• Aucun résultat trouvé

Automatic detection of microemboli by means of a synchronous linear prediction technique

N/A
N/A
Protected

Academic year: 2021

Partager "Automatic detection of microemboli by means of a synchronous linear prediction technique"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01075514

https://hal.archives-ouvertes.fr/hal-01075514

Submitted on 17 Oct 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative CommonsAttribution - ShareAlike| 4.0 International License

Automatic detection of microemboli by means of a synchronous linear prediction technique

Sébastien Ménigot, Latifa Dreibine, Nawal Meziati, Jean-Marc Girault

To cite this version:

Sébastien Ménigot, Latifa Dreibine, Nawal Meziati, Jean-Marc Girault. Automatic detection of mi- croemboli by means of a synchronous linear prediction technique. IEEE. IEEE International Ul- trasonics Symposium (IUS), Sep 2009, Rome, Italy. IEEE, pp.2371 - 2374, 2009, �10.1109/ULT- SYM.2009.5441701�. �hal-01075514�

(2)

Automatic Detection of microemboli by means of a synchronous linear prediction technique

Sébastien Ménigot, Latifa Dreibine, Nawal Meziati and Jean-Marc Girault

Université François Rabelais de Tours, Tours, France INSERM, U930, Tours, France

CNRS, ERL 3106, Tours, France September 20-23, 2009

1. Introduction

Detection of microemboli is of great clinical importance to prevent cerebro-vascular events and to identify the causes of such events. As standard detection techniques implemented in the most commonly used systems cannot detect all of

microemboli events whose energy is lower than the systolic energy, new techniques are proposed.

Joint used of synchronous and linear prediction techniques could detect very small microemboli. If we periodically take

and compare the values of the energy of the prediction error (or autoregressive parameters) at different time points in the cardiac cycle, we can therefore detect the presence of

non-periodic events such as microemboli.

In our study, we tested and compared our new technique to the standard technique (Fourier) using simulated and in vivo

signals from patients with stenosis of high degrees of severity.

2. Materials

TansCranial Doppler system (TCD)

Velocity of blood flow through the brain’s arteries

Pulsed Doppler probe

Examination in the temporal region

used TCD : Waki

TM

(Atys Medical, Soucieu en Jarrest, France)

Doppler signals

The Doppler signals are cyclo-stationary

Synthetized Embolus Doppler signal proposed by Wedling

In vivo Doppler signals from patients stenosis of degrees IV of severity

3. Methods

Gold standard test

Manual embolus detection by audible detection and sonogram visualization standard technique

1. Computation of energy by Short Time Fourier Transform

2. Constant threshold 𝜆 set between 3 to 9 dB above the maximal energy → reduce the false alarm probability

3. Embolus detection when energy upper than the threshold 𝜆

Synchronous linear prediction technique (SLP)

Doppler signal

𝜏 = 1 Autocorrelation

function error 𝜀

Heart Rate

AR parameter a1

AR parameter a2 White noise

AR Filter

Optimization

1. Computation of energy by Short Time Fourier Transform 2. Model of signal with 2nd-order AR model

x ( n ) = − a

1

( n ) x ( n − 1 ) − a

2

( n ) x ( n − 2 ) + 𝜀 ( n ) 3. Error Autocorrelation Γ

𝜀𝜀

( n ) =

+

m=−∞

𝜀 ( m ) 𝜀

( mn )

4. Synchronization with the cardiac cycle

5. Detection by a time-varying threshold 𝜆( t ) = 𝜇( t ) + 𝛽𝜎 ( t ) with 𝜇 ( t ) the average and 𝜎 ( t ) the standard deviation

4. Results and Discussion In simulation

Gold standard SLP

standard a

1

error

embolus detection 100 % 100 % 100 % 100 % false alarm rate 0 % 32.37 % 7.49 % 5.80 %

In vivo

Gold standard SLP standard

embolus detection 100 % 67 % 100 % false alarm detection 0 % 0 % 0 %

Discussion

Best detection with SLP : embolus can be detected even if it was inaudible up to now

Synchronous error autocorrelation does not improve the detection: the error does not vary with the cardiac cycle

5. Conclusion

Large microemboli are all detected

Small microemboli are only detected with our new technique

incorporate “on line” technique E-Mail: sebastien.menigot@etu.univ-tours.fr

jean-marc.girault@univ-tours.fr

Références

Documents relatifs

Evaluation of the cardiac statistical threshold by extracting the Doppler energy signal of each cardiac rhythm from previous time indices, and by resampling each Doppler energy

This contribution presents an intra prediction technique using template matching enhanced by a weighting factor computed by a one step matching pursuit approach.. This method can be

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Supporting Cyber Attack Detection via Non-Linear Analytic Prediction of IP Addresses: A Big Data Analytics Technique.. 26th International DMS Conference on Visualization and

In this thesis, several computational models for continuous movie content analysis have been proposed, all learned and evaluated using a dataset composed of 30 movies annotated

Zaki Sabit Fawzi Philippe, Stéphane Robert, Bernard Bayard, “Automatic inspection of a residual resist layer by means of self-organizing map, ” Opt... Automatic inspection of a

La figure 2a représente la chambre de combustion comme une sorte de réacteur chimique avec une entrée (flèche verte représentant l'injection) et une sortie

The extended abstract describes an onset detection algo- rithm that is based on a classification of spectral peaks into transient and non-transient peaks and a statistical model of