,M,Iruarrizaga-LejarretaLavinJL,Mo´sen-AnsorenaM,LozanoD,BerdascoJJ,AransayM,AM, TurmaineM,LukaZetal.:S-adenosylmethioninelevelsregulate theSchwanncellDNAmethylome.Neuron2014,81:1024-1039.

Inthispaper,theauthorsshowthatSCsundergoglobalDNA

demethyla-tionduringthemyelinationprocess.Thiscorrelateswiththe

downregula-tionofDNMTsandofthemethyldonorSAMeandtheupregulationof

proteinspromotingDNAdemethylation.InmutantmiceforGNMTthat

transformsSAMeintoS-adenosylhomocysteine(SAH)and

N-methylgly-cine,theavailabilityofSAMeandDNAmethylationareincreased,and

myelin is thinner, showing that DNA demethylation is necessary for

appropriatemyelination.

47. NiehrsC,Scha¨ferA:ActiveDNAdemethylationbyGadd45and DNArepair.TrendsCellBiol2012,22:220-227.

48. LukaZ,CapdevilaA,MatoJM,WagnerC:Aglycine N-methyltransferaseknockoutmousemodelforhumanswith deficiencyofthisenzyme.TransgenicRes2006,15:393-397.

49. NessJK,SkilesAA,YapEH,FajardoEJ,FiserA,TapinosN: Nuc-ErbB3regulatesH3K27me3levelsandHMTactivityto establishepigeneticrepressionduringperipheralmyelination. Glia2016,64:977-992.

50.

 MaRegulationKH,HungofHA,peripheralSrinivasannerveR,XiemyelinH,OrkinmaintenanceSH,SvarenbyJ:gene

repressionthroughPolycombRepressiveComplex2.J Neurosci2015,35:8640-8652.

ThisstudyidentifiesthePRC2complexasanecessarymyelinationbreak

inadultnerves.Indeed,invivoinactivationofthePRC2complexleadsto

hypermyelinationinadultnerves,whereasdevelopmentalmyelinationis

notaffected. Theauthorsshowthat thePRC2complex silencesthe

Igfbp2promoterbyH3K27me3,whichpreventsIgfbp2-induced

activa-tionofAktandsubsequentovermyelination.

51. HeinenA,TzekovaN,GraffmannN,TorresKJ,UhrbergM, HartungHP,Ku¨ryP:Histonemethyltransferaseenhancerof zestehomolog2regulatesSchwanncelldifferentiation.Glia 2012,60:1696-1708.

52.

 MacellKH,reprogrammingHungHA,SvareninperipheralJ:Epigenomicnerveregulationinjury.JNeurosciofSchwann2016, 36:9135-9147.

Thisarticlehighlightstheswitchinhistonemethylationmarksoccurringat

thepromotersandenhancersofinjury-inducedgenesafterlesion.The

authors show that the promoter of these genes is repressed by

H3K27me3inadultnervesandisde-repressedbyH3K27demethylation

andactivatedbyH3K4me3uponlesion.Simultaneously,enhancersof

thesegenesareactivatedbyH3K27acetylation,whichcorrelateswiththe

recruitmentofcJun.ThesegenesincludeShhandtheneurotrophicfactor

Gdnf.

53. HungHA,SunG,KelesS,SvarenJ:Dynamicregulationof Schwanncellenhancersafterperipheralnerveinjury.JBiol Chem2015,290:6937-6950.

54. Arthur-FarrajPJ,LatoucheM,WiltonDK,QuintesS,ChabrolE, BanerjeeA,WoodhooA,JenkinsB,RahmanM,TurmaineMetal.: c-JunreprogramsSchwanncellsofinjurednervestogenerate arepaircellessentialforregeneration.Neuron2012, 75:633-647.

55. Gomez-SanchezJA,Gomis-ColomaC,Morenilla-PalaoC, PeiroG,SerraE,SerranoM,CabedoH:Epigeneticinductionof theInk4a/ArflocuspreventsSchwanncelloverproliferation duringnerveregenerationandaftertumorigenicchallenge. Brain2013,136:2262-2278.

56.

 Bru¨ggerJacobC:V,DelayingDumanM,histoneBochuddeacetylaseM,Mu¨ngerresponseE,HellerM,toRuffinjuryS, acceleratesconversionintorepairSchwanncellsandnerve regeneration.NatCommun2017,8:14272.

ThisstudyshowsthatHDAC2assemblesaproteincomplexwiththetwo

H3K9HDMsKDM3AandJMJD2CandwithSox10tode-repressand

activate Oct6 transcriptionearlyaftera PNSlesion. Thiscomplexis

subsequentlyrecruitedtotheKrox20MSEtode-repressandactivate

Krox20transcriptionattheremyelinationstage.Theauthorsdemonstrate

that inactivating this mechanism accelerates cJun upregulation, the

conversionintorepaircellsandaxonalregrowth,butimpairs

remyelina-tion.However,short-terminactivationusinganHDAC1/2inhibitor

accel-eratesregenerationandfunctionalrecoverywithoutimpairing

remyelina-tion,therebyidentifyinganoveltreatmenttoimprovePNSregeneration

afterlesion.

Références

Documents relatifs

The timer that controls oligodendrocyte differentiation The first oligodendrocyte precursor cells in the developing rat optic nerve stop dividing and differentiate around the time

La nouvelle formation des enseignants et un nouveau vocabulaire pour parler de l’enseignement, tels que compétences, autonomie, objectifs, sont les nouveaux maîtres-mots

The severe blade reduction in SlLAM1 and lam1 mutants demonstrates that in contrast to Arabidopsis, WOX3 genes in tobacco and tomato are not capable of compensating for loss of

A corollary to these findings is that nearby cleavage by BACE1 enhances affinity for erbB receptors, as suggested by AKT phosphorylation (Fig. The effects of TACE cleavage are

Par le terme de contre-modèle à l’école, Glasman (2004, p.84) entend que les cours particuliers offrent diverses caractéristiques : une « réactivité » au sens où

Dans le même ordre d’idée, eu égard à la situation des transports urbains issue de la libéralisation mais aussi compte tenu des enjeux en termes de développement durable

For instance, when exposed to ozone, the carpet with PVC backing shows higher emissions of formaldehyde, the carpet with textile backing emits nonanal and decanal and the pine

Also shown are the SSR primer pairs that detect polymorphisms in reference breeding material and the position of the SSRs within the transcripts 1 Annotation was assigned to