• Aucun résultat trouvé

THE DIFFUSIVITY OF NONLINEAR WAVE PROPAGATION IN PIPES

N/A
N/A
Protected

Academic year: 2021

Partager "THE DIFFUSIVITY OF NONLINEAR WAVE PROPAGATION IN PIPES"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00219516

https://hal.archives-ouvertes.fr/jpa-00219516

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE DIFFUSIVITY OF NONLINEAR WAVE PROPAGATION IN PIPES

Cornelius Shih

To cite this version:

Cornelius Shih. THE DIFFUSIVITY OF NONLINEAR WAVE PROPAGATION IN PIPES. Journal

de Physique Colloques, 1979, 40 (C8), pp.C8-53-C8-55. �10.1051/jphyscol:1979811�. �jpa-00219516�

(2)

JOURNAL DE PHYSIQUE Colloque C8, supplement au n°ll, tome 40 novembve 1979, page c 8 - 53

THE DIFFUSIVITY OF NONLINEAR WAVE PROPAGATION IN PIPES.

Cornelius C. SHIH

Meehanieal Engineering Department The University of Alabama in Huntsville Huntsville, Alabama 25807 Résumé. - Les distributions de vitesse dans le temps et dans l'espace le long de tuyaux de 7.62 cm et 2.54 cm de diamètre et d'une longueur de 64 m produites par des ondes nonlinéaires de pression d'intensités différentes ont été mesurées et comparées avec les résultats théoriques unidimension- nels obtenus par la méthode des caractéristiques avec ou sans le terme de diffusion dans le but de déterminer les caractéristiques d'atténuation de l'onde de propagation. Les données ont été ana- lysées afin d ' é t a b l i r la relation entre le rapport de flux d'énergie et la distance dans le tuyau exprimée en fonction du coefficient d'atténuation a et de la d i f f u s i b i l i t é . On a montré que ces parètres caractéristiques sont fonction de la géométrie du tuyau : diamètre, longueur, et rugosité r e l a t i v e .

Abstract. - Temporal and spacial velocity distributions along the pipes of 7.62 cm and 2.54 cm in diameter and 64 m in length produced by non-linear pressure waves of various intensities were mea- sured an compared with onedimensional theoretical results obtained by the method of characteristics with and without the diffusion term for the purpose of determining the attenuation characters!"tics of the wave propagation. Data were analyzed for the relationship between the energy f l u x ration and pipe distance i n terms of attenuation coefficient a and d i f f u s i v i t y 6. These characteristic para- meters are determined to be the function of pipe geometries such as diameter, length and relative roughness.

1. INTRODUCTION. - Experimental studies / l / , / 2 / , / 3 / of attenuation characteristics of non-linear pressure waves of progressive type propagating in pipes of 7.62 cm and 2.54 cm in diameters and of various lengths up to 64 m, were measured in tem- poral and spacial velocity profiles and compared with theoretical results obtained by the method of characteristics with and without the isentropic assumption.

Non-linear attenuation of the pressure waves were presented in terms of attenuation coef-

f i c i e n t a and d i f f u s i v i t y 6, based on the expe- rimental results. The energy flux was determined from the velocity profiles measured at various sec- tions along the pipes, and the decay of the total energy flux was related to the space coordinate and pipe size.

Experimental Data Presentation. - Experimental data of velocity profiles were measured at the center of each of f i v e sections located 3.60 ; 16.62 ; 29.45 ; 45.44 ; 55.40 m from the pipe i n l e t , respectively, in the pipes of 7.62 and 2.54 cm in diameter. Two pressure waves of pro- gressive type applied to each pipe for the time- dependent measurement of velocity profiles with hot-wire anemometers were presented for comparison in this paper.

Figures 1 to 4 shows time-dependent velocity profiles measured at the f i v e pipe sections in the 7.62 cm ( 3 - i n . ) and 2.54 cm ( 1 - i n . ) pipes for two pressure waves produced with nominal burst pres- sures of 28.10 and 56.20 g/mm . Also presented are 2

Article published online by EDP Sciences and available at

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1979811

(3)

JOURNAL DE PHYSIQUE

LEGEND

----

ISENTROPIC f

.

0 . 0 2

... EXPERIMENTAL

LEGEND

---

ISENTROPIC

-

f

.

0 . 0 2

Section ... EXPERIMENTAL

Section

TlhlI. MILLISFCOYDF. RLLATIVC TO IhITIAL PISTON POSITION

TI^, MILLIFF.CONDS, RELATIVE TO INITIAL PISTO?( POSITION P = 5 6 . 2 0 g / m m f , 2 . 5 4 cm p l p e .

Figures 1

-

4 : Comparison o f Numerical C a l c u l a t i o n s With Experimental Data f o r B u r s t Pressure.

p i s t o n v e l o c i t y p r o f i l e a t t h e p i p e i n l e t , theore- t i c a l r e s u l t s o f wave propagation analyzed i n terms o f v e l o c i t y p r o f i l e s f o r i s e n t r o p i c process and f r i c t i o n a l processes w i t h f o u r assumed values o f f r i c t i o n a l c o e f f i c i e n t i n each o f t h e f i g u r e s .

S p e c i f i c comparison made between t h e two p i - pes i s t h e r e l a t i o n s h i p among a t t e n u a t i o n c o e f f i - c i e n t s a, p i p e d i s t a n c e

x

and t h e energy d i f f u - s i o n expressed i n terms o f energy f l u x r a t i o n , E/Eo as shown i n F i g u r e 5. E denotes t h e energy f l u x on

as a f u n c t i o n o f X. Values o f E/Eo were c a l cula- t e d from v e l o c i t y p r o f i l e data as f u n c t i o n s o f t i m e i n Figures 1 t o 4 using Equation (1). Slopes o f t h e l i n e s averaged through p l o t t e d p o i n t s i n F i g u r e 5 y i e l d v a r i e d a t t e n u a t i o n c o e f f i c i e n t s , a f o r t h e two pipes. The average values o f a f o r 7.62 and 2.54 cm pipes are r e s p e c t i v e l y 0.0102 m-' and 0.0173 m-I f o r t h e f i r s t 43 m o f t h e pipes.

However, a appears t o be t h e f u n c t i o n o f X, s i - g n i f y i n g t h a t t h e a t t e n u a t i o n i s non-1 i n e a r . a time average contained i n t h e pressure wave i n Comparison and Discussion o f Data.

-

Since

propagation process and Eo i s t h e energy f l u x on t h e energy f l u x r a t i o i s suggested /4/ t o be a t i m e average contained i n ' t h e progressive wave

a t t h e o r i g i n o f propagation.

(2)

and

w26

a =

3

a (3)

where w i s t h e angular o r r a d i a n frequency, 6 t h e d i f f u s i u i t y . Values o f 6 c a l c u l a t e d from Equation ( 3 ) w i t h w = 78.5 rad/sec and a = 350.52 m/

sec are noted t o be 71.29 m /sec f o r 7.52 cm p i p e 2

o and 121.11 m /sec f o r 2.54 cm pipe. 2

x (m)

F i g u r e 5 reveals t h a t t h e t h e o r y may be v a l i d F i g u r e 5 : Energy F l u x R a t i o Vs. Pipe Length. i n a s i g n i f i c a n t p o r t i o n o f t h e p i p e except t h e

s e c t i o n n e x t t o t h e p i p e e x i t . The experimental The energy ratio may be approximated by evidence seems t o demonstrate t h a t t h e a t t e n u a t i o n

t e n d t o increase along t h e pipe. The t h e o r e t i c a l

-

(1) a n a l y s i s was developed s i m p l y f o r t h e plane pro- g r e s s i v e wave propagating i n a one-dimensional plane w i t h o u t c o n s i d e r a t i o n o f the f r i c t i o n a l e f - f e c t along t h e p i p e w a l l . Therefore, any p r e d i c t i o n

(4)

C.C. SHIH

o f t h e e f f e c t s o f p i p e s i z e and w a l l f r i c t i o n was n o t p o s s i b l e .

However, the experimental a n a l y s i s e v i d e n t l y shows, through graphical presentation, t h a t t h e ef- f e c t s o f p i p e geometry are pronounced on t h e a t t e - n u a t i o n c h a r a c t e r i s t i c s f o r t h e type o f wave pro- pagation i n t h e pipes studied.

The values of a and 6 are considered r a - t h e r h i g h due t o h i g h h u m i d i t y o f about 80 % r e l a - t i v e i n t h e atmosphere a t t h e time o f experimenta- t i o n . But t h i s f a c t o r o f n a t u r e cannot be e a s i l y c o n t r o l l e d , so i s t h e temperature o f t h e atmos- phere. However, i t might be decuced t h a t t h e a t t e - n u a t i o n c o e f f i c i e n t as w e l l as d i f f u s i v i t y may n o t be a constant value i n t h e process o f n o n - l i n e a r wave propagation, and t h e exponential decay o f energy f l u x i n t h e wave seems t o e x h i b i t some non- 1 in e a r i t y .

REFERENCES

/1/ Shih C., "Non-linear Pressure Wave Propagation i n Pipes", Proc., Interagency Symposium o f Uni- v e r s i t y Research i n T r a n s p o r t a t i o n Noise, Stanford, C a l i f .

,

March 1973, pp 583-598.

/2/ Shih C., " A t t e n u a t i o n C h a r a c t e r i s t i c s o f Non- l i n e a r Pressure Wave Propagation i n Pipes", Proceedings, Fourth I n t e r n a t i o n a l Symposi um on Non-1 i n e a r Acousti cs-IPC Science and Techno1 ogy Press Ltd.

,

August 1973.

/3/ S h i t C.

,

" I n v e s t i g a t i o n s o f S c a l i n g Characteris- t i c s f o r D e f i n i n g Design Environments due t o T r a n s i e n t Ground Winds and N e a r - f i e 1 d Non- l i n e a r Acoustic F i e l d s " , Report NAS8-28249, UAH, UAH, Sept. 1973.

/4/ L i n g h t h i 11 M. J.

,

"Surveys i n Mechanics", E d i t e d by G. K. B a t c h e l o r and R. M. Davis, Cambridge U n i v e r s i t y Press, pp 250-351, 1956.

Références

Documents relatifs

The annulus of flexible pipelines is a complex corrosive environment, which depends on acid gases and water diffusion though polymer sheaths, kinetic equilibrium between

In such conditions, the electrolyte pH no longer corresponds to the thermodynamic equilibrium with the acid gases partial pressures, but to a kinetic

EFFECT OF DEFECT ANGULAR-POSITION ON THE WAVE REFLECTION AND TRANSMISSION COEFFICIENTS: NUMERICAL INVESTIGATION BY THE WAVE FINITE ELEMENT

Despite that only certain motions are sensitive to drag treatment, the proper drag treatment is still a vital component to accurately predict the mine's decent

Dans cette section, nous dérivons un modèle de poutre à courbure naturelle uti- lisé pour décrire une poutre soumise à une forte pré-contrainte axiale, hétérogène dans sa

5.30 Variations of the wall temperature versus the heat pipe length using me- thanol as working fluid by referring to experimental and numerical results for gravity-assisted

Distribution of pedestrian position in longitudinal (Top) and lateral (Bottom) .... Pedestrian position relatively to the vehicle at different TTC ... Image illustrating the effect

Cette exploitation se manifeste par l’emploi des différentes composantes du signe plastiques tels que l’utilisation d’un cadre , cadrage (vertical , horizontal), l’angle de