• Aucun résultat trouvé

HIGH ENERGY LASER OPTICS

N/A
N/A
Protected

Academic year: 2021

Partager "HIGH ENERGY LASER OPTICS"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: jpa-00220605

https://hal.archives-ouvertes.fr/jpa-00220605

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HIGH ENERGY LASER OPTICS

W. Christiansen

To cite this version:

W. Christiansen. HIGH ENERGY LASER OPTICS. Journal de Physique Colloques, 1980, 41 (C9),

pp.C9-371-C9-383. �10.1051/jphyscol:1980951�. �jpa-00220605�

(2)

JOURNAL DE PHYSIQUE CoZZoque C9, suppZ6ment au nO1l, tome 42, novernbre 1980, page C9-371

HIGH ENERGY LASER OPTICS

W.H. Christiansen

Department of Aeronautics and Astronautics, University o f Washinaton, SeattZe, Washington 98195 U. S.A.

Risumi -- Cet a r t i c l e propose une br&e r i c a p i t u l a t i o n des principes thgoriques e t des propri6t6s a e s k o n a t e u r s optiques.

A

p a r t i r de l a th6orie des r6sonateurs lasters s t a b l e s , on s 1 i n t 6 r e s s e aux

r k o n a t e u r s i n s t a b l e s en i n s i s t a n t sur l a compr6hension des propri6tes conduisant au d6veloppement de l a s e r s de grande puissance, proches de l a l i m i t e de d i f f r a c t i o n . On analyse aussi

1

'importance grandi ssante des optiques d6formabl e s dans 1 a transmission l a s e r en vue d1am61 i o r e r l e s performances en champ l o i n t a i n d'un l a s e r u t i l i s 6 dans des conditions dgfavorables. On prgsente enfin l e s am61 iorations dues 5 1 ' u t i l i s a t i o n d'optiques actives dans l e cas de l a turbulence e t de l a d6focal i s a t i on thermi que.

Abstract. -- This paper reviews b r i e f l y t h e theoretical understanding and properties of optical reson- a t o r s . Starting from the theory of stable l a s e r resonators, unstable resonators a r e discussed with emphasis on understanding t h e i r properties t h a t ensure near d i f f r a c t i o n limited performance of higb power l a s e r s . The growing f i e l d of adaptive optics f o r l a s e r transmission i s a l s o examined as an added means of improving f a r f i e l d performance of a l a s e r under adverse circumstances. The improve- ments obtained with active optics f o r turbulence and thermal blooming a r e given.

INTRODUCTION. -- The rapid development of l a s e r s has introduced the need f o r specialized optics to exploit the c a p a b i l i t i e s of t h i s new source of co- herent radiation. Of p a r t i c u l a r i n t e r e s t here a r e the o p t i c s related t o high power l a s e r s which a r e necessary f o r high efficiency and good f a r f i e l d performance. Oftentimes t h e requirement of minimum beam divergence c o n f l i c t s with t h e 1 imitations i n - troduced by t h e nature of high-power l a s e r c a v i t i e s and propagation phenomena. The structure of os- c i l l a t o r c a v i t i e s t o overcome these l i m i t a t i o n s , t h e search f o r optical materials, and design of mirrors and windows a b l e t o withstand t h e high- power d e n s i t i e s of l a s e r s represents formidable problems. In f a c t , aerodynamic windows were intro- duced as a method of withstanding very high l a s e r mwer i n wavelength regions f o r which there were no good optical materials available.

High power l a s e r s a r e s t i l l being developed a t a f a s t r a t e and i n recent years the' direction of these developments has tended t o introduce new op- t i c a l problems. For example, t h e high power chemi- cal l a s e r i s one type of l a s e r t h a t i s continually evolving and a s a r e s u l t has introduced unique geo- metrical problems of t h e cavity involving t h e flow

f i e l d . Then too, s a t u k t i o n power densities a r e increasing and wavelengths a r e shortening, which puts additional s t r a i n on e x i s t i n g technology; new technologies a r e developing. There is considerable i n t e r e s t i n f r e e electron l a s e r s a s e f f i c i e n t high

power l i g h t sources. Indications a r e t h a t e f f i c i - encies greater than 30% a r e possible provided cer- t a i n r e s t r i c t i v e properties can be met with the electron beam and radiation f i e l d . Among t h e re- quirements a r e the need f o r extremely high radia-

12 2

t i o n power d e n s i t i e s ( 1 0 ~ ~ - 1 0 w/cm

)

f o r electron trapping and no e l e c t r i c f i e l d reversals on the electron beam a x i s . Unusual d i f f r a c t i o n e f f e c t s a r e a l s o present because of t h e small cross section of t h e gain medium. Such requirements and prhper- t i e s will undoubtedlyaffectfuture resonator design.

This paper'will t r y t o review some of the'impor- t a n t aspects of o p t i c s f o r high energy systems and introduce some current subject material t h a t will be of use t o t h e symposium attendee interested i n continuous high power l a s e r s . Problems pertaining t o very high pulsed power l a s e r s such a s those used i n l a s e r fusion will not be covered i n t h i s paper.

Since t h e f i e l d has grown enormously, a l l aspects of t h e o p t i c s of high energy l a s e r s cannot be cov- ered in a s i n g l e paper. This paper covers only two topic areas. F i r s t t o be covered i s t h e theory of

&stab1 e l a s e r resonators a s these c a v i t i e s permit t h e e f f i c i e n t u t i l i z a t i o n of large mode volumes while maintaining good f a r f i e l d performance. Even so, propagation e f f e c t s which become especially im- portant f o r high power l a s e r s can l i m i t severely beam irradiance a t a distance. Fortunately, adap- t i v e optics i s an approach which helps t o circum- vent t h i s problem.and.thi3.i~ the. second t o p i c t o

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980951

(3)

C9-372 JOURNAL DE PHYSIQUE

be covered. By t a k i n g advantage o f t h e coherence p r o p e r t i e s o f t h e l a s e r , a c t i v e o p t i c s has been used t o improve o u r a b i l i t y t o d e l i v e r a h i g h i r r a - diance beam under adverse circumstances.

RESONATORS.

--

The l a s e r c a v i t y i s n o t simply a mi- crowave c a v i t y . The microwave c a v i t y i s a closed metal s t r u c t u r e a t which o n l y c e r t a i n wavelengths r e - sonate. Generally speaking, t h e dimensions o f t h e c a v i t y correspond t o these wavelengths. O f course, t h i s s i z e o f c a v i t y i s n o t u s e f u l ( t h e exception i s waveguide types which a r e n o t discussed here) f o r high power i a s e r s having wavelengths on t h e o r d e r o f microns. The h i g h power l a s e r c a v i t y i s l a r g e com- pared w i t h wavelength and operates i n a s l i g h t l y d i f f e r e n t way *than o r d i n a r y microwave c a v i t i e s . The o r d i n a r y l a s e r c a v i t y does n o t determine t h e f r e - quepcy

p f

t h e l s s e r ' i o much ( t h e c a v i t y dimension does determine t h e macrowave frequency) as t h e g a i n media .does. Rather, i t serves t o discriminate. among th$many pgssibl-e. frequencies' w i t h i n t h e g a i n band- w i d t h o f th'e malecular system. ,In so doing i t w i l l

pyovide opeical feedbatk to'maintai'n t h e g i v e n o s c i - l l a t i o 6 . p e r m i . t k i n g h i g h l y .monqchromatic deams and, r h o p e f u l l y , c d n t r o l t h e o p t i c a l phase )cros; t h e beam f r o h t .so t h a t low beam divergence and h i g h focus i n - t e n s i t i e s a r e .possible.

S t a b l e C a j i t i e s ,

--

As t h e r e i s a large.body o f 1 it e r a t u r e a v a i l a l i l e on',stable reson8tor.s

i:

i t i s the

purpose:af t h i s sedtion. t o i n t r o d u c p those f e a t u r e s o f s t a b l e resonators which a r e h e l p f u l i n understan- -.

' d i n g t h e requirements

d f

high 'power l a s e r s o n l y . Re-,, sonators can be c l a s s i f i e d as s t a b l e o r ,unstable, dipending

o n

whether a r a y i s trapped between t h e m i r r o r & o r n o t .

~i~

o p t i c a n a l y s i s [I] shows t h a t t h e s t a b f l i t ; ' c o n d i t i o n " i s 0 < (1 ~ / R ~ ) ( I

-

L/R2) ,

<' l', where L ,is t h e d i s t a n c e betwe.en, t h e m i r r o r s and R1; R2 & f e r t o t h e r a d i u s o f c u r v e t u r e o f t h e m i r - r o r s 1 and 2. I f t h e value o f t h e product l i e s out- s i d e these numbers, t h e c a v i t y i s unstable. Because o f t h e repeated appearance o f these parameters and t h e i r importance, i t i s u s e f u l t o d e f i n e g1 = 1

- L/R,

and .g2 = 1

-

L/R2 so t h a t t h e c o n d i t i o n simply reads 0 < g1g2 < 1. Any resonator can be represented as a p o i n t on a s t a b i l i t y diagram such as shown i n Fig. 1.

Examples

b f

each t y p e o f c a v i t y a r e shown. The shaded r e g i o n corresponds t o s t a b l e c a v i t i e s . S t a b l e c a v i t i e s were used f i r s t and can be used f o r low o r high, g a i n media.

The beam q u a l i t y o f these c a v i t i e s may be meas- ured by t h e divergence o f t h e beam i n t h e f g r f i e l d .

Fig. 1 S t a b i l i t y Diagram

By a p p l i c a t i o n o f t h e d i f f r a c t i o n i i n t e g r a l , i t i s known t h a t f a r f i e 1 d patte,rns, o f l a s e r beams a r e merely F o u r i e r transforms

d f

t h i i r near f i e l d s [2].

Generally speaking, a .uniform f i e l d and pha:e out- p u t o f a l a s e r produces t h e smallest, divergence,and

'. ,

.

maximum i n t e n s i t y i n t h e c e n t r a l lobe. i n t $ e fa?

' f ie.1 d [3] : For a c i r c u l a r . a p e r t u r e t h e we1 1- knowh ,.

A i r y p a t t e r n w i t h t h e angular w i d t h o f 2.44 x/d i s a ' r e s u l t [2]. I f , however, t h e r e a r e ampl i tude,aid phase v a r i a t i o n s i n t h e near fiel'd, t h e n t h e d i v e r - gence i s l a r g e r and t h e c e n t r a l i n t e n s i t y i s redu- ced. Of, these, t h e phase d i s t r i b u t i o n i s t h e l a r - . ger e f f e c t and i t i s t h i s f a c t o r t H a t must be made as u n i f o r m as p o s s i b l e i n r e s o n a t o r , design. F:ig.- 2 shows s c h e m a t i c a l l y t h e e f f e c t s o f amplitude and phase v a r i a t i o n s across t h e beam.

The s o l u t i o n o f t h e wave equation w i l l g i v e f i e l d amplitude and phase t h a t i s n e c e s s a r i

td

~pre;

d i c t o p t i c a l beam q u a l i t y . , For i n f i n i t e . s i z e m i r - r o r s w i t h a u n i f o r m l y passive inedium, m a t c h i n g ' t h e s o l u t i o n s o f t h e wave equation f o r n e a r l y ' plane waves gives a n a l y t i c r e s u l t s t h a t p r e d i c t t h e t r a n - sverse modes and frequency o f t h e l a s e r [I]. These r e s u l t s a r e i n t h e form o f Hermite

dr

~ ' a ~ u e r r e polynomials and can be found i n most t e x t s ah l a - sers [4]. The c o r r e c t s o l u t i o n which 'may corres- pond t o a l i n e a r s u p e r p o ~ i t i o n o f many o f ,th.e ,poly- nomials i s determined by t h e boli$ary c o n d i t i o n s . The important t h i n g t o n o t i c e i s , t h a t t h e r e i s a .sequence o f s o l u t i o n s , each more compli,cated t h a n

i t s predecessor. The fundamental mode' is.. a simple

(4)

NEAR- FIELD FAR-FIELD

I

NEAR-FIELD NEAR-

FIELD

FAR - FIELD

INTENSITY PHASE INTENSITY

L

Fig. 2 E f f e c t o f Near F i e l d I n t e n s i t y and Phase D i s t r i b u t i o n on F a r - F i e l d P a t t e r n

guassian beam and t h i s mode i s r e a l l y what one aims f o r i n designing a s t a b l e l a s e r c a v i t y as i t pro- duces t h e b e s t qua1 i t y beam.

These a r e t h e e s s e n t i a l f e a t u r e s o f s t a b l e c a v i - t i e s , but, o f course, t o be u s e f u l some l i g h t must be e x t r a c t e d and one must consider t h e e f f e c t s o f f i n i t e m i r r o r size. M i r r o r s o f f i n i t e s i z e l e a d t o

cated [I]. E s s e n t i a l l y one c a l c u l a t e s the f i e l d by a n a l y z i n g t h e steady s t a t e f i e l d d i s t r i b u t i o n t h a t can be sustained w i t h i n an empty resonator. This amounts t o c a l c u l a t i n g t h e f i e l d d i s t r i b u t i o n a t t h e second m i r r o r (2) from an assumed d i s t r i b u t i o n a t t h e f i r s t m i r r o r (1). The r e s u l t i n g d i s t r i b u t i o n can be o b t a i n e d v i a a n i n t e g r a l using t h e s c a l a r f o r m u l a t i o n o f Huygens' p r i n c i p l e [2,5]. T h i s must be repeated, f o r t h e reverse case, i .e., from ( 2 ) t o (1) and u l t i m a t e l y a r r i v e a t t h e i n i t i a l d i s t r i b u - t i o n . A f i e l d d i s t r i b u t i o n t h a t obeys t h i s condi- t i o n can be w r i t t e n as t h e i n t e g r a l equation

where 9 i s t h e f i e l d d i s t r i b u t i o n ,

6

i s t h e propa- g a t i o n i n t e g r a l o p e r a t o r [2,31, and y i s t h e complex eigenvalue f o r t h e given mode. More e x p l i c i t l y ,

= (1-p)ei$, where $ = phase s h i f t and 6 = round t r i p power l o s s . Therefore 8 i s t h e o u t p u t coup- l i n g f r a c t i o n and g i s used t o determine t h e exact frequency o f t h e l a s e r . E a r l y s o l u t i o n s o f these o s c i l l a t o r s was g i v e n by Fox and L i where t h e y showed t h a t c e r t a i n t y p e resonators and low o r d e r modes have very low d i f f r a c t i v e losses [5]. Higher o r d e r modes have h i g h e r losses and t h i s can be 'used as a means o f sel.ecting low o r d e r modes. A u s e f u l parameter i n d e s c r i b i n g t h e d i f f r a c t i o n e f f e c t s o f t h i s problem i s t h e Fresnel number, N = a /hL,where 2 a r e f e r s to: t h e r a d i u s of t h e m i r r o r s . F i g u r e 3 ' shows how t h e losses vary w i t h N f o r t h e l o w e s t o r - der modes f o r a c a v i t y w i t h c i r c u l a r m i r r o r s having d i f f r a c t i o n losses and t h i s problem i s more compli-

- s

h -0

9 Y

Y

v m

m

m

m 0 A

S

... - -

0.1 1.0 10 100 0.1 1.0 , 10 I od

N = a2/ ~d - N = a / ~ d

Fig. 3 D i f f r a c t i o n Loss/Transit vs. Fresnel Number f o r S t a b l e Resonators w i t h C i r c u l a r M i r r o r s [I]

(5)

C9-374 JOURNAL DE PHYSIQUE

equal diameters and curvatures. J u s t as expected, the losses decrease with increases i n N.

Mode Volume.--

A

major problem i n the design of high power l a s e r s i s t o obtain a l a r g e mode volume while retaining good mode control. The point about mode volume cannot be over-emphasized in dealing w i t h high power l a s e r s . Not completely using a f u l l y energized cavity volume through poor mode f i l l i n g i s in r e a l i t y a large waste of energy and a loss in system efficiency. The lowest order and most desirable mode spot s i z e i s given by

where w i s t h e spot size.The multiplying f a c t o r

F

i s t y p i c a l l y of order unity f o r a wide range of gl and gz

[6].

Typically guassian s t a b l e resonator modes a r e slender and much-smaller than one would

l i k e , maybe only millimeters wide. The mode volume f o r t h i s case i s of order

v

% o(L.~W') = L ~ X

.

For large volumes of a c t i v e media t h i s leads t o very long c a v i t i e s . Table 1 taken from 131 shows t h a t l a s e r s with volume measured i n l i t e r s have ca- vity lengths t h a t a r e very long f o r large N a t

1 = 3p.

Similar r e s u l t s e x i s t f o r other wavelengths.

I f we t r y t o use /a l a r g e r mode volume without in- creasing t h e length, then higher order modes develop i n the presence bf a gain medium

[3].

Efforts t o arrange t h e cavity geometry so t h a t e f f e c t i v e l y

F

i s large usually a r e d i f f i c u l t a s t h e s e n s i t i v i t y t o a.l

i

gnmen t becomes extreme and goes 1 i ke

[6]

As a practical matter t h e requirements on mirror f i - gure, a1 ignment, and gain homogeneity a r e too large.

Table 1. Laser-Cavity Length Requirements for

Various

Optical Fresnel Numbers

(A

= 3 pm)

Resonator Fresnel number

Resonator. a21N, L in em

m o d e voIume,

liters

1 10 100

(a) STABLE RESONATOR, N F >> I

1 \

(b) STABLE RESONATOR, NF >> 1

- -

-.-. ...:.3v

STABLE RESONATOR, NF >> I

Fig. 4. Cross Coupling i n Various Resonator Geometries

C31

Unstable Resonators. --

A

solution t o t h e above problem i s the unstable resonator proposed by Sieg- man 173. In t h i s case both mode control and phase coherence e x i s t even with a l a r g e mpde volume.

Nearly a l l current high power l a s e r s use t h e unsta- ble resonator t o e x t r a c t power. This scheme i s practical f o r high gain l a s e r s only because of t h e large losses encountered. For high power l a s e r s with low gain t h e r e i s as y e t no good solution.

A

l a s e r can be made phase coherent over t h e beam f r o n t only i f the resonator i s designed so t h a t a l l p a r t s of t h e lasing region share an interaction through d i f f r a c t i o n . Then t h e optical phases of a l l the emitters a r e locked together through t h e cross- coupling furnished i n the cavity

[3]. A

low Fres- nel number s t a b l e cavity imp1 i e s s i g n i f i c a n t d i f f r a c - Ition e f f e c t s a r e present and a uniform phase can re-

s u l t . However, a high Fresnel number cavity only /has t h e central region strongly coupled. Other op- [tical paths with wide excursions across t h e cavity b r e not d i f f r a c t i v e l y coupled and t h i s leads to 'higher order modes.. The s i t u a t i o n i s i l l u s t r a t e d

i n Fig.

4

by the crosshatching. In an unstable

(6)

( a ) S Y M M E T R I C

( b ) A S Y M M E T R I C

( c l CONFOCAL

(COLLIMATED OUTPUT BEAM

Fig. 5 . Types o f Unstable Resonators

resonator a t l a r g e N, t h e l a c k o f d i f f r a c t i v e coup- l i n g i s compensated f o r by p r o v i d i n g a s o r t o f geo- m e t r i c a l crosscoupling. There i s a c e n t r a l r e g i o n i n t h e unstable o s c i l l a t o r w i t h i n which d i f f r a c t i o n i s strong and l a s e r o s c i l l a t i o n i s i n phase. The c a v i t y simply magnifies t h i s mode as t h e l i g h t bounces back and f o r t h and escapes. This i s shown as t h e crosshatching i n the t h i r d p i c t u r e i n F i g . 4 . I t can be viewed as an o s c i l l a t o r i n t h e c e n t r a l r e - gion and a multipass amp1 i f i e r as the beam enlarges.

As t h e m a g n i f i e d beam has t h e same phase p r o p e r t i e s o f the innermost beam, good beam c o n t r o l i s p o s s i b l e .

Types o f Unstable Resonators:- Figure 5 i l l u s - t r a t e s t h r e e types o f conmon unstable resonators.

I n t h e symmetric c a v i t y , l i g h t i s coupled from b o t h ends and so i s o f l i m i t e d usefulness. An asymmetric

c a v i t y i s used t o o b t a i n a s i n g l e beam and t h e m i r - r o r r a d i i can be chosen t o g i v e t h e d e s i r e d angular divergence o f t h e o u t p u t beam. A s p e c i a l case i s t h e confocal c o n f i g u r a t i o n where R1 +

R2

= 2L. I n t h i s case t h e beam o u t p u t i s p a r a l l e l i n t h e geome- t r i c approximation. Unstable resonators a r e c l a s s i - f i e d according t o t h e i r p o s i t i o n on t h e s t a b i l i t y diagram. The p o s i t i v e branch of t h e f i r s t type ( t h e f i r s t quadrant on t h e s t a b i l i t y diagram) i s used most commonly i n h i g h power l a s e r s s i n c e i t con- t a i n s no i n t r a c a v i t y f o c a l p o i n t s where n o n l i n e a r e f f e c t s may occur. This branch i s c h a r a c t e r i z e d by g1g2 > 1, g1 > 0. c31

A t f i r s t , i t would appear t h a t t h e presence o f t h e h o l e i n t h e o u t p u t beam would be an undesirable f e a t u r e . But except i n extreme cases i t was p o i n t e d o u t t h a t t h e f a r f i e l d d i s t r i b u t i o n depends mainly on t h e phase d i s t r i b u t i o n and t h e h o l e f i l l s i n t h e f a r f i e l d [8]. The main f e a t u r e i s t h a t t h e p a t t e r n has more energy i n t h e s i d e lobes than f o r t h e case w i t h o u t t h e hole. As l o n g as t h e h o l e accounts f o r l e s s than 50% o f t h e beam area t h e f a r f i e l d i s n e a r l y i d e a l .

As i n s t a b l e c a v i t y operation, t h e e s s e n t i a l as- pects o f an unstable o s c i l l a t o r o p e r a t i o n can be ob- t a i n e d using a geometric model [7,9]. The r e s u l t s o f t h i s a n a l y s i s shows t h a t t h e o u t p u t c o u p l i n g f o r c y l i n d r i c a l resonators i s approximately

6 = 1

- F

I

where M i s t h e c a v i t y round t r i p m a g n i f i c a t i o n and i s re1 ated t o t h e g parameters 191. The geometry o f t h e s i t u a t i o n i s i l l u s t r a t e d i n F i g . 6. N o t i c e t h e amount o f coupling i s independent o f the c a v i t y dia- meter and i t i s simple t o make t h e m i r r o r s as l a r g e as r e q u i r e d t o e x t r a c t energy from a given modevol- ume. This i s t r u e i r r e s p e c t i v e o f t h e type o f

F i g . 6. The M a g n i f i c a t i o n Factor

(7)

C9-376 JOURNAL DE PHYSIQUE

unstable c a v i t y . T y p i c a l l y , coupl i n g values o f 20%

t o 90% a r e usual. The r e s u l t s a r e a1 so t r u e f o r m i r r o r shapes ( o f s p h e r i c a l c u r v a t u r e ) o t h e r than c i r c u l a r . I t i s a l s o p o s s i b l e t o consider aspheric curvature m i r r o r s i n which M d i f f e r s depending on which a x i s o f t h e m i r r o r i s being described.

There i s a very u s e f u l equivalence p r i n c i p l e f o r unstable c a v i t i e s which a l l o w s one t o r e l a t e an un- symmetrical c a v i t y w i t h one l a r g e m i r r o r and one small m i r r o r (coupl i n g from one end) t o a symmetric unstable c a v i t y w i t h t h e same l e n g t h . The p r i n c i p l e i s given i n

[lo]. he

round t r i p m a g n i f i c a t i o n and losses o f an asymmetrical c a v i t y w i t h parameters

2 2

gl, g2 and Fresnel numbers N1 = al /hL, N2 = a2 / A L a r e t h e same as t h e one way losses and magnifica- t i o n o f a symmetric c a v i t y o f t h e same l e n g t h w i t h

I I

' 1

1

GEOMETRICAL 7

"%

Fig. 7. Power Loss vs. N and Neg [ll]

g values o f each m i r r o r given by g = 11

-

2g1g2

1

and

a m i r r o r Fresnel number N = a /xL = (N,/2g2( 2

.

This

d e f i n e s t h e m i r r o r curvatures and diameters o f t h e e q u i v a l e n t symmetric resonator. This simp1 i f i e s t h i n g s considerably because one can d e r i v e a l l t h e p r o p e r t i e s o f one-sided resonators from t h e one-way r e s u l t s o f t h e simple symmetric resonator. This a p p l i e s n o t o n l y t o t h e simple geometric model b u t a l s o i n wave a n a l y s i s o f s t a b l e and unstable c a v i - t i e s . A very i m p o r t a n t parameter o f t h e symmetric unstable resonator which by t h e equivalence p r i n c i - p l e a p p l i e s t o one-sided c a v i t i e s too i s t h e so- c a l l e d e q u i v a l e n t Fresnel number given by Neq. = N v ( o r Neq. = N, [%(g1g2- 1) ] ' j 2 ) .

D i f f r a c t i o n E f f e c t s .

--

There a r e d i f f r a c t i o n e f f e c t s t h a t l e a d t o t r a n s v e r s e modes. To o p t i m i z e t h e f a r f i e l d p a t t e r n o f such a c a v i t y , t h e wave na- t u r e of t h e c a v i t y must be analyzed so t h a t one can d i s c r i m i n a t e a g a i n s t h i g h e r o r d e r modes and o b t a i n s i n g l e mode operation. Except f o r s p e c i a l cases,no a n a l y t i c sol u t i o n s have been found f o r unstable r e - sonator modes. One must r e s o r t t o numerical solu- t i o n of t h e i n t e g r a l equations o f t h e electromagne- t i c f i e l d as was done f o r s t a b l e c a v i t i e s , even i f t h e c a v i t y i s empty. The i d e a f o l l o w s as b e f o r e b u t t h e geometry i s s l i g h t l y d i f f e r e n t . The equivalence p r i n c i p l e s i m p l i f i e s t h i n g s considerably since by symmetry we o n l y have t o propagate waves i n one d i - r e c t i o n as t h e reverse d i r e c t i o n i s t h e same. Thus t h e r e i s j u s t a s i n g l e i n t e g r a l i n s t e a d o f a double i n t e g r a l f o r t h e round t r i p . I f one uses rectangu- l a r coordinates, t h e f i e l d amp1 i t u d e i s separable i n t o x and y components [5] which a r e independent f o r an unloaded o s c i l l a t o r (no gain medium). A t y p i - c a l r e s u l t from t h i s a n a l y s i s i s shown i n Fig. 7 along w i t h t h e geometrical model r e s u l t s [3,11].

Whereas t h e geometrical model shows a l o s s t h a t i s independent o f m i r r o r s i z e , t h e numerical wave s o l u- t i o n s show complicated o s c i l l a t o r y behavior having as a l i m i t t h e geometrical r e s u l t f o r l a r g e N. I f these r e s u l t s a r e p l o t t e d a g a i n s t N t h e o s c i l l a -

eg

t i o n s peak a t i n t e g r a l values o f N Further c a l - es

:

c u l a t i o n s have shown t h a t t h e cusps I n t h e l o s s curves i n d i c a t e mode crossings [12,13]. Thus i n un- s t a b l e resonators d i f f e r e n t modes can have lower l o s s e s a t l a r g e N which i s i n c o n t r a s t t o s t a b l e

eg

resonator r e s u l t s . The l o w e s t losses always e x i s t a t h a l f i n t e g e r values o f N and mode crossings occur a t i n t e g e r values of eg N This has been

eg'

(8)

i s s u f f i c i e n t so t h a t l i g h t i s d i r e c t e d back along

1 .oo

t h e r a y path t o t h e c e n t e r o f t h e c a v i t y , we f i n d h = a/N So d i f f r a c t i o n from t h i s g e n e r a l l y small

0.80

r e g i o n near t h e edge causes t h e complicated mode eg' s t r u c t u r e . This was recognized by Anan'ev [15,16].

By p r o p e r l y t a p e r i n g o r a d j u s t i n g t h e r e f 1 e c t i v i t y

0.60

-

o f t h e m i r r o r s i n t h i s small r e g i o n these d i f f r a c -

-

9 I 1

t i o n e f f e c t s can be e l i m i n a t e d and complete separa-

t i o n o f t h e low order modes e x i s t f o r any N as seen i n Fig. 9. This i d e a l s i t u a t i o n i s undoubtedly hard

i

t o implement i n p r a c t i c e . Another p o s s i b l e approach i s t o a l t e r t h e shape (curvature) o f a m i r r o r t o r e - duce edge e f f e c t s [I

71.

Also, i t i s known t h a t rec-

0 I I I I I I

t a n g u l a r m i r r o r s a r e n o t so s u s c e p t i b l e t o t h i s mode

0 0.20 0.40 0.60 0.80 1-00

C ~ u ~ l i n g as c i r c u l a r ones.

x/a

C y l i n d r i c a l l y A c t i v e Regions.

--

An important class o f resonators having a c y l i n d r i c a l l y a c t i v e Fig. 8. I n t e n s i t y D i s t r i b u t i o n f o r t h e Case

of Neq = 49.4. [ I 2 1

confirmed by experiment [14]. Figure 8 shows a t y p i c a l r e s u l t o f one o f these d i f f r a c t i o n c a l c u l a - t i o n s [12] showing amplitude v a r i a t i o n across the m i r r o r p r o f i l e f o r a symmetrical c a v i t y w i t h N = 49.5 and M=1.9. I n t h i s case t h e phase i s n e a r l y eg constant w h i l e t h e i n t e n s i t y v a r i e s q u i t e r a p i d l y . There i s a way o f d i s c r i m i n a t i n g a g a i n s t unwan- t e d transverse modes which r e s u l t s from an under- standing o f the complicated mode o s c i l l a t i o n s . I t t u r n s o u t t h a t t h e existence o f transverse modes a r i s e s from d i f f r a c t i o n o f t h e beam from t h e edges o f the m i r r o r s back i n t o t h e c a v i t y and as such couples t h e d i f f e r e n t p a r t s o f t h e modes together throughout t h e volume. Even w i t h l a r g e m i r r o r d i - mensions, waves o r i g i n a t i n g from an annular r e g i o n of dimension h a t t h e edge o f t h e m i r r o r have an an- g u l a r spread e = O(h/h)

.

I f t h e d i f f r a c t i o n angle

r e g i o n [18] and u s i n g special c o n i c a l o r cube r e - f l e c t o r s [19,20] poses a d d i t i o n a l problems n o t han- d l e d p r o p e r l y i n e a r l i e r t h e o r e t i c a l papers. See, f o r example, Fig. 10a. I n t h i s c l a s s o f resonators

r FLAT END MIRROR

rk

LEG

---

(a) OUTPUT BEAM

---

SrnE

( b ) FRONT

VIEW VIEW

Neq

Fig. 9. Mode Losses w i t h Guassian M i r r o r s

[ I 9 1 Fig.lO.a)A c y l i n d r i c a l Resonator and W-Axicon M i r r o r b)Geometric P o l a r i z a t i o n Scrambl i n g E f f e c t Produced by l i n e a r l y P o l a r i z e d I n p u t Beam on a W-Axicon M i r r o r .

(9)

C9-378 JOURNAL DE PHYSIQUE

i t has been shown e x p e r i m e n t a l l y t h a t p o l a r i z a t i o n e f f e c t s a r e important and t h a t m i x i n g o f t h e p o l a r - i z a t i o n s t a t e occurs due t o t h e W-axicon (see F i g . l o b ) . Thus the s c a l a r f i e l d t h e o r y described ear- l i e r i s n o t adequate i n t h i s instance. Instead, t h e v e c t o r f i e l d ' m u s t be analyzed. Recently Dente [21] has shown t h a t one can w r i t e two s c a l a r i n t e - g r a l equations which a r e coupled even i n t h e ab- sence o f a medium t o describe t h e e q u i v a l e n t v e c t o r f i e l d . Thus t o a l a r g e e x t e n t e x i s t i n g l a s e r codes can l a r g e l y be used t o study t h e case where p o l a r i - z a t i o n e f f e c t s a r e important [22]. These m o d i f i c a - t i o n s seem t o confirm experiment.

An a d d i t i o n a l problem w i t h these resonators comes from t h e use o f compactors, w-axicons, o r i n n e r ax- icons used t o condense t h e r a d i a t i o n i n t h e c a v i t y . These axicons a r e s u b j e c t t o h i g h r a d i a t i o n f i e l d s e s p e c i a l l y a t t h e t i p o f t h e o p t i c a l element [23].

This i s p r e c i s e l y where c o o l i n g i s d i f f i c u l t a n d t h e sharp edge and c o a t i n g s may be a b l a t e d o r melted away. One can imagine t h a t damage i f present i n such a c r i t i c a l area would have an adverse impact on c a v i t y performance.

S e n s i t i v i t y t o Alignment and M i r r o r Tolerance.-- Another important aspect o f u n s t a b l e resonators i s t h e i r s e n s i t i v i t y t o misalignment and m i r r o r f i g u r e . This i s o f p r a c t i c a l i n t e r e s t because o f mechanical v i b r a t i o n s which may be present and f i g u r e e r r o r s i n t h e manufacture o f r e a l m i r r o r s . The e f f e c t o f mis- a1 ignment o f c i r c u l a r m i r r o r s was i n v e s t i g a t e d by

3

2

TlVE BRANCH

I 2 3 4 5 6 7 8 9 1 0

G~OMETRIC MAGNIFICATION, M

I 1 I I I I I I

0 25% 50% 75% 90% 96% 98% 99%

GEOMETRIC OUTPUT COUPLING C = I-

M*

Fig. 11. M i r r o r Alignment E f f e c t s

Krupke and Sooy [24]. For a small angle misal ign- ment they p r e d i c t e d a change i n t h e o p t i c a l a x i s o f angle 4 versus M. T h e i r r e s u l t s t o g e t h e r w i t h solu- t i o n s [25] a t f i n i t e Fresnel number a r e shown i n F i g . 11. I n t h e 1 im i t o f l a r g e Fresnel ,number, i t was shown t h a t t h e r a t i o of g / X goes l i k e 2M/M-1 f o r t h e p o s i t i v e branch and 2M/M+1 f o r t h e negative branch. This r e s u l t shows t h a t t h e p o s i t i v e branch i s much more s e n s i t i v e t o t h i s form o f e r r o r than t h e l e s s used negative branch, e s p e c i a l l y as M -t 1 o r as t h e o u t p u t c o u p l i n g approaches zero. These trends a l s o apply t o m i r r o r f i g u r e t o l e r a n c e as we1 1.

Other forms o f e r r o r s i n c l u d i n g f i g u r e e r r o r s a r e c u r r e n t l y being i n v e s t i g a t e d . I t i s i n t e r e s t i n g t o n o t e t h a t o p t i c a l c a v i t i e s u s i n g phase-conjugate m i r r o r s (PCM) a r e being i n v e s t i g a t e d [26,27]. The PCM has t h e unusual p r o p e r t y o f r e f l e c t i n g waves t h a t are t h e complex conjugate o f t h e incidentwave.

It appears t h a t such c a v i t i e s have r e a l confined gaussian modes. The i m p l i c a t i o n f o r h i g h power l a - sers i s t o be determined, b u t t h i s may mean t h a t t h e conventional meaning o f t h e s t a b i 1 i t y of c a v i t i e s i s questionable.

E f f e c t o f Gain Medium & As.vmetries.

--

To a

l a r g e e x t e n t t h e t h e o r y o f u n s t a b l e resonators has been borne o u t by numerous experiments [14,24,28].

These, f o r t h e most p a r t , have been cases where t h e gain medium i s f a i r l y u n i f o r m and does n o t a l t e r d r a s t i c a l l y t h e o p t i c a l p r o p e r t i e s o f t h e c a v i t y . However, i n many h i g h power l a s e r s t h e g a i n v a r i e s considerably i n t h e c a v i t y due t o n a t u r a l asymme- t r i e s and s a t u r a t i o n e f f e c t s . I n a d d i t i o n , r e f r a c - t i v e effects, whether by turbulence o r imposed non- u n i f o r m flow, w i l l cause phase e r r o r s l e a d i n g t o de- p a r t u r e s from t h e r e s u l t s described so f a r . These e f f e c t s must be included and, as one might expect, o n l y make t h e r e a l problem exceedingly complex. So- l u t i o n s t o such c a v i t i e s can o n l y be handled by l a r g e numerical codes. Some modeling of g a i n d i s - t r i b u t i o n has been c a r r i e d o u t by c o n s i d e r i n g t h e e f f e c t o f g a i n t o be represented by a gain sheet [29] o r sheets l o c a t e d i n t h e c a v i t y . The t e c h n i - que p e n n i t s decoupling o f t h e propagation from t h e change i n energy o f t h e wave. The method i s o f li- m i t e d use because o f t h e divergence o f t h e w a v e s i n t h e medium and probably n o t so good f o r l a r g e M.

C a l c u l a t i o n s have been made comparing t h e modes o f an u n s t a b l e resonator w i t h gain t o t h a t w i t h a u n i f o r m medium. The mode i n t e n s i t y d i s t r i b u t i o n be- comes more u n i f o r m i n t h e presence o f a s a t u r a b l e

(10)

medium because the gain i s lower a t high i n t e n s i t y than a t low i n t e n s i t y 1301. There i s l i t t l e e f f e c t on phase i f refraction e f f e c t s a r e excluded from the calculation. These e f f e c t s together with mirror heating and deformation can be extremely important when considering the s e n s i t i v i t y of the cavity to alignment e r r o r s . Some continuous l a s e r experiments Rave a c t u a l l y become pulsed with such interactions [31,32]. This i s referred t o as the mode media in- teraction problem and is. unique t o high power l a s e r s .

Of course, simple idealized models don't approach the real s i t u a t i o n s many times and more complicated codes must be used. For example, the

BLAZER

compu- t e r code i s used f o r wave analysis supplemented with RESALE codes f o r chemical processes i f present

[3]. The solutions a r e f a r too involved t o t r e a t in any analytic fashion and vary from device t o device.

This i s especially t r u e i f multiple spectral l i n e s a r e involved as in the case of an

HF

l a s e r . In the final scenario the only s u r e way t o analyze real ca- vity behavior i s by diagnostic experiments f o r beam power and energy [3].

ADAPTIVE OPTICS. -- Through design e r r o r s or unavoi- dable beam propagation problems, the ideal ampl itude and phase d i s t r i b u t i o n across a l a s e r beam may be l e s s than desired giving r i s e t o poor f a r f i e l d per- formance. Optical components whose c h a r a c t e r i s t i c s can be a l t e r e d a r e now being investigated and used as a means t o improve t h i s performance. The term active optics r e f e r s to an adaptive optical system t h a t operates i n real time i n order t o control wave-

uniform, a f f e c t s I(P) i n a deleterious way by in- creasing the energy i n the s i d e lobes. Nonuniform amplitude i s typical with large

N

l a s e r c a v i t i e s (Fig.

8 ) .

Finally, there i s the /nds which i s the optical path length. This integral i s affected by index of refraction variations caused e i t h e r by tur- bul ence o r thermal blooming ( i . e . , a change i n the medium by heating action of t h e beam i t s e l f ) . For- tunately, n i s almost one f o r many problems of in- t e r e s t . The value of n-1 may be written a s

~p

where t h e value of

6

i s 0 (3.10-

4 )

t y p i c a l l y and the den- s i t y ,

p ,

i s measured in amagats. Thus the integral k/(n-1)ds represents phase changes due t o

p

varia- tions. I f

p

i s constant, there will be no e f f e c t o n I ( P ) , but a spatial variation i n p ( r ) gives a spa- t i a l phase variation which contributes to a degrada- tion i n f a r f i e l d performance. I t should be noted t h a t adaptive optics attempts to modify phase e r r o r s by i n t e r j e c t i n g a compensating optical element in the wave t r a i n . Appreciable success has already been achieved [34]. As y e t , to the a u t h o r ' s know- ledge t h e r e i s no known way t o correct f o r amplitude variations once they occur. Fortunately, the phase corrections are the most important as they a f f e c t the beam the most.

Suppose t h a t /(n-1)ds i s zero, t h a t the ampl itude of the f i e l d i s constant, and t h a t t h e i n i t i a l phase d i s t r i b u t i o n over the l a s e r beam i s nonzero and small. Then the reduction in peak 1 ight inten-' s i t y r e l a t i v e t o t h e beam i s given by [35]

-

11In ..

A

1 - 7 t ~ ~ = 1 -

A$

2

f r o n t s . Here we b r i e f l y discuss the r o l e of adap-

where I. i s the i n t e n s i t y f o r an unaberrated beam t i v e optics i n high power l a s e r operation. and am2 i s the mean square e r r o r of phase over the

The integral solution of the wave equation in a beam cross section ( a f t e r subtraction of t i l t and weakly r e f r a c t i v e medium shows t h a t the i n t e n s i t y a t f o c u s ) . T h i s f i g u r e of merit i s known as the Strehl a point P in t h e f a r f i e l d i s approximately 1331 r a t i o [36]. The r e s u l t shows t h a t t h i s r a t i o i s in-

1 i $ ikfndsdA

1 ) 1% ( ~ e e / dependent of t h e nature of the aberration and demon-

& s t r a t e s the extreme s e n s i t i v i t y of the image peak where s represents the ray path from the source t o

P ,

E

i s the amplitude d i s t r i b u t i o n of the source,

$

i s the i n i t i a l phase d i s t r i b u t i o n , and n represents the index of refraction along the ray path. Three things besides the overall 1 aser power level a f f e c t the i n t e n s i t y a t

P

and should be noted i n t h i s for- mula. Two of these were mentioned in the previous section. The f i r s t i s

$

which i s affected by t h e presence of many transverse modes, f i g u r e e r r o r s of t h e mirrors i n the cavity and other sources of phase e r r o r . The second i s E(1) which, i f not

i n t e n s i t y t o phase e r r o r .

Aberrations a r e wavefront deviations from a

spherical reference sphere. In a classical sense

these aberrations a r e described in terms of a s e t o f

c h a r a c t e r i s t i c functions depending on t h e wavefront

modification and then labeled as t i 1 t , astigmatism,

coma, spherical aberrations, e t c . [35]. The sim-

p l e s t a c t i v e systems a r e those t h a t control t i l t or

focus of a beam. In the former, t h i s i s j u s t a f l a t

mirror whereas the l a t t e r i s usually done by adjust-

ing the separation distance of two focusing elements

(11)

JOURNAL DE PHYSIQUE

as in a Cassegranian telescope. Most a c t i v e o p t i - cal systems a r e directed toward removal of t h e more complicated aberrations of wave fronts such a s as- tigmatism and coma and t h i s i s where the research currently 1 ie s f o r l a s e r application.

Basic Active Optics Systems f o r Laser Trans- mission.

--

Usually t h e a c t i v e optical system i s de- signed t o optimize a property of t h e system such as the energy dCnsi t y a t a s p e c i f i c location. Three basic components a r e required [36]:

a

wavefront modifying device; a measuring device which accepts l a s e r l i g h t and provides an output related t o the property being optimized; and an information pro- cessi ng device which through appropriate a1 gorithms converts the measured data i n t o control signals f o r t h e wavefront modifying device. Two basic systems which are used in l a s e r transmission a r e shown in Fig. 12. Such systems normally operate on a s i n g l e wavelength using the radiation generated by the la- s e r . I f more than one spectral l i n e i s involved such as in the chemical l a s e r , considerable addi- tional complication i s involved i n order t o phase lock t h e various spectral l i n e s [37]. Simpler sys- tems would be advantageous.

In Fig. 12a, the phase conjugation approach, the beam reaching the t a r g e t gives r i s e

t o

r e f l e c t i o n from small areas producing g l i n t s which generate spherical waves. These reflected waves traverse the same propagation path i n a reverse direction andare s p a t i a l l y modified by the same optical disturbance as the transmitted beam. The received wave i s com- pared t o a local reference wave and the required correction, which i s the phase conjugate of themea- sured wavefront d i s t o r t i o n , i s generated.

MODIFIER

OPTICAL PATH DISTURBANCE

IOPD)

o PHASE CONJUGATION

LASER TARGET

INTENSITY WAVEFRONT DETECTOR

PROCESSOR b APERTURE TAGGING

Fig. 1 2 . Active Optics Systems [36]

The second system (Fig. 12b) i s a multidither o r aperture tagging approach in which small perturba- tions in phase, A $ << IT, a r e made on each small seg- mented area on the outgoing beam. The optical power returned from a g l i n t i s analyzed to determinewhich part of the aperture i s to be adjusted. These per- turbations are always added t o the wavefront so t h a t there i s always some residual e r r o r , b u t t h i s i s small. In t h i s approach the return signals do

not

have t o propagate along t h e same optical path a s the transmi t t e d beam.

Depending on the physical s i t u a t i o n o r tracking mode one method may have an advantage over t h e o t h e r . Both approaches a r e being pursued f o r active l a s e r beam control. I t appears t h a t the phase conjugate system can operate quite f a s t (O(msec)) i f conver- gence of t h e loop has been obtained. Loop conver- gence times will be long (O(sec)), however, a t low signal to noise r a t i o s which occur a t large ranges.

In t h e case of t h e multidither system t h e conver- gence time can be short even a t rather large ranges [36]. Dither frequencies (sinusoidal perturbations) can be q u i t e high. In the case of one experiment

[38] these frequencies range from 8-32 kz with a spacing of 1.4

kHz

and gave an overall convergence time of 1.5 t o 3 msec.

Wavefront Modifying Devices.

--

Both r e f l e c t i v e and r e f r a c t i v e wavefront modifying devices a r e pos- s i b l e in principle.

A t

the present time r e f l e c t i v e devices (mirrors) a r e the most successfully used correctors and t h i s i s what i s described here. The regimes in which a c t i v e mirrors operate may be sepa- rated in terms of wavefront correction range and frequency response and a r e shown in Fig. 13. For l a r g e mirrors with large deflections t h e frequency response i s poor and t h e i r function i s primarily f o r figure control of a system. Curve B shows the oper- a t i n g range f o r mirrors t h a t require high frequency response b u t not necessarily large deflection as f o r atmospheric correction. Lastly the small rectangu- l a r area i s required f o r aperture tagging themirrors.

TO meet these needs four basic types of active mirrors have been developed and a r e shown in Fig.

14. Of these, only the f i r s t two seem t o be useful f o r high power application. The piston type mirrors use piezoelectric position actuators which under the r i g h t circumstances can be driven t o frequences on the order of 10 kHz and tend t o be small. From the optical point of view, the use of segments having both piston and t i l t capability i s preferable a s

(12)

Frequency, Hz

Fig. 13. Operating Ranges for Active Mirrors [36]

fewer segments are required t o match a given wave- f r o n t . Somewhat l a r g e r mirrors tend t o be made as

a

defomable thin-plate. This type

has

reached a high stage of development [36] and i s more e a s i l y cooled than others.

Another possible approach which i s j u s t being investigated i s a r e f r a c t i v e type device using f r e e gas j e t s [39]. This idea developed from our under- standing of t h e aerodynamic window as an optical e l - ement. I t may be possible t o improve the optical quality of a high power l a s e r beam by inducing phase changes in the aerodynamic window i t s e l f .

B u t

t h i s p o s s i b i l i t y has not y e t been proven in t h e laboratory.

Applications.

--

Turbulence: Much i n t e r e s t in adaptive optics centers on turbulence compensation a t the IR wavelengths and the question naturally a r i s e s a s t o how much compensation i s possible.

TO

a large extent t h i s depends on the turbulent scale dimension and the required frequency response [33, 401. Fortunately, in the case of atmospheric

t u r b u -

lence t h e required bandwidth i s only several hundred hertz [36] which, a1 though d i f f i c u l t t o imp1 ement, i s not an impossibly high bandwidth. I t i s extre- mely d i f f i c u l t to get a system with a bandwidth greater than 1 kHz. Intense turbulence and smaller scale turbulence requires increasing t h e number of degrees of freedom of the system sensibly. In f a c t , small s c a l e turbulence t h a t e x i s t s

i n

boundary la- yers in l a s e r c a v i t i e s or on a i r c r a f t probably

Piston only Piston plus tilt Segmented Mirrors

Discrete position actuators Discrete force actuators

Monolithic Mirror

\ 4

Membrane Mirror Fig. 14. Types of Active Mirrors c a n ' t be corrected f o r .

Atmospheric turbulence i s a d i s t o r t i o n which i s not a function of l a s e r power and i s referred t o as a l i n e a r interaction. As such, i t i s r e l a t i v e l y easy t o improve the Strehl r a t i o (provided the s c a l e length i s not too small )

.

Improvements with a mu1

-

t i d i t h e r system a r e detailed in [41,42].

Thermal blooming : Another and more d i f f i c u l t type of disturbance i s t h a t of thermal blooming.

This i s a nonlinear interaction caused by the inevi- table heating of the atmosphere by the l a s e r and creates an undesirable lensing action and defocusing of t h e beam. I t i s d i s t i n c t l y a high power l a s e r phenomenon and depends c r i t i c a l l y on the l a s e r po- wer. The lensing action takes place a l l along the beam path and so the e f f e c t i v e lens i s thick. Pre- liminary work on compensation f o r thermal blooming has been considerably l e s s successful than f o r

tur-

bulent compensation. Simply a l t e r i n g t h e phase pro- f i l e and thus t h e projected f a r f i e l d pattern j u s t s h i f t s t h e problem t o another region of t h e beam in the case of blooming. In some simple cases there i s no solution in principle [43]. In any case there i s l i t t l e o r no improvement, whereas f o r turbulence t h e

(13)

C 9 - 3 8 2 JOURNAL DE PHYSIQUE,

/

COAT CORRECTED

P = POWER I N T O CELL. mW

Fig. 15. Thermal Blooming Compensation [45]

improvement i s as good as one makes the wavefront corrector. Real time compensation f o r thermal blooming has been demonstrated i n the laboratory 1441 using a tagged aperture approach. The r e s u l t s f o r t h i s experiment a r e shown in Fig. 15 wherein i t i s seen t h a t the i n t e n s i t y on t a r g e t was increased 2.5 times over t h a t without using a c t i v e o p t i c s .

A

sensible improvement, but one which i s c l e a r l y 1 im- i t e d . One other promising approach i s the use of predictive phase compensation [45]. Here t h e opti- mum phase d i s t r i b u t i o n can be worked out in advance and applied with only minor feedback corrections.

Other a1 gorithms a r e being investigated too.

In many cases thermal blooming e x i s t s i n t h e pre- sence of a r e l a t i v e wind, e i t h e r due t o an actual wind, a movement of the transmitter, o r an apparent wind caused by the tracking of some moving t a r g e t . In some ways the l a t t e r i s an e a s i e r problem as the lensing action i s then strongest near the transmit- t e r , affording a b e t t e r opportunity t o improve the f a r f i e l d pattern. Thermal blooming with wind pro- duces crescent shaped f a r f i e l d patterns which move ( t i l t ) i n t o the wind. Figure 16 shows calculated r e s u l t s f o r the change in peak flux as a function of nondimensional slew r a t e NW ( r e l a t i v e wind) and dis- tortion number N D (beam power). One sees t h a t in- creasing t h e wind reduces the e f f e c t s of thermal blooming and so does the use of a c t i v e o p t i c s . For fixed slew r a t e we can increase the irradiance on t a r g e t by 2.5 again.

Herrmann [43] has shown t h a t the phase conjugate method leads to nearly complete compensation of

Fig. 16. Peak Flux Density in Wind with and without Correction [44]

atmospheric turbulence. Partial compensation f o r cases with moderate blooming with and without turbu- lence are possible i f t h e e f f e c t i v e thermal lenses i s near the transmitter as f o r slewed beams. For cases with substantial blooming, the method only gives 1

i m i

ted improvement.

Adaptive Optics in Resonators

:

Recent1 y there have been s t u d i e s concerning t h e use of adaptive op- t i c s i n resonators because of t h e i r known s e n s i t i v i i t y to a1 ignment. Computer studies [46] have shown t h a t azimuthal mirror misfigures i n cylindrical re- sonators as small as h/20 can lead t o severe degra- dation in t h e Strehl r a t i o . However, i t was shown t h a t t h i s e r r o r can be s u b s t a n t i a l l y compensated by using an adaptive optical element f o r t h e outer axi- con a s the r e s u l t s i n Table I 1 show. This element i s operated in a s t a t i c mode but the actuators a r e

Table 11. Computer Results for Distortions of t h e form

(X/N)

cos2g Applied t o the Rear Cone

1461

Misfigure

X/120

cos 2

1/40

cos 2

XI20

cos 2

~ / 1 0

cos

2

Strehl Ratio Without Compensation

0.901 0 0.6016 0.401

2

0.1056

Strehl Ratio With Cbmpensation

0.9996

0.9916

0.9916

0.9911

(14)

adjusted ( i n t h e ~0mptJtati0n) t o maximize t h e S t r e h l [28] Granek, H. and Morency, A. J . , ~~~l

. opt. 13

r a t i o . The improvement w i t h t h e proper a c t u a t o r (1974) 368.

[29] Reusch, D.B. and Chester, A.N., Appl

.

Opt.

2

s e t t i n g i s e x c e l l e n t ; Other t r i a l cases using d i s - (1973) 997.

t o r t i o n s on o t h e r c o n i c a l elements showed s i m i l a r [30] w e i n e k , - ~ . ~ .

,

AVCO RR 425 (Jan. 1977).

[31] Yoder, M.J. and Ahouse, D.R., Appl

.

Phys.

improvements. While these c a l c u l a t i o n s were c a r r i e d L e t t .

7

(1975) 673.

o u t w i t h o u t a g a i n medium, t h e b a s i c compensation [32]

m,

R.A. and Peressini, E.R., Gas-Flow and Chemical Lasers (Hemisphere Pub. Corp. ) 1979, method i s l i k e l y t o be successful under gain condi- 425,

t i o n s i n c l u d i n g t h e p o s s i b i l i t y of i n c l u d i n g an ac- [ 3 3 I L u t o m i r s k i

,

R.F. and Yura, H.T.9 A P P ~ . Opt.

10 (1971) 1652.

t i v e feedback system f o r s l o w l y v a r y i n g resonator [34] Hayes, C . I . , e t a l . , J. Opt. Soc. Am.

67

p r o p e r t i e s

.

(1977) 269.

[35] Born, M. and Wolf, E., P r i n c i p l e s of Optics Acknowledgement. The a u t h o r wishes t o thank (Pergamon Press) 1959, 462.

[36] Hardy, J .W.

,

Proc. o f IEEE (1 978) 651

.

Dr. A.T. M a t t i c k f o r t h e use of h i s notes on reson- 1371 Wang, C.P. Appl. Opt.

17

(1978) 83.

a t o r theory and Professor A. Hertzberg f o r h e l p f u l

[381

Pearson, J . E . y et a1 Opt.

15

611.

discussion on t h e contents o f t h i s paper. 1391 Christiansen, W.H., Wasserstrom, E. and Hertz- berg, A., Proc. 3 r d I n t l . Symp. Gas Flow and

References. Chem. Lasers, M a r s e i l l e (1980).

[I] Kogelnik, H. and L i , T., Appl. Opt.

5

(1966) [40] Sutton, G.W., AIAA J. 7 (1969) 1737.

1550. [41] Pearson, J .E., A 1. 0-t.

15

(1976) 622.

[2] Goodman, J.W., I n t r o d u c t i o n t o F o u r i e r Optics [42] Pearson. J.E., eePal .,'Hu hes Res. Labs.

(McGraw H i l l Book Co.) 1968. F i n a l Tech. Rpt. RADC-T-

[3] Chodzko, R.A. and Chester, A.N., Handbook o f [43] Herrmann, J., J. Opt. Soc. Am. a ( 1 9 7 7 ) 290.

Chemical Lasers (John Wiley & Sons, New York) [44] Bridges, W.B. and Pearson, J.E., Appl

.

Phys.

1976, p. 95.

Lett. 3

(1975) 539.

[4] Yariv, A., I n t r o d u c t i o n t o O p t i c a l E l e c t r o n i c s , [451 L.C' and J ' y Opt'

13

2nd Ed. (Holt, Rinehart & Winston 1976. (1974) 331

.

[5] Fox, A.G. and L i , T., B e l l Syst. !ech. J.

110

[46] Shellan, J.B., e t al., Appl

.

Opt.

19

(1980)

(1961) 453. 610.

[6] Siegmann, A.E., Laser Focus 1 (1971) 42.

[7] Siegmann, A.E., Proc. IEEE (1965) 277.

[ll] Mahan, A.I., B i t t e r l i , C.V. and Cannon, S.M., J. 0 t. Soc. Am. 54 (1964) 721.

[9] Sieglann, A. E., A r l

.

0 t.

13

(1 974) 353.

[1 O] Siegmann, A. E. an: ~ i 1 Per, H. Y.

,

Appl

.

Opt.

2

(1970) 2729.

[11] ~ i e ~ m a n n , A.E. and Arrathoon, R.W., IEEE J.

Quantum E l e c t r o n

gE-3

(1967) 156.

[12] Horwi t z , P., J. 0 t. Soc. Am.

63

(1973) 1528.

[13] Sanderson, R . d d S t r e i f e r , W., Appl. Opt.

P

(1969) 2129.

[14] ~ r e i b e r g , R.J., Chenausky, P. and Buczek, P.R., IEEE J. uantum Electron.

oE-8

(1972) 882.

[I 5 1 -Quantum E l e c t r o n

1

(1972) 565. , -~~

[16] ~ n a n l e v , Yu.A. and Sherstobitov, V.E., Sov. J.

Quantum E l e c t r o n

1

(1971) 263.

r171 M c A l l i s t e r , G.L.. S t e i r e r , W.H. and Lacina,W.B., IEEE J. ~ u a n t . ~ i e c t r o n ,

4E-10

(1974) 346. -

Chodzko. R.A.. Mason. S.B. and Cross, E.F..

Appl. opt.

~ ~ ( 1 9 7 6 ) -2137.

Chodzko, R.A., Mason, S.B., Turner, E.B.

Plummer, W.W., A 1. 0 t. 19 (1980) 778.

Fink, D., A 1. iPt.

$

( 1 T 9 ) 581.

Dente, G.C.'; 1 t. 18 (1979) 2911.

Latham, W . P . 3 i ~ & p l ~ o p t .

19

(1980) Chodzko, R.A., The Aerospace Corporation

and

p r i v a t e communication.

[24] ~ r u p k e , W. F. and Sooy

,

W. R.

,

IEEE J

.

Quant

.

E l e c t r o n .

5

(1969) 575.

[25] Chester, A.N., IEEE J. Quantum E l e c t r o n .

QE-9

(1973) 209.

[26] ~ e ' l a n g e r , P.A., Hardy, A. and Siegmann, A. E., - -

A 1. 0 t.

19

(1980) 602.

[27] B:'lang:r, P.A., Hardy, A. and Siegmann, A.E., Appl

.

Opt. ( 1 980) 479.

Références

Documents relatifs

43 ﻲﻧﺎﺜﻟا ﻞﺼﻔﻟا : ﺎﺼﺘﻗﻻا عﺎﺿوﻷاو يﻮﻤﻨﺘﻟا رﺎﺴﻤﻟا ﺮﺋاﺰﺠﻟا ﻲﻓ ﺔﯿﻋﺎﻤﺘﺟﻻاو ﺔﯾد لوﻷا ﺚﺤﺒﻤﻟا : ﺮﺋاﺰﺠﻟا ﻲﻓ ﺮﺋاﺰﺠﻟا ﻲﻓ ﺔﯾدﺎﺼﺘﻗﻻا تﺎﺣﻼﺻﻹاو يﻮﻤﻨﺘﻟا رﺎﺴﻤﻟا.. 66

Les collagénases ont également des inhibiteurs ou TIMP (Tissue lnhibitor of MetalloProteinase) présents dans le muscle (Woessner, 1991 ). L'activité des collagénases

Our purpose is to give a proof of the existence and smoothness of the invariant manifolds in the title for a system of ordinary differential equations defined in a

high power gas dynamic and chemical lasers with rel- atively short gain lengths, compared to the gain height there is a need for unstable laser resonators which produce a

[ 4 - 51 (The asymptotic-expansion methods of Horwitz [ 3 - 41 are not necessarily lim- ited to such relatively small values of FT.) For this range of parameters,

I tried to show that optical spectroscopy has re- covered its importance for nuclear research. The information obtained on nuclear ground and isomeric states far from stability

The purposes of this work were to study the possibility of the use of such a materials in high overtone bulk acoustic wave resonator and obtaining the high values of Q - factor.. 2

The rating curves are derived from an historical set of stage and flow rate measurements taken at Busiu Bridge over a varied set of flow conditions. Each point on the