• Aucun résultat trouvé

Morphisms between Discrete Vector Fields

N/A
N/A
Protected

Academic year: 2022

Partager "Morphisms between Discrete Vector Fields"

Copied!
68
0
0

Texte intégral

(1)

Discrete Vector Fields

Ana Romero, Universidad de La Rioja Francis Sergeraert, Institut Fourier, Grenoble Oberwolfach, May-2013

(2)

Semantics of colours:

Blue = “Standard” Mathematics Red = Constructive, effective,

algorithm, machine object, . . . Violet = Problem, difficulty,

obstacle, disadvantage, . . . Green = Solution, essential point,

mathematicians, . . .

(3)

→ • Introduction.

• Basics of Algebraic Discrete Vector Fields.

• Discrete Vector Field ⇒ Canonical Reduction.

• Guessing the reduction formulas.

• Vector Fields and Morphisms.

• Seeing complicated products.

• The Eilenberg-Zilber vector field.

• The Eilenberg-Zilber vector field is natural.

• EZ vector field ⇒ EZ reduction.

(4)

1/56

Introduction.

Eilenberg-MacLane conjecture (1953):

G = simplicial group ⇒

BG = Classifying space of G

Bar(CG) = Algebraic classifying object of CG Then ∃ a reduction ρ : C(BG) ⇒⇒ Bar(CG)

Essential for effective methods computing πnX.

(5)

First proof = Pedro Real (1993). Never implemented.

Second “proof ” through discrete vector fields.

Easily implemented ⇒

Program code divided by ∼ 3

Computing times divided by ∼ 20

But proof quite complex not yet finished.

Main problem =

Compatibility: Vector fields ↔ Algebraic structures Typical problem = Naturality of reductions

coming from discrete vector fields.

(6)

3/56

Basic Algebraic Topology:

Serre + Eilenberg-Moore spectral sequences Non-constructive

Making basic algebraic topology constructive:

1. Eilenberg-Zilber theorem.

2. Twisted Eilenberg-Zilber theorem.

3. Eilenberg-MacLane correspondence:

Topological Classifying space

Algebraic Classifying space

But constructive requires: with explicit homotopies.

(7)

Example: Rubio-Morace homotopy for Eilenberg-Zilber:

RM : C(X × Y ) → C∗+1(X × Y )

RM(xp , yp) = X

0≤r≤p−1 0≤s≤p−r−1 (η,η0)∈Sh(s+1,r)

(−1)p−r−sε(η, η0). . .

. . .(↑p−r−s0p−r−s−1p−r+1· · ·pxp , p−r−s(η)∂p−r−s· · ·p−r−1yp)

with Sh(p, q) = {(p, q)-shuffles} = {(ηip−1· · ·ηi0, ηjq−1· · ·ηj0)}

for 0 i0 < · · · < ip−1 p +q 1 and 0 j0 < · · · < jq−1 p +q 1 and {i0, . . . , ip−1} ∩ {j0, . . . , jq−1} = ∅.

and k αηβ· · ·) = ηα+kηβ+k · · · (↑k = k-shift operator.)

(8)

5/56

Simpler:

⇒ ⇒

once the notion of discrete vector field is understood.

(9)

X • Introduction.

→ • Basics of Algebraic Discrete Vector Fields.

• Discrete Vector Field ⇒ Canonical Reduction.

• Guessing the reduction formulas.

• Vector Fields and Morphisms.

• Seeing complicated products.

• The Eilenberg-Zilber vector field.

• The Eilenberg-Zilber vector field is natural.

• EZ vector field ⇒ EZ reduction.

(10)

6/56

Basics of Algebraic Discrete Vector Fields.

Definition: R = unitary commutative ring.

A cellular R-chain complex is an indexed triple:

(Cpp, dp)p∈Z with:

• Cp = free R-module (non necessarily of finite type);

• βp = distinguished R-basis of Cp;

• dp : Cp → Cp−1 = differential.

The elements of βp are the p-cells of the cellular complex.

(11)

Main examples:

• Geometrical cellular complexes (R = Z):

– Cubical complexes (digital images);

– Simplicial complexes ; – Simplicial sets ;

– CW-complexes ;

• Algebraic cellular complexes (R = k = field):

– Free resolutions;

– Koszul complexes;

– . . . .

Natural distinguished basis ⇒ Cellular complex.

(12)

8/56

C = {Cp, βp, dp}p∈Z = Cellular chain complex.

Definition: A p-cell is an element of βp. Definition: If τ ∈ βp and σ ∈ βp−1,

then ε(σ, τ) := coefficient of σ in dτ is called the incidence number between σ and τ. Definition: σ is a face of τ if ε(σ, τ) 6= 0.

Definition: σ is a regular face of τ if ε(σ, τ) is R-invertible.

(⇔ ε(σ, τ) = ±1 if R = Z)

(13)

Definition:

(C, β, d) = Cellular complex

A Discrete Vector Field is a pairing:

V = {(σi, τi)}i∈I satisfying:

• ∀i ∈ I, τi = some ki-cell and σi = some (ki − 1)-cell.

• ∀i ∈ I, σi is a regular face of τi.

• ∀i 6= j ∈ I, {σi, τi} ∩ {σj, τj} = ∅.

The vector field V is admissible or not.

(14)

10/56

C = {Cp, βp, dp}p∈Z = Cellular chain complex.

V = {(σi, τi)}i∈I = Vector field.

Definition: V -path = sequence (σi1, τi1, σi2, τi2, . . . , σin, τin) satisfying: 1. (σij, τij) ∈ V .

2. σij face of τij−1. 3. σij 6= σij−1.

Remark: σij not necessarily regular face of τij−1. Examples:

V -path of length 6

V -path of length 3

(15)

Definition: A vector field is admissible if for every source cell σ,

the length of any path starting from σ

is bounded by a fixed integer λ(σ).

Example of two different paths with the same starting cell.

Remark: The paths from a starting cell

are not necessarily organized as a tree.

(16)

12/56

Typical examples of non-admissible vector fields.

???!!!

R × I

???!!!

(17)

C = {Cp, βp, dp}p∈Z = Cellular chain complex.

V = {(σi, τi)}i∈I = Vector field.

Definition: A critical p-cell is an element of βp

which does not occur in V . Other cells divided in source cells and target cells.

Example:

Critical cells Source cells

Target cells

(18)

Plan.

X • Introduction.

X • Basics of Algebraic Discrete Vector Fields.

→ • Discrete Vector Field ⇒ Canonical Reduction.

• Guessing the reduction formulas.

• Vector Fields and Morphisms.

• Seeing complicated products.

• The Eilenberg-Zilber vector field.

• The Eilenberg-Zilber vector field is natural.

• EZ vector field ⇒ EZ reduction.

(19)

Discrete Vector Field ⇒ Canonical Reduction.

Fundamental Theorem:

Given: C = (Cp, βp, dp)p∈Z = Cellular chain complex.

V = (σi, τi)i∈I = Admissible Discrete Vector Field.

A canonical process constructs: dc + f + g + h

defining a canonical reduction:

(Cp, βp, dp)p∈Z (Cpc, βpc,dcp)p∈Z

f h g

ρV =

Initial Complex ⇒ρV Critical complex

(20)

15/56

In (C, β, d) (Cc, βc,dc)

f g

ρ = (f,g,h) = h ,

the most important component is h.

To be understood as a contraction C ⇒⇒ Cc.

C

Cc

h

The homotopy h reduces the “cherry” C

onto the “stone” Cc.

⇒ h = the “flow” generated by the vector field.

(21)

Toy Example.

Critical cells Source cells Target cells C =

Fundamental Reduction Theorem ⇒

dc1

dc1

ρ : C ⇒⇒ Cc = = Z

dc1=0

←− Z = Circle

Rank(C) = (16,24, 8) vs Rank(Cc) = (1, 1,0)

(22)

Plan.

X • Introduction.

X • Basics of Algebraic Discrete Vector Fields.

X • Discrete Vector Field ⇒ Canonical Reduction.

→ • Guessing the reduction formulas.

• Vector Fields and Morphisms.

• Seeing complicated products.

• The Eilenberg-Zilber vector field.

• The Eilenberg-Zilber vector field is natural.

• EZ vector field ⇒ EZ reduction.

(23)

Guessing the reduction formulas.

Transcription for discrete vector fields:

Elementary example of :

•0

•1

•2

f g

h •3

•3

•3

f(0) = f(1) = f(2) = f(3) = 3

f(01) = f(12) = f(23) = 0 g(3) = 3

h(0) = −01 12 23 h(1) = −12 23

h(2) = −23 h(3) = 0

id = f g

id = gf +dh + hd f h = 0

hg = 0 hh = 0

(24)

18/56

Just a little more complicated:

1

2

3

4

5

6

1

2

3

4

5

6 f

g = inc.

h

f(25) = 24 + 45 = −dh(25) + 25

h(25) = −245 = −τ(25) (25 = negative face of 245) f(23) = 24 + 45 + 56 36

h(23) = −245 + 235 356 = τ(23) + h(25) h(35) f(13) = 12 + 24 + 45 + 56 36

h(13) = −123 245 + 235 356 = −τ(13) + h(23)

General formula for h(source cells):

h(σ) = v(σ) h(dstv(σ) σ)

to be explained.

(25)

(C, β, d) + V = {(σi, τi)} = vector field defines a splitting:

Cn−1c

· · ·

Cn−1s

· · ·

Cn−1t

· · ·

Cnc · · · Cns · · · Cnt · · ·

dst

d

Cn−1c

· · ·

Cn−1s

· · ·

Cn−1t

· · ·

Cnc · · · Cns · · · Cnt · · ·

v

V defines a codifferential: v(σ) = ε(σ, τ if (σ, τ) V

d =

dtt dts dtc dst dss dsc dct dcs dcc

v =

0 v 0 0 0 0 0 0 0

h(σ) = v(σ) h(dstv(σ) σ) = [v h(dv 1)](σ)

(26)

20/56

Deciding also h(σ) = 0 if σ = target or critical cell

+ using some elementary facts, gives the general formula:

h(σ) = v(σ) − h(dv(σ) − σ)

valid even for σ target or critical cell.

In particular: v − hdv = 0 Then:

f = prc(1 − dh) dc = dcc − dcthdsc g = (1 − hd)

defines the searched reduction:

(C, β, d) (Cc, βc,dc)

f g

ρ = (f,g,h) = h

,

(27)

Understanding: h ⇒ f and g and dc:

h = v − h(dv − 1) : Cs → C∗+1t

Cnc Cns Cnt

Cn+1c Cn+1s Cn+1t

h

dct

f = prc(1 - dh)

Cn−1c Cn−1s Cn−1t

Cnc Cns Cnt

dsc

h

g = (1 hd)

Cn−1c Cn−1s Cn−1t

Cnc Cns Cnt

dsc h

dct

dcc

dc = dcc dcthdsc

0

1

2

0

1

2 f(01) = 01 f(02) = 01 + 12 f(012) =

0

1

2 3

0

1

2 3

f(013) = 013 f(123) =

g(013) = 013 + 123

dc(013) = 01 + 12 + 2303

(28)

Plan.

X • Introduction.

X • Basics of Algebraic Discrete Vector Fields.

X • Discrete Vector Field ⇒ Canonical Reduction.

X • Guessing the reduction formulas.

→ • Vector Fields and Morphisms.

• Seeing complicated products.

• The Eilenberg-Zilber vector field.

• The Eilenberg-Zilber vector field is natural.

• EZ vector field ⇒ EZ reduction.

(29)

Vector Fields and Morphisms.

Problem: Let C and C0 be two cellular chain complexes respectively provided with vector fields V and V 0. Question: Right notion

of morphism φ : (C, V ) → (C0, V 0) ???

1. Not trivial.

2. Essential to master the Eilenberg-Zilber vector fields.

3. Quite amazing !!

(30)

23/56

Definition: A cellular morphism:

φ : (C, d, β) → (C0, d0, β0)

is a chain complex morphism φ : (C, d) → (C0, d0)

satisfying the extra condition:

For every p-cell σ ∈ βp,

φ(σ) is null or ∈ βp0.

(31)

(C, d, β, V ) and (C0, d0, β0, V 0)

= cellular chain complexes

with respective admissible discrete vector fields V and V 0. Definition: A vectorious morphism:

φ : (C, d, β, V ) → (C0, d0, β0, V 0)

is a cellular morphism φ := (C, d, β) → (C0, d0, β0) satisfying the extra conditions:

1. For every critical cell χ ∈ βpc, φ(χ) is null or ∈ βp0c. 2. For every target cell τ ∈ βtp, φ(τ) is null or ∈ β0tp. 3. No condition at all for the source cells !!

(32)

25/56

Theorem: φ : (C, d, β, V ) → (C0, d0, β0, V 0)

= vectorious morphism.

Then φ defines a morphism (φ, φc)

between the corresponding reductions:

Cc C0c

C C0 with:

d0cφc = φcdc f0φ = φcf g0φc = φg

h0φ = φh

φc φ

f g f0 g0

h h0

Note: φc := φ|Cc

(33)

Proof:

Definition:

λσ =









0 for target and critical cells, maximal length of a V -path

starting from the source cell σ.

Remember: Recursive formula:

h(σ) = v(σ) − h(dv(σ) − σ)

⇒ hdv(σ) = v(σ)

⇒ hdτ = τ for every target cell τ

(34)

27/56

1. h0φσ = φhσ ??

Obvious for σ target or critical cell.

Assumed known for λσ < k.

Let σ be a source cell with λσ = k.

φhσ = φvσ − φh(dvσ − σ) OK for (dvσ − σ) ⇒ = φvσ − h0φ(dvσ − σ)

φd = d0φ ⇒ = φvσ − h0d0φvσ + h0φσ φvσ = target cell ⇒ = h0φσ

QED

(35)

2. g0φc = φg ??

φc g0 g

φ

dc d0c

d d0

h h0

For a critical cell χ: gχ = χ − hdχ = (1 − hd)χ

⇒ φgχ = φ(1 − hd)χ φhd = h0d0φ ⇒ = (1 − h0d0)φχ

φχ = φcχ ⇒ = g0φcχ

QED

(36)

29/56

3. φcdc = d0cφc ??

φc g0 g

φ

dc d0c

d d0

h h0

g0φc = φg ⇒ g0φcdc = φgdc gdc = dg ⇒ = φdg φd = d0φ ⇒ = d0φg φg = g0φc ⇒ = d0g0φc d0g0 = g0d0c ⇒ = g0d0cφc g0 injective ⇒ φcdc = d0cφc

QED

(37)

φc f0 f

φ

g0

dc d0c

d d0

h h0

4. f0φ = φcf ??

g0 injective ⇒ [(f0φ = φcf) ⇔ (g0f0φ = g0φcf)]

g0f0φ = (1 − d0h0 − h0d0)φ (d0φ = φd) + (h0φ = φh) ⇒ = φ(1 − dh − hd)

= φgf

= g0φcf

QED

(38)

Plan.

X • Introduction.

X • Basics of Algebraic Discrete Vector Fields.

X • Discrete Vector Field ⇒ Canonical Reduction.

X • Guessing the reduction formulas.

X • Vector Fields and Morphisms.

→ • Seeing complicated products.

• The Eilenberg-Zilber vector field.

• The Eilenberg-Zilber vector field is natural.

• EZ vector field ⇒ EZ reduction.

(39)

Seeing complicated products.

Triangulating prisms ∆p × ∆q:

(0,0) (0,1)

(1,0) (1,1)

1 × ∆1

(0,0) (0,1)

(1,0) (1,1)

(2,0) (2,1)

2 × ∆1

Two 2 in 1 × 1: (0,0) < (0,1) < (1,1) (0,0) < (1,0) < (1,1)

Three 3 in 2 ×1: (0,0) < (0,1) < (1,1) < (2,1) (0,0) < (1,0) < (1,1) < (2,1) (0,0) < (1,0) < (2,0) < (2,1)

(40)

32/56

Rewriting the triangulation of ∆2 × ∆1.

(0,0) (0,1)

(1,0) (1,1)

(2,0) (2,1)

(0,0)<(0,1)<(1,1)<(2,1)

0 1 2

0 1

(0,0) (0,1)

(1,0) (1,1)

(2,0) (2,1)

(0,0)<(1,0)<(1,1)<(2,1)

0 1 2

0 1

(0,0) (0,1)

(1,0) (1,1)

(2,0) (2,1)

(0,0)<(1,0)<(2,0)<(2,1)

0 1 2

0 1

(41)

Planar representations of simplices of ∆p × ∆q: Example of 5-simplex :

0 1 2 3 4 5 0

1 2 3

= σ ∈ (∆5 × ∆3)5

⇒ 6 faces:

0 1 2 3 4 5 0

1 2 3

0σ

0 1 2 3 4 5 0

1 2 3

1σ

0 1 2 3 4 5 0

1 2 3

2σ

0 1 2 3 4 5 0

1 2 3

3σ

0 1 2 3 4 5 0

1 2 3

4σ

0 1 2 3 4 5 0

1 2 3

5σ

(42)

Plan.

X • Introduction.

X • Basics of Algebraic Discrete Vector Fields.

X • Discrete Vector Field ⇒ Canonical Reduction.

X • Guessing the reduction formulas.

X • Vector Fields and Morphisms.

X • Seeing complicated products.

→ • The Eilenberg-Zilber vector field.

• The Eilenberg-Zilber vector field is natural.

• EZ vector field ⇒ EZ reduction.

(43)

The Eilenberg-Zilber vector field.

Eilenberg-Zilber problem for ∆1 × ∆1: Cubical version of ∆1 × ∆1:

(0,0) (0,1)

(1,0) (1,1)

C0 ←− C1 ←− C2

Z4 ←− Z4 ←− Z C1 ⊗ C1

C01 C01 ←− (C01 C11) (C11 C01) ←− C11 C11

(44)

35/56

Simplicial version of ∆1 × ∆1:

(0,0) (0,1)

(1,0) (1,1)

C00 ←− C10 ←− C20

Z4 ←− Z5 ←− Z2 To be compared with:

C0 ←− C1 ←− C2

Z4 ←− Z4 ←− Z1

Difference = a vector field with a unique “vector”

(45)

Eilenberg-Zilber reduction as induced by a vector field:

(0,0) (0,1)

(1,0) (1,1)

⇒ ⇒

(0,0) (0,1)

(1,0) (1,1)

“=”

(0,0) (0,1)

(1,0) (1,1)

Translation in planar diagrams: V = {(σ, τ)}

σ = source cell = edge[(0,0),(1,1)] =

τ = target cell = triangle[(0,0),(0,1),(1,1)] =

1τ =σ

(46)

37/56

Generalizing the idea ⇒

Canonical discrete vector field for ∆5 × ∆3.

0 1 2 3 4 5 0

1 2 3

Source =2(

0 1 2 3 4 5 0

1 2 3

Target)

0 1 2 3 4 5 0

1 2 3

Source =1(

0 1 2 3 4 5 0

1 2 3

Target)

Recipe: First “event” = Diagonal step =

Source cell.

= (-90)-bend =

Target cell.

(47)

Critical cells ??

Critical cell = cell without any “event”

= without any diagonal or −90-bend.

Examples.

0 1 2 3 4 5 0

1 2 3

02 01

0 1 2 3 4 5 0

1 2 3

• •

22,3,5 01

0 1 2 3 4 5 0

1 2 3

02 21,2,3

0 1 2 3 4 5 0

1 2 3

• • •

22,3,4 21,2,3

0 1 2 3 4 5 0

1 2 3

• •

21,4,520,2,3

0 1 2 3 4 5 0

1 2 3

• • • • • •

50,1,2,3,4,5 30,1,2,3

(48)

39/56

Conclusion:

Cc = C(∆5) ⊗ C(∆3)

Fundamental theorem of vector fields ⇒

Canonical Homological Reductions:

ρ : C(∆5 × ∆3) ⇒⇒ C(∆5) ⊗ C(∆3) ρ : C(∆p × ∆q) ⇒⇒ C(∆p) ⊗ C(∆q)

p = q = 10 ⇒ 16,583,583,743 vs 4,190,209

(49)

X • Introduction.

X • Basics of Algebraic Discrete Vector Fields.

X • Discrete Vector Field ⇒ Canonical Reduction.

X • Guessing the reduction formulas.

X • Vector Fields and Morphisms.

X • Seeing complicated products.

X • The Eilenberg-Zilber vector field.

→ • The Eilenberg-Zilber vector field is natural.

• EZ vector field ⇒ EZ reduction.

(50)

40/56

The Eilenberg-Zilber vector field is natural.

Naturality of the Eilenberg-Zilber reduction

with respect to product morphisms.

Standard methods ⇒ (∆p → ∆p0) × (∆q → ∆q0) is enough.

Given: φ : ∆p → ∆p0 ψ : ∆q → ∆q0

simplicial.

Prove:

Cp ⊗ Cq C(∆p × ∆q)

Cp0 ⊗ Cq0 C(∆p0 × ∆q0)

φ×ψ

φψ

f g f0 g0

h h0

com ?

is commutative ??

(51)

Proof:

Representation of a simplex of ∆p × ∆q via an s-path.

α β

= subsimplex of α × β ⊂ (∆p × ∆q)4

spanned by the vertices (0,0) – (0,1)– (2,2) – (3,3) – (4,3).

The game first event “diagonal

or “right-angle bend

• •

determines the nature source, target or critical.

(52)

42/56

Examples:

α β

source = σ

α β

target = τ

α β

critical = χ

Here:

2(τ) = σ

⇒ v(σ) = τ

(53)

Two maps

φ : ∆p → ∆p0 ψ : ∆q → ∆q0

= simplicial morphisms.

Claim:

τ target cell in ∆p × ∆q

(φ × ψ)(τ) target or degenerate cell in ∆p0 × ∆q0 χ critical cell in ∆p × ∆q

(φ × ψ)(χ) critical or degenerate cell in ∆p0 × ∆q0

(54)

44/56

Typical accidents with source cells.

α = id : ∆2 → ∆2 and ψ : ∆2 → ∆1as below:

0

1 2

0 1

ψ =

1)

ϕ×ψ

Then (φ × ψ)(source) = source

but for reasons which do not match!

Compare corresponding target cells.

ϕ×ψ

ϕ×ψ

V

Références

Documents relatifs

Malheureusement, les déclarations du Président de la République jeudi dernier concernant une éventuelle transformation du CNRS en agence de moyens, suivies de votre

La actitud general siguió siendo muy positiva hacia el programa, aunque ahora debían esforzarse mucho más para dar una respuesta que inexcusablemente debía ser por

Pour terminer et en guise de conclusion, nous pouvons affirmer que les trois romans qui délimitent cette première étape romanesque lazarovienne s’inscrivent dans la tradi-

project is the development of a novel 3D hyperspectral nanoimaging methodology for the characterization of technical catalysts by combining X-ray computed tomography and

Ce stage pourrait se poursuivre par une thèse au CEA Leti et à l’Institut Néel visant à exploiter la méthodologie développée pour l’optimisation de la

Most of the work will consist in doing experiments at cryogenic temperatures (&lt;1K) to evaluate and benchmark the different strategies for reading and controlling spin qubits.

Objectives and means available: The aim of this project is to develop the post fabrication process and characterization of silicon spin qubits using structures fabricated at

Dans les deux dernières parties, on utilisera les parties précédentes pour montrer qu’on peut mettre une structure d’A ∞ -algèbre sur l’algèbre Ext et on introduira la