• Aucun résultat trouvé

Weiss-Weinstein bound for MIMO radar with colocated linear arrays for SNR threshold prediction

N/A
N/A
Protected

Academic year: 2021

Partager "Weiss-Weinstein bound for MIMO radar with colocated linear arrays for SNR threshold prediction"

Copied!
13
0
0

Texte intégral

(1)Weiss-Weinstein bound for MIMO radar with colocated linear arrays for SNR threshold prediction Duy Tran Nguyen, Alexandre Renaux, Remy Boyer, Sylvie Marcos, Pascal Larzabal. To cite this version: Duy Tran Nguyen, Alexandre Renaux, Remy Boyer, Sylvie Marcos, Pascal Larzabal. Weiss-Weinstein bound for MIMO radar with colocated linear arrays for SNR threshold prediction. Signal Processing, Elsevier, 2012, 92 (5), pp.1353-1358. �10.1016/j.sigpro.2011.10.018�. �hal-00771395�. HAL Id: hal-00771395 https://hal-supelec.archives-ouvertes.fr/hal-00771395 Submitted on 15 Mar 2020. HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés..

(2)   

(3)   

(4)

(5)   "!#$!#&%'( *),+-./0+!1 . 23!#4!#5!7628 9

(6) : ; *)

(7) )2.,<

(8) 

(9) += */ >0? @*A BDCFE2@*AHGJI0K2>0LMNK0O BP*QRCNSTUB$IJVW>2KJX0Y2L5MNIJZD[\A^]0_a`

(10) VWIJL Mcb5A5O d5e BgfhK2I0iJ_$b5L M*jkQ lUmDQRO7nK2I

(11) o=K2]aK2n7p Ÿq  r•{Šsu t wvxw¡ky(z{Št y(|~‘a}W€7 wW€y(ƒRt z{„U‚~’”ƒR“„ y( $t w†„”†xyŒwJ‡cˆ €Dw

(12) ‰‹˜NŠyŒ€€•/|¢”Š€y(s }

(13) ‡cŠ‹ƒ Ž1£#ƒR¤t ¥ sR  € ˆz#€D€‰‹sRŠ JyŒ€ƒR|Š}y(z{}x|‡3w‘¦x†az‹‡c£3ƒRvx„Uw’”su“„  w{w•/‡- „

(14) –0-y(„ yŒwW“z{—”t Šw t suŠ||~‚(§

(15) ˜*„”t y(z(t Šw/s ‡7‡-™™†¨ †šD™–šœ©\›-˜Nt Ž{€‚•/z{¢”„”€y(‚Us^˜Nvxww{|~ |w(w/ªx‡*‡NžžyŒ€yŒ€sRsR•{•{w w «­¬1®D¯D°u±*²R¯ b5BDd BDTxQRO³´ TUµl2¶NQ d B·l@*? ? B”l/¸UB”SF¸U¶NQu¸gQHf¹@*O ¸Ue º{»(C*¼*@¸½f¹@*O ¸Ue º_2@¸U¼*@¸­¾Œf¹»/f_$¿0TxQ S*QRT

(16) lAl/¸UBD[´RÀ=BDTxl2e [œ¼*TU´ud BD[œBDC¸ e CÁ¸UBDTU[Ál#´RÂ7¼cBDTÂô TU[ÁQRCNmBJe C^m´ [œ¼NQRTUe~l´ Cœ³Je ¸U¶HmO~Q lUle~mDQRO*¼*¶NQ lB”S5º(QRTUTxQ AgTxQ S*QRT”Ä3Å0´u³BDd BDT”M @*CNSBDT#¸U¶*B2³Je~SBDO AÁl¼*TUB”Q S Q lUl@*[œ¼¸Ue ´ C´RÂaQF@*C*e Âô TU[ÇÆ·È=ɁʌËuɁÊ$Se~l/¸UTUe Ì*@¸Ue ´ CÂô Tg´ C*Bœ¼NQRTxQR[œB¸UBDT$´RÂae C¸UBDTUB”l/¸”M7¸U¶*BDTUBœe~lgC*´FTUB”l@*O ¸½m´ CNmBDTUC*e C*? O ´u³BDT½Ìc´ @*CNS*l\´ C&¸U¶*B^[œB”QRCº(lUÍ@NQRTUBÁBDTUTU´ T½e C&¸U¶*BHmDQ lB­´RÂ2QÎ$QR@NlUle~QRC&´ ÌNlBDTUduQu¸Ue ´ CÏ[œ´SBDO³Je ¸U¶4¼NQRTxQR[œB¸UBDTUe ÐDB”S [œB”QRC7Ä4Ga¶*e~lÁÑNQ l/¸^iW´ [œ[\@*C*e~mDQu¸Ue ´ C8ÒNO O~l·¸U¶*e~lœO~Q mxµÏÌ5A8@Nle C*?Ó¸U¶*BFÔBDe~lUl/º{ÔBDe CNl/¸UBDe C4Ìc´ @*CNSÕ¾ÃÔÔÖ]J¿·³J¶*e~mx¶'mDQRC ÌcB^mDQRO~m@*O~Qu¸UB”SÏ@*CNSBDT\¸U¶*e~l\Se ×­m@*O ¸ÁlUmBDCNQRTUe ´NĹKØmO ´lB”S5º‹Âô TU[ÙBP¼*TUB”lUle ´ CÏ´RÂJ¸U¶*B^ÔÔÖ]ÚÂô T·f¹»/f_ØTxQ S*QRT½³Je ¸U¶ m´ O ´mDQu¸UB”S·O e C*B”QRTWQRTUTxQ Al1e~lWSBDTUe d B”SœQRCNSÁQRCNQRO A5ÐDB”S\Âô TWQ½SB”le ? CÁ¼*@*TU¼c´lBJe CÁ¸UBDTU[Álk´RÂ7QRTUTxQ A½? BD´ [œB¸UTUA Äkb5e [\@*O~Qu¸Ue ´ CNl m´ CÒNTU[Û¸U¶*B$? ´5´S^QRÌ*e O e ¸/AÁ´R¸U¶*B$¼*TU´ ¼c´lB”SÁÌc´ @*CNS^¸U´·¼*TUB”Se~m¸a¸U¶*B$[œB”QRCHlUÍ@NQRTUB

(17) BDTUTU´ T

(18) ¾ŒfÓb5V¿´R¸U¶*B$[ÁQuPe [\@*[Æ ÈNË ÜÝ(ÞɁʌËuɁÊJ¾ŒfhK0j¿#e C^QRO ONTxQRC*? BJ´RÂb>2IgÄjkQRT¸Ue~m@*O~QRTUO A Mu¸U¶*B0¸Ue ? ¶¸UC*B”lUl#´RÂ=¸U¶*B2Ìc´ @*CNSœ¸U´½¼*TUB”Se~m¸#¸U¶*B$b>2I'¸U¶*TUB”l¶*´ O~S BÀ=B”m¸0e~lJl¶*´u³JC7Ä ßœÞàuáWËuÉUâ ÜDãf¹»/f_äTxQ S*QRT”M5ÔBDe~lUl/º{ÔBDe CNl/¸UBDe CFÌc´ @*CNSϾÃÔÔÖ]J¿M*¼NQRTxQR[œB¸UBDTaB”l/¸Ue [ÁQu¸Ue ´ C7Ä åcæÁçè ¯D°ué7ê3ë3²R¯”ìŒé è b5e CNmBœe ¸g³aQ l0ÒNTxl/¸$e C¸UTU´S@NmB”S4í îï{M-¸U¶*BÁf¹»/f_ðTxQ S*QRT

(19) ¶NQ l

(20) ?QRe C*B”S¹e C¸UBDTUB”l/¸$e Ce C5d B”l/¸Ue ?Qu¸Ue ´ C¹¸U´He [œ¼*TU´ud B\[\@*O º ¸Ue~lBDCNl´ TœlAl/¸UBD[Ál\¼cBDTÂô TU[ÁQRCNmB Ä8Kñf¹»/f_ñTxQ S*QRT\@¸Ue O e ÐDB”lœ[\@*O ¸Ue ¼*O BFlBDCNl´ Txl\e C4Ìc´R¸U¶4¸U¶*B^¸UTxQRCNl[œe ¸¸UBDTÁQRCNS&¸U¶*B TUB”mBDe d BDT½¸U´lBDCNS8´ @¸ÁQRCNS4m´ O O B”m¸œQÓlB¸œ´RÂ2¼*TU´ Ì*e C*?Ó³aQ d BÂô TU[Álg³J¶*e~mx¶"mDQRC8ÌcBHÂÃ@*O O A&@*CNm´ TUTUBDO~Qu¸UB”SÏ´ T·¼NQRT¸Ue~QRO O A m´ TUTUBDO~Qu¸UB”S-Ä»{Â3QRO Oc¸U¶*B2¸UTxQRCNl[œe ¸¸UB”SÁ³aQ d BÂô TU[Ál#QRTUB

(21) m´ TUTUBDO~Qu¸UB”S-M e ¸JTUBÂÃBDTxlk¸U´\¸U¶*B$m´ C5d BDC¸Ue ´ CNQRO*¼*¶NQ lB”S5º(QRTUTxQ A\TxQ S*QRT”Ä Ga¶NQRC*µl$¸U´F¸U¶*B”lB^Q S*Se ¸Ue ´ CNQROSBD? TUBDB”l$´RÂaÂÃTUBDB”S´ [FM1Q¹f¹»/f_ØTxQ S*QRTg¶NQ lg[ÁQRC5AÏQ SduQRC¸xQR? B”l

(22) e C4m´ [œ¼NQRTUe~l´ C³Je ¸U¶ QF¼*¶NQ lB”S5º(QRTUTxQ AFTxQ S*QRT”ÄHE2BD¼cBDCNSe C*?h´ C¸U¶*BHSe~l/¸xQRCNmBÁÌcB¸/³BDBDCÏBDO BD[œBDC¸xl½´RÂ0QRC¸UBDC*CNQ lgQRCNS¸U¶*B­¼c´le ¸Ue ´ CNlg´RÂa¸U¶*B ¸UTxQRCNl[œe ¸¸Ue C*?FQRCNShTUB”mBDe d5e C*?FQRTUTxQ Al\¾Œm´ O ´mDQu¸UB”Sh´ T$³Je~SBDO AhlBD¼NQRTxQu¸UB”SN¿M-B”Q mx¶m´ CÒN? @*TxQu¸Ue ´ Ch´RÂf¹»/f_ÛTxQ S*QRT

(23) ¶NQ l e ¸xl½´u³JC&e C¸UBDTUB”l/¸xl\l@Nmx¶8Q l½e [œ¼*TU´ud5e C*?¹¼NQRTxQR[œB¸UBDT½e~SBDC¸Ue ÒcQRÌ*e O e ¸/A"í ò ï

(24) í óuï{ô#´RÀ=BDTUe C*?¹¶*e ? ¶*BDT½õNBPe Ì*e O e ¸/AÏe CϸUTxQRCNl[œe ¸ ÌcB”QR[Û¼NQu¸¸UBDTUCHSB”le ? CNlDö3e [œ¼*TU´ud5e C*?g¸U¶*B$QRC*? @*O~QRTWTUB”l´ O @¸Ue ´ C7MO ´u³BDTUe C*?\le~SBDO ´ ÌcB”lDM5´ TSB”mTUB”Q le C*?g¸U¶*B$l¼NQu¸Ue~QROc¼c´u³BDT SBDCNle ¸/A4´RÂ

(25) ¸UTxQRCNl[œe ¸¸UB”S'le ? CNQRO~lFí ò”ï{ô2e CNmTUB”Q le C*?&SB¸UB”m¸Ue ´ C'¼cBDTÂô TU[ÁQRCNmB MaQRCNS'QRO O ´u³Je C*?&Se TUB”m¸^QR¼*¼*O e~mDQRÌ*e O e ¸/A8´R ÷7ø ù ú7û üŒýxþŒÿ xú ÿ Rý ‹ø

(26) ü ù ý ÿ ÿ uü /ÿ 3ù ù ‹ÿ/ý 7ÿ/ú‹ÿ xü {ø xü -yŒwŒ’Ry(t su|-z{„u‰/‘t |~|w{ J|ŠJƒRt sR€ -yŒŠ•{wz{z{t s” £-’Ry(t  x‡cš †† ✩.  

(27)

(28)   .      

(29) 

(30) .   !. "  $#% &('. *). ,+.

(31) Q S*QR¼¸Ue d B2¸UB”mx¶*C*e~Í@*B”lÂô T0¼NQRTxQR[œB¸UBDTaB”l/¸Ue [ÁQu¸Ue ´ Cí uï{Ä »{½³BFÂôm@Nl­´ C'¸xQRTU? B¸­O ´mDQRO e ДQu¸Ue ´ C7M¸U¶*BÓl@*¼cBDTUe ´ TUe ¸/A4´R½f¹»/f_,TxQ S*QRT lœ¼cBDTÂô TU[ÁQRCNmBF³gÄ T”Ä ¸”Ää¸U¶*Bh¼*¶NQ lB”S5º QRTUTxQ A^TxQ S*QRT0¶NQ l2ÌcBDBDCl¶*´u³JChe Ch¸UBDTU[Ál2´RÂWO ´u³BDT2Ìc´ @*CNS¹´ Ch¸U¶*B·[œB”QRCÓlUÍ@NQRTUB½BDTUTU´ T·¾ŒfÓb5V¿Ä-G´^¸U¶*B\ÌcB”l/¸$´RÂW´ @*T µ5C*´u³JO B”S? B M QRO O*¸U¶*B0BPe~l/¸Ue C*?g³´ TUµl#Q duQRe O~QRÌ*O Bae Cœ¸U¶*B2O e ¸UBDTxQu¸U@*TUB0m´ CNmBDTUCœ´ C*O A½¸U¶*B

(32) mDQ lBJ´RÂ7SB¸UBDTU[œe C*e~l/¸Ue~mJ¼NQRTxQR[œB¸UBDT Âô T0¸U¶*B·O ´mDQu¸Ue ´ C¹´RÂ#¸U¶*B½¸xQRTU? B¸”Ä2»(C8í îï{M=¼*TUBDO e [œe CNQRTUAFmDQRO~m@*O~Qu¸Ue ´ CNl0´RÂk¸U¶*B­iWTxQR[œZDTº(I0QR´œÌc´ @*CNS4¾{iI0]J¿0¶NQ d B½ÌcBDBDC e C¸UTU´S@NmB”S-ÄkGa¶*B$m´ CNle~SBDTUB”SÁ[œ´SBDO=³aQ l#¸U¶*B$m´ O ´mDQu¸UB”SÁ@*C*e Âô TU[ O e C*B”QRTJQRTUTxQ AH¾ŒX2nK

(33) ¿WÂô TÌc´R¸U¶^¸UTxQRCNl[œe ¸¸Ue C*?·QRCNS TUB”mBDe d5e C*?^QRTUTxQ AlDÄ

(34) »(C4í ï#QRCNS8í uï{M7Q^f¹»/f_ðTxQ S*QRT

(35) ³Je ¸U¶Ó³Je~SBDO Aº(lBD¼NQRTxQu¸UB”S¹QRC¸UBDC*CNQ l2³aQ l

(36) l/¸U@NSe B”SQRCNS¹¸U¶*B­iI0] ¶NQ laÌcBDBDC¹mDQRO~m@*O~Qu¸UB”S^Âô Ta¸xQRTU? B¸J¼c´le ¸Ue ´ C¹QRCNSHd BDO ´me ¸/A Ä#]B”le~SB”lDM e~QRC¹n7eÞÝaÆ ¶NQ d B

(37) e C5d B”l/¸Ue ?Qu¸UB”S­¸U¶*Bg³aQ d BÂô TU[ ´ ¼¸Ue [œe ДQu¸Ue ´ CF´RÂkf¹»/f_ TxQ S*QRTJÌNQ lB”SH´ CH¸U¶*BœiI0] @Nle C*?­m´ O ´mDQu¸UB”SFX2nKä¸UTxQRCNl[œe ¸¸Ue C*?­QRCNSFTUB”mBDe d5e C*?ÁQRC¸UBDC*CNQ l í Dï1í ï{Ä1Ô¶*e O B

(38) QRO O*¸U¶*B2QRÌc´ud BJ³´ TUµlk¶NQ d BJBP¼*O ´ e ¸UB”S·¸U¶*B

(39) Q lA5[œ¼¸U´R¸Ue~maTUBD? e ´ Cœ´RÂ=¸U¶*B

(40) fÓb5V8´ud BDT#le ? CNQRO º‹¸U´Rº{C*´ e~lBaTxQu¸Ue ´ ¾‹b>2I2¿g¼cBDTÂô TU[ÁQRCNmB M¸U¶*B^]aQRTxQRC*µ5e CÏÌc´ @*CNS϶NQ l½ÌcBDBDC8l¶*´u³JCϸU´h? e d B­QÓb>2IÛ¸U¶*TUB”l¶*´ O~SÏQR¼*¼*TU´ Pe [ÁQu¸Ue ´ Ce C&¸U¶*B lUmBDCNQRTUe ´\´RÂkm´ O ´mDQu¸UB”SHme Txm@*O~QRTJQRTUTxQ AÁm´ CÒN? @*TxQu¸Ue ´ CÓí ïWí ò ï(¾Œmx¶NQR¼¸UBDT 5¿Ä K0O O7¸U¶*B”lB·QuÂô TUBD[œBDC¸Ue ´ C*B”SHe C5d B”l/¸Ue ?Qu¸Ue ´ CNla¶NQRCNSO B\´ C*O A­¸U¶*B·mDQ lB”lJ³J¶*BDTUBg¸U¶*B\@*C*µ5C*´u³JC¹¼NQRTxQR[œB¸UBDTxlJQRTUB\Q lUl@*[œB”S ¸U´­ÌcB\SB¸UBDTU[œe C*e~l/¸Ue~mRÄ2b5e CNmBg¸U¶*B·l@*¼*¼c´ T¸2´RÂ1¸U¶*B½¼NQRTxQR[œB¸UBDTxlJ³aQ lJC*´R¸0¸xQRµ BDC¹e C¸U´^Q mDm´ @*C¸”M¸U¶*B”lB½Ìc´ @*CNS*l

(41) mDQRC*C*´R¸ SB”lUmTUe ÌcB¸U¶*B0´ud BDTxQRO OfÓb5V&¼cBDTÂô TU[ÁQRCNmB Ä3K2l#QRCÁQRO ¸UBDTUCNQu¸Ue d B¸U´$¸U¶*B0SB¸UBDTU[œe C*e~l/¸Ue~m0mDQ lB MR³BJ¼*TU´ ¼c´lB¸U´g¶NQRCNSO Ba¸U¶*B ¼*TU´ Ì*O BD[Ûe C^¸U¶*Bg]aQ A B”le~QRCœÂÃTxQR[œBD³´ TUµœ³J¶*e~mx¶^³Je O O=¼*TU´ud5e~SB$Q½¸Ue ? ¶¸aO ´u³BDTÌc´ @*CNS^´ud BDTQRO Oc¸U¶*B$TxQRC*? B2´RÂ1b>2IÕQRCNSHQ ? ´5´SÁ¼*TUB”Se~m¸Ue ´ C^´RÂ7¸U¶*B½b>2IÖ¸U¶*TUB”l¶*´ O~S-ÄkGa¶*B$]aQ A B”le~QRCÁÌc´ @*CNS*laSB”QRO=³Je ¸U¶^¸U¶*B$TxQRCNS´ [Û¼NQRTxQR[œB¸UBDTaQRCNS­¼*TUB”l@*[œB QRCÓÆJÈ=ɁʌËuɁÊk¼*TU´ ÌNQRÌ*e O e ¸/A·SBDCNle ¸/A\ÂÃ@*CNm¸Ue ´ CӾü=S5Âx¿ÄWÅ0BDCNmB M ¸U¶*BDAœ³Je O O=QRO O ´u³"@Nlk¸U´·mx¶NQRTxQ m¸UBDTUe ÐDBJQRCNS·¸U´\¼*TUB”Se~m¸W[œ´ TUB m´ [œ¼*O B¸UBDO AÁf¹»/f_ÕTxQ S*QRT#¼cBDTÂô TU[ÁQRCNmB Äk>0´R¸UB0¸U¶NQu¸aC*´R¸JQRO ON¸U¶*B$]aQ A B”le~QRCÁÌc´ @*CNS*l¼*TU´ ¼c´lB”Sœe C­¸U¶*B

(42) O e ¸UBDTxQu¸U@*TUB

(43) QRTUB QRÌ*O Ba¸U´½¸xQRµ BJe C¸U´\Q mDm´ @*C¸k¸U¶*B

(44) mDQ lBJ³J¶*BDCÁ¸U¶*B0¼NQRTxQR[œB¸UBDTxlk´RÂ-e C¸UBDTUB”l/¸QRTUB0l@*¼*¼c´lB”S·¸U´½ÌcB2@*C*e Âô TU[œO AœSe~l/¸UTUe Ì*@¸UB”S-Ä Ga¶*BDTUBÂô TUB M=QR[œ´ C*?­duQRTUe ´ @NlJ¸/A5¼cB”l

(45) ´RÂW]aQ A B”le~QRCFÌc´ @*CNS*lDM7l@Nmx¶ÓQ l0¸U¶*BÁoce dºo=QRµuQReÌc´ @*CNS8í î ï{M=¸U¶*B·]BDO O º/b¸UBDe C5ÌcBDTU?Rº V#¼*¶*TxQRe [·º #QRC4GTUBDB”l\Ìc´ @*CNS í î îï{Mk¸U¶*BF]´ Ì*TU´udlµ5Aºo=QRµuQRekÌc´ @*CNS í î ò”ï{MWQRCNS&¸U¶*BF]aQ A B”le~QRC8K0ÌcBDOJÌc´ @*CNSÖí î”ó ï{MW³B m´ CNmBDC¸UTxQu¸UB M e CÁ¸U¶*e~l³´ TUµ=M ´ CÁ¸U¶*B2ÔBDe~lUl/º{ÔBDe CNl/¸UBDe C^Ìc´ @*CNSh¾ÃÔÔÖ]J¿2¾ŒlBDB·í î uï-QRCNSœ¸U¶*B2TUB”mBDC¸³´ TUµ·´RÂI0QR¼c´ ¼c´ T¸ QRCNS4_

(46) l¶*[ÁQRC'í î ”ï

(47) í î ïÿM ³J¶*e~mx¶4mDQRC8SB”QROW³Je ¸U¶Ï¸U¶*B^@*C*e Âô TU[œO AÏSe~l/¸UTUe Ì*@¸UB”Sϼ*TUe ´ T\Q lUl@*[œ¼¸Ue ´ C8QRCNSÏe~l½´ C*B­´RÂa¸U¶*B ¸Ue ? ¶¸UB”l/¸½Ìc´ @*CNS´RÂa¸U¶*BÁÔBDe~lUl\QRCNSÔBDe CNl/¸UBDe CÏŒQR[œe O A4í î Dï2í î ï{ÄFGa¶*B­lUmBDCNQRTUe ´H@*CNSBDT\e C5d B”l/¸Ue ?Qu¸Ue ´ CÓe~l½Q¹f¹»/f_ TxQ S*QRT

(48) B”l/¸Ue [ÁQu¸Ue C*?F¸U¶*B­Se TUB”m¸Ue ´ Cº{´Rº(QRTUTUe duQRO¾ŒEg_0K

(49) ¿$´RÂaQ^¸xQRTU? B¸½QRCNSÓ¸U¶*B­m´ [œ¼*O BPÓTxQ S*QRTº(mTU´lUl/º(lB”m¸Ue ´ C&¾ŒI0iab*¿

(50) e C ¸U¶*Bgb5³BDTUO e C*? \mDQ lB ÄW_2@*TaTUB”l@*O ¸xlQRTUB$SBDTUe d B”SÁe C^¸U¶*B$mDQ lB

(51) ´RÂO e C*B”QRT$¾Ã¼c´lUle Ì*O AÁC*´ Cº{@*C*e Âô TU[­¿Wm´ O ´mDQu¸UB”S^QRTUTxQ Al#Qu¸ BD[œe~lUle ´ CFQRCNS^TUB”mBD¼¸Ue ´ C7Ä Ga¶*BgTUB”l/¸0´RÂ1¸U¶*e~lJ¼NQR¼cBDT0e~l0´ TU?QRC*e ÐDB”S^Q laÂô O O ´u³0lDöb5B”m¸Ue ´ Chò·¼*TUB”lBDC¸xla¸U¶*B½? BDC*BDTxQRO-¼*TU´ Ì*O BD[ lB¸U@*¼¹³Je ¸U¶hm´ O ´mDQu¸UB”S O e C*B”QRT#QRTUTxQ AlDÄ7»(C^b5B”m¸Ue ´ CÁó*M ³B0mDQRO~m@*O~Qu¸UBa¸U¶*B2m´ TUTUB”l¼c´ CNSe C*?$ÔÔÖ]4[ÁQu¸UTUe P\Âô Tk¸U¶*B0Eg_0KÖQRCNS\¸U¶*B2m´ [œ¼*O BPœI0iab QRCNSF³B½¼*TU´ud Bge ¸xl2Se~QR? ´ CNQROl/¸UTU@Nm¸U@*TUB ÄJ»(Cb5B”m¸Ue ´ C NM=le [\@*O~Qu¸Ue ´ CNl0QRTUB½¼*TUB”lBDC¸UB”S^¸U´Hm´ CÒNTU[ظU¶*B\? ´5´S¹QRÌ*e O e ¸/AH´R ÔÔÖ]ä¸U´F¼*TUB”Se~m¸$¸U¶*Bœ[œB”QRCÏlUÍ@NQRTUB·BDTUTU´ Tœ¾ŒfÓb5V¿

(52) ´RÂW¸U¶*Bœ[ÁQuPe [\@*[ÇÆ\ÈNË ÜÝ(ÞɁʌËuɁʜ¾ŒfhK0j¿

(53) e CÏQRO OkTxQRC*? B·´RÂJb>2I ¾ŒQ lA5[œ¼¸U´R¸Ue~m

(54) QRCNSÁ¸U¶*TUB”l¶*´ O~SÁTUBD? e ´ CNlx¿Äk>0@*[œBDTUe~mDQROc¼*TU´mB”S@*TUB

(55) e~le C¸UTU´S@NmB”SÁ¸U´œQRCNQRO A5ÐDB0¸U¶*Bgf¹»/f_ÕTxQ S*QRTlAl/¸UBD[ e C^¸UBDTU[ÁlJ´RÂ1QRC¸UBDC*CNQ·? BD´ [œB¸UTUA ÄkÑ3e CNQRO O A MNb5B”m¸Ue ´ C ·STxQ ³0lW¸U¶*B½m´ CNmO @Nle ´ CNlDÄ ò -. ,.. /. 0. 5. %1. 32 4. 6. 7. !-. ,8. :9. ;-.

(56) /. ,0. 35. <8. =-. >/. ,6.

(57) -æ u° éN¬ ¯”ë ÔBm´ CNle~SBDT^Q8le C*? O Bº‹¸xQRTU? B¸­O ´mDQRO e ДQu¸Ue ´ ClUmBDCNQRTUe ´Ï³Je ¸U¶ Q8f¹»/f_ÙTxQ S*QRT­lAl/¸UBD[ Âô TU[œB”S'³Je ¸U¶ m´ O ´mDQu¸UB”S O e C*B”QRT2¾Ã¼c´lUle Ì*O A·C*´ Cº{@*C*e Âô TU[­¿3¸UTxQRCNl[œe ¸¸Ue C*?\QRCNSœTUB”mBDe d5e C*?½QRTUTxQ Al3³Je ¸U¶ QRCNS QRC¸UBDC*CNQ lDM TUB”l¼cB”m¸Ue d BDO A ÄVWQ mx¶ ¸UTxQRCNl[œe ¸¸Ue C*?·QRC¸UBDC*CNQ½lBDCNS*lW´ @¸JQ\Se À=BDTUBDC¸³aQ d BÂô TU[FM ³J¶*e~mx¶­e~lWµ5C*´u³JC7ÄkGa¶*B m´ [œ¼*O BPÁTUB”mBDe d B”SÁle ? CNQRONe~l ¸U¶*BDCF? e d BDC^Ì5AÓí Dï{ö M ¾/î ¿ ? A@. CBDFEHGD. I. M. N. N ×1. 5. y(t) = βb(θ)aT (θ)x(t) + n(t) = βC(θ)x(t) + n(t) t = 1 . . . T,. ³J¶*BDTUB e~l0¸U¶*B·C5@*[\ÌcBDT

(58) ´RÂlCNQR¼Nl¶*´R¸xlDÄ$b5e CNmB·Ìc´R¸U¶h¸UTxQRCNl[œe ¸¸Ue C*?HQRCNS¹TUB”mBDe d5e C*?^QRTUTxQ Al0QRTUB\O e C*B”QRT”MN¸U¶*Bœl/¸UBDBDTUe C*? d B”m¸U´ Txl¶NQ d B2¸U¶*B$Âô O O ´u³Je C*?\Âô TU[Ál ¾‹ò ¿ ¾Œó¿ T.  T 2π 2π a(θ) = exp(−j a1 sin θ), . . . , exp(−j aM sin θ) , λ λ  T 2π 2π b(θ) = exp(−j b1 sin θ), . . . , exp(−j bN sin θ) , λ λ. MQRCNS M M5QRTUBJ¸U¶*B2¼c´le ¸Ue ´ CNlW´RÂ-¸U¶*B2BDO BD[œBDC¸xl ³J¶*BDTUB SBDC*´R¸UB”lk¸U¶*B

(59) ³aQ d BDO BDC*?R¸U¶7MR³J¶*BDTUB M ¾Ã³gÄ T”Ä ¸”ÄkQ·TUBÂÃBDTUBDCNmB2¼c´ e C¸¿W´R¸U¶*B

(60) ¸UTxQRCNl[œe ¸¸Ue C*?œQRCNS^TUB”mBDe d5e C*?·QRTUTxQ AlDMTUB”l¼cB”m¸Ue d BDO A Ä1>0´R¸UB

(61) ¸U¶NQu¸aÂô T¸U¶*Bgm´ O ´mDQu¸UB”S lUmBDCNQRTUe ´NM=¸U¶*B­Eg_0KÛe~l

(62) ¸U¶*B­lUQR[œBÁQ l$¸U¶*B­Se TUB”m¸Ue ´ Cº{´Rº(SBD¼NQRT¸U@*TUBH¾ŒEg_

(63) E$¿M¶*BDCNmB e~l$¸U¶*BÁ´ C*O Ah´ C*BÁO ´mDQu¸Ue ´ C¼NQuº TxQR[œB¸UBDT$´R¸U¶*Bœ¸xQRTU? B¸”Ä­f¹´ TUBD´ud BDT”M e~l½Q lUl@*[œB”Sh¸U´¹¶NQ d BœQRCÖÆ·È=ɁʌËuɁÊ

(64) @*C*e Âô TU[Se~l/¸UTUe Ì*@¸Ue ´ CÏ´ud BDT

(65) ¸U¶*B­l@*¼*¼c´ T¸ ÄWÑ*´ T2le [œ¼*O e~me ¸/A^e CH¸U¶*B\SBDTUe duQu¸Ue ´ C7M*³BgSBÒNC*B Q la¸U¶*Bg¼NQRTxQR[œB¸UBDTJ´RÂ1e C¸UBDTUB”l/¸0e CNl/¸UB”Q SH´RÂ1³´ TUµ5e C*? Se TUB”m¸UO AF³Je ¸U¶ Ä\>0´R¸UB\¸U¶NQu¸”M-¸U¶*B·¼=S5ÂWÂô T e~l ĽÔBÁSBDC*´R¸UB Ä\Ga¶*B BDO BD[œBDC¸xlJ´R QRTUB$? e d BDCHÌ5A Ä e~la¸U¶*Bgd B”m¸U´ TJ´RÂ1B”Q mx¶^¸UTxQRCNl[œe ¸¸UB”S ³aQ d BÂô TU[FÄ0ÔB·l@*¼*¼c´lB½¸U¶NQu¸

(66) ¸U¶*B”lB\³aQ d BÂô TU[Ál0QRTUB½e CNSBD¼cBDCNSBDC¸gQRCNSh¶NQ d Bg¸U¶*B½Âô O O ´u³Je C*?^BD[œ¼*e TUe~mDQRO3m´uduQRTUe~QRCNmB [ÁQu¸UTUe P-ö M-³J¶*BDTUB Ä

(67) ÔBœQRO~l´^SBÒNC*B Q l0¸U¶*B C*´ e~lB0d B”m¸U´ TxlDM ³J¶*e~mx¶HQRTUB2Q lUl@*[œB”S·¸U´\ÌcB

(68) e CNSBD¼cBDCNSBDC¸JQRCNSÁe~SBDC¸Ue~mDQRO O AÁSe~l/¸UTUe Ì*@¸UB”S^me Txm@*O~QRTUO A·m´ [œ¼*O BP^Î$QR@NlUle~QRC ³Je ¸U¶hÐDBDTU´Rº{[œB”QRC¹QRCNShm´uduQRTUe~QRCNmB$[ÁQu¸UTUe P Ä e~l0¸U¶*B½¸xQRTU? B¸

(69) m´ [œ¼*O BP¹QR[œ¼*O e ¸U@NSB\TUBDO~Qu¸UB”SF¸U´Á¸U¶*B·I0iabF´R ¸U¶*Ba¸xQRTU? B¸#e C·¸U¶*B

(70) b5³BDTUO e C*? gmDQ lB M QRCNS·¶NQ l#QRChÆaÈ=ɁʌËuɁÊkme Txm@*O~QRT#m´ [œ¼*O BPÁÎ$QR@NlUle~QRCœSe~l/¸UTUe Ì*@¸Ue ´ Cœ³Je ¸U¶ÁÐDBDTU´$[œB”QRC QRCNSFduQRTUe~QRCNmB McCNQR[œBDO A Ä

(71) Ga¶*B½BDO BD[œBDC¸xl2´RÂ1¸U¶*B\@*C*µ5C*´u³JC¹¼NQRTxQR[œB¸UBDT0d B”m¸U´ T ³Je ¸U¶ MJQRTUBhm´ CNle~SBDTUB”S4¸U´8ÌcBÓl/¸xQu¸Ue~l/¸Ue~mDQRO O A4e CNSBD¼cBDCNSBDC¸Fl@Nmx¶'¸U¶NQu¸­¸U¶*B /´ e C¸^¼=S5Â Ä X0CNSBDTH¸U¶*B8Q lUl@*[œ¼¸Ue ´ C ´RÂ\e CNSBD¼cBDCNSBDC¸h´ ÌNlBDTUduQu¸Ue ´ CNlDM0¸U¶*BÏO e µ BDO e ¶*´5´SÖ´RÂ\¸U¶*BÂÃ@*O O\lB¸F´R·´ ÌNlBDTUduQu¸Ue ´ CNl e~la? e d BDCHÌ5A ¾ 5¿ ó λ. ai i = 1 . . . M. bj j = 1 . . . N. θ. θ. [0, π]. u = sin(θ). θ. u. [C(θ)]k,l =. C(θ). Rx =. 1 T. PT. t=1. √1 π 1−u2   exp(−j 2π λ (al + bk ) sin θ). C(θ) = b(θ)aT (θ) ∈ CN ×M. p(u) =. x(t)xH (t) = Diag(σs2 ). x(t). 2 T σs2 = [σ12 , . . . , σM ]. {n(t)}Tt=1. R = σn2 I β. J8. σβ2. β ∼ CN (0, σβ2 ). Θ = [u, βR , βI ]. βR = Re{β}, βI = Im{β}. T. AK. p(Θ) = p(u)p(βR )p(βI ). Y =. [y(1), y(2), . . . , y(T )]. ! T 1 1 X H p(Y; Θ) = N T N T exp − 2 (y(t) − βC(θ)x(t)) (y(t) − βC(θ)x(t)) . π σn σn t=1. L-.

(72) 7æ 5쌮”® 5ì è ®D¯ 5ì è écë è ê {éN° ç °u±*ê3±° ® 1±°u± ¯ ° 5®D¯”ì 8±¯”ìŒé è Ga¶*BaÔBDe~lUl/º{ÔBDe CNl/¸UBDe CœÌc´ @*CNS^í î uï{M SBDC*´R¸UB”S·Ì5A MR´RÂN¸U¶*BJ@*C*µ5C*´u³JC½¸xQRTU? B¸k¼NQRTxQR[œB¸UBDTxl e~lJQ [ÁQu¸UTUe PHl@Nmx¶H¸U¶NQu¸a¸U¶*B$Âô O O ´u³Je C*?œTUBDO~Qu¸Ue ´ C^¶*´ O~S*l M <N. D. O N. D. ,D. SR. QP. UT. TWV. YX ZI. ;-. %EQD ,D UD. E. WWB. Θ = [u, βR , βI ]. 3×3. E. . ˆ −Θ Θ. . ˆ −Θ Θ. T . E. Gkl =. . ˆ −Θ Θ. . ˆ −Θ Θ. T . ¾ ¿ /. ≥ WWB = sup HG−1 HT , hi ,si i=1,2,3. e~lW¸U¶*B$fÓb5V4´RÂ3QRC5AÁ]aQ A B”le~QRCÁB”l/¸Ue [ÁQu¸U´ T QRCNS ³J¶*BDTUB [ÁQu¸UTUe P^´R¸UB”l/¸º{¼c´ e C¸xlDÄ#Ga¶*B$BDO BD[œBDC¸xlJ´R¸U¶*B [ÁQu¸UTUe P QRTUB$? e d BDC^Ì5A ˆ Θ. 3×3. T. H = [h1 , h2 , h3 ]. e~lW¸U¶*B. 3×3. G. ¾ ¿. . E [Lsk (Y; Θ + hk , Θ) − L1−sk (Y; Θ − hk , Θ)][Lsl (Y; Θ + hl , Θ) − L1−sl (Y; Θ − hl , Θ)] , E {Lsk (Y; Θ + hk , Θ)} E {Lsl (Y; Θ + hl , Θ)}. 0. ³J¶*BDTUB MQRCNS ĽGa¶*B·BP¼cB”m¸xQu¸Ue ´ CNl$QRTUB\¸xQRµ BDCÓ´ud BDT0¸U¶*B /´ e C¸ Ä ¼=S5 IJe ? ´ TU´ @NlO A MR¸U¶*B$Í@NQRC¸Ue ¸/A [\@Nl/¸ÌcB

(73) [ÁQuPe [œe ÐDB”SÁ³gÄ T”Ä ¸”Ä QRCNS O B”Q Se C*?g¸U´œQ½¶*e ? ¶^m´ [œ¼*@¸xQu¸Ue ´ CNQRO m´ [œ¼*O BPe ¸/A Ä1Å0´u³BDd BDT”MRe ¸a¶NQ l#ÌcBDBDC^l¶*´u³JC¹í î ï1í ò uïc¸U¶NQu¸amx¶*´5´le C*? MQRCNSÁQ\Se~QR? ´ CNQRO*[ÁQu¸UTUe P O B”Q S*l#¸U´œQ\Ìc´ @*CNSHl/¸Ue O Oc¸Ue ? ¶¸”Ä#Ga¶*BDTUBÂô TUB M³B$Q lUl@*[œB

(74) ¶*BDTUB0¸U¶NQu¸ M M*QRCNSÁ¸U¶NQu¸ Ä »(C^¸U¶*e~l0mDQ lB M5¸U¶*BgBDO BD[œBDC¸xla´RÂ3¸U¶*Bg[ÁQu¸UTUe P mDQRCFÌcBg³JTUe ¸¸UBDCFQ l ¾ R¿ L(Y; Θ + hi , Θ) =. p(Y,Θ+hi ) p(Y,Θ). [K. si ∈ [0, 1], i = 1, 2, 3. p(Y, Θ). HG−1 HT. si. hi. ,7. (8. si =. 1 2 , ∀i. = 1, 2, 3. H. H = Diag([h1 , h2 , h3 ]T ). si = 1/2 ∀i. G. Gkl =. η(hk , hl ) + η(−hk , −hl ) − η(hk , −hl ) − η(−hk , hl ) , η(hk , 0)η(hl , 0). :5. ³J¶*BDTUB$³BgSBÒNC*B η(α, γ) =. Z Z Υ. ¾ ¿ 6. 1. 1. p(Y, Θ + α) 2 p(Y, Θ + γ) 2 dYdΘ, Ω. ³J¶*BDTUB QRCNS QRTUB2¸U¶*Bg´ ÌNlBDTUduQu¸Ue ´ CHQRCNSH¼NQRTxQR[œB¸UBDTJl¼NQ mB”lDM5TUB”l¼cB”m¸Ue d BDO A Ä ]A^SBDC*´R¸Ue C*? Ω. Υ. 0. η (Θ, α, γ) =. η(α, γ). mDQRCFÌcBgTUBD³JTUe ¸¸UBDCFQ l η(α, γ) =. Z. Z. 1. ¾ ¿ 7. 1. p(Y; Θ + α) 2 p(Y; Θ + γ) 2 dY, Ω. 1. j#O @*? ? e C*?F¾ 5¿#e C¸U´F¾ ¿M³B

(75) ´ ̸xQRe CHQ·mO ´lB”S5º‹Âô TU[ðBP¼*TUB”lUle ´ CÁÂô T ¾¸U¶*BgSB¸xQRe O~laQRTUB2? e d BDC­e C « L-. 7. Υ. η0. \I]ID. ! T 1 X H [f (Θ + α, t) − f (Θ + γ, t)] [f (Θ + α, t) − f (Θ + γ, t)] , η (Θ, α, γ) = exp − 2 4σn t=1 0. -. ¾/î ¿ è ê3ì *Ä î ¿ ¾/î î ¿ ,8. 1. η 0 (Θ, α, γ)p(Θ + α) 2 p(Θ + γ) 2 dΘ.. L^. 0.

(76) ³J¶*BDTUB Äa>0BP5¸”MNQRCHe C¸UBD? TxQu¸Ue ´ CH´ud BDT¸U¶*B½l@*¼*¼c´ T¸0´R¸U¶*Bg¼NQRTxQR[œB¸UBDTxle~lJTUB”Í@*e TUB”S^e CF´ TxSBDT¸U´ SBDTUe d B Ä#>0´R¸UB

(77) ¸U¶NQu¸”M*e Â1³BgQ lUl@*[œB$Q·@*C*e Âô TU[Æ

(78) È=ɁʌËuɁÊW¼=S5Âk´ C M5¸U¶*Bg¼=S5Â3Âô T e~l ³J¶*e~mx¶FmDQR@NlB”l QRCÓQRCNQRO A¸Ue~mDQRO1SBDd BDO ´ ¼*[œBDC¸

(79) ´RÂ#¸U¶*B·TUB”Í@*e TUB”S¹e C¸UBD? TxQu¸Ue ´ C¹@*C*´ ̸xQRe CNQRÌ*O B ÄgGa¶*e~l

(80) O B”Q S*l0¸U´FQ^C5@*[œBDTUe~mDQRO3e C¸UBD? TxQu¸Ue ´ C ¸U´mDQRO~m@*O~Qu¸UBÁ¸U¶*BFm´ CNle~SBDTUe C*?¹Ìc´ @*CNS8³J¶*e~mx¶8e~l\d BDTUAÓ¸Ue [œBº(m´ CNl@*[œe C*?NÄf¹´ TUBD´ud BDT”M3QÓmO ´lB”S5º‹Âô TU[BP¼*TUB”lUle ´ CÏe~l QRO ³aQ Al#e C¸UBDTUB”l/¸Ue C*?\ÌcB”mDQR@NlB

(81) e ¸0QRO O ´u³0lQRC^B”Q lAœe C¸UBDTU¼*TUB¸xQu¸Ue ´ C^´RÂ7¸U¶*B$Ìc´ @*CNS-M5e‹Ä B Ä M³B$mDQRCHl/¸U@NSAÁ¸U¶*B

(82) ¼cBDTÂô TU[ÁQRCNmB ´RÂ#¸U¶*BÁf¹»/f_ðTxQ S*QRT$lAl/¸UBD[³gÄ T”Ä ¸”Ä·l´ [œBœSB”le ? CÓ¼NQRTxQR[œB¸UBDTxlDÄ·iW´ CNlB”Í@*BDC¸UO A M-³Je ¸U¶Ó¸U¶*Bœe C¸UBDC¸Ue ´ CÓ´R´ ̸xQRe C*e C*? mO ´lB”S5º‹Âô TU[ØBP¼*TUB”lUle ´ CH´RÂkÔÔÖ]

(83) Mc³B½¼*TU´ ¼c´lBgQ­Se À=BDTUBDC¸

(84) QR¼*¼*TU´Q mx¶H³J¶*BDTUBg³B\Q lUl@*[œB½QÁ@*C*e Âô TU[ ÆgÈ=ɁʌËuɁÊa¼=S5 ´ C ¾ŒlBDB\QRO~l´Fí òîï³J¶*BDTUB$¸U¶*B\lUQR[œB

(85) ¸U¶*e C*?^QR¼*¼cB”QRTxlae CH¸U¶*B\m´ C¸UBP5¸0´RÂkmO~Q lUle~mDQRO-ÌcB”QRTUe C*?œB”l/¸Ue [ÁQu¸Ue ´ Cc¿Äf¹´ TUBD´ud BDT”M ³J¶NQu¸UBDd BDT2¸U¶*B¹Æ\È=ɁʌËuɁÊ0¼=S5´ C M-e ¸ge~l2¸U¶*BD´ TUB¸Ue~mDQRO O AF¼*TU´ud B”SF¸U¶NQu¸$³Bœl/¸Ue O O1´ ̸xQRe CQHl/¸UTUe~m¸$Ìc´ @*CNSÓ´ Ch¸U¶*BœfÓb5V0Ä ÔB\QRO~l´^l¶*´u³ÕÌ5AFle [\@*O~Qu¸Ue ´ C8¾Ãe Cb5B”m¸Ue ´ C NÄ ò ¿W¸U¶NQu¸2¸U¶*B½¸/³´^QR¼*¼*TU´Q mx¶*B”la? e d Bgd BDTUAFmO ´lBgÌc´ @*CNS*l

(86) QRCNSH¸U¶*B·lUQR[œB ¼*TUB”Se~m¸Ue ´ CH´R¸U¶*B\b>2I ¸U¶*TUB”l¶*´ O~S-Ä K2lUl@*[œe C*?4Q&@*C*e Âô TU[ ÆFÈ=ɁʌËuɁʜ¼=S5½´ C Ma¸U¶*Bl/¸UTU@Nm¸U@*TUB¹´RÂ$¸U¶*BÓ[ÁQu¸UTUe P e~l­? e d BDCÖQ lœÂô O O ´u³0lh¾ŒlBDB « è ê3ì *Ä ò½Âô TJ[œ´ TUB$SB¸xQRe O~lx¿ö ¾/î ò ¿ f (Θ, t) = βC(θ)x(t) η. θ. u. p(u) =. √1 π 1−u2. u. u. >-. u. \I]ID. L^. WWB. 0. .  WWB = Diag sup h1. ³J¶*BDTUB

(87) ¸U¶*B\QRTUTxQ A­le ? CNQRO-¸U´ÁC*´ e~lB­¾ ¼c´u³BDT”MQRCNS^³J¶*BDTUB e~lJ? e d BDCHÌ5A. ASN R. h21. 1 ,  G11 2 T ASN R +. ¿e~l2SBÒNC*B”SFQ l. P N/σn2. G11. G11 = 4. ³J¶*BDTUB$³BgSBÒNC*B. 1 2 σβ. 1 ,  2 T ASN R +. ³J¶*BDTUB. P =. PM. k=1. 1 2 σβ. σk2. .  ,. e~la¸U¶*Bg¸U´R¸xQRO-¸UTxQRCNl[œe ¸¸UB”S. [(2 − h1 )f (2, h1 ) − 2(1 − h1 )] f (1, h1 )2 , (2 − h1 )2 f (2, h1 ).    M N ϕ2π 1 X X σk2 f (ϕ, h1 ) = σβ2 T 1 − cos h (a + b ) + 1. 1 k r 2 σ2 λ r=1 n k=1. ¾/î”ó¿ ¾/î 5¿ ;-. »(CH¸U¶*B$Âô O O ´u³Je C*?NM³B½QRCNQRO AlB

(88) ¸U¶*Bg¼*TU´ ¼c´lB”S^Ìc´ @*CNSHe CF¸UBDTU[Ála´RÂ#b>2IÕ¸U¶*TUB”l¶*´ O~S^¼*TUB”Se~m¸Ue ´ C¹QRCNSFQRTUTxQ Aœ? BD´ [œB¸UTUA SB”le ? C7Ä æ « è ± 7®”쌮 ÉUËUÈNÞɁ݋ʌށÜ\Ë gÝ *Þ xË =â Ga¶*BDTUBgQRTUB

(89) ¸U¶*TUBDB$¼*TU´ ¼cBDT¸Ue B”la´R¸U¶*BgÔÔÖ]Ö[ÁQu¸UTUe P¾/î ò ¿ö î ÄJE2@*Bk¸U´a¸U¶*BWSe~QR? ´ CNQRORl/¸UTU@Nm¸U@*TUBk´RÂ5¸U¶*BkÔÔÖ]Ó[ÁQu¸UTUe P-MD¸U¶*B#O ´u³BDT-Ìc´ @*CNS*l-´ C$B”l/¸Ue [ÁQu¸Ue ´ CgBDTUTU´ Txl=QRTUBkSB”m´ @*¼*O B”S-Ä %BL`. _. a 4bc4Jd. e. Lf Zg 3h*i. /.

(90) ò ÄJGa¶NQRC*µl#¸U´½¸U¶*e~lSBDTUe duQu¸Ue ´ C7M ¸U¶*B2e C*e ¸Ue~QRO=[\@*O ¸Ue~Se [œBDCNle ´ CNQROc´ ¼¸Ue [œe ДQu¸Ue ´ CÁ¼*TU´ Ì*O BD[Û³gÄ T”Ä ¸”Ä M M5QRCNS ¶NQ l ÌcBDBDCFTUB”S@NmB”S­¸U´­Q·[œ´ C*´Se [œBDCNle ´ CNQRO=´ ¼¸Ue [œe ДQu¸Ue ´ CF¼*TU´ Ì*O BD[سgÄ T”Ä ¸”Ä ´ C*O A Ä ó*ÄJGa¶*B\ÔÔÖ] Âô T QRCNS QRTUB$¸U¶*B·lUQR[œB\Q lJ¸U¶*BDe T$]aQ A B”le~QRChiI0] e C¹¸U¶*B·mDQ lB½³J¶*BDTUB e~l2Q lUl@*[œB”SH¸U´^ÌcB µ5C*´u³JCϾ¸U¶*Bg¼*TU´5´RÂ3e~l0l/¸UTxQRe ? ¶¸Âô TU³aQRTxSN¿Ä "ÈNÞÉ ËuÉ ÁÆ xÞ\Ê ÁÈ=ÉUÞxâuÊ Ý‹Ê ­Ý *Þ Ë xÆ Æ =â­Ý *Þ ðÝ 5ÉUÞÜ *Ë â Ga¶*B$QRe [Û´RÂ-¸U¶*e~l¼NQRT¸e~lW¸U´\BP*QR[œe C*B0¸U¶*B

(91) @NlBÂÃ@*O C*B”lUlW´RÂ@Nle C*?½¸U¶*B2ÔÔÖ]"¸U´·¼*TUB”Se~m¸W¸U¶*B

(92) @*O ¸Ue [ÁQu¸UB

(93) ? O ´ ÌNQROcfÓb5V QRCNSϸU¶*Bhb>2I ¸U¶*TUB”l¶*´ O~S-Ä&Ñ*´ T\¸U¶NQu¸ÁTUB”Q l´ C7M1³BFm´ CNle~SBDT½¸U¶*BFBD[œ¼*e TUe~mDQRO? O ´ ÌNQROfÓb5Vð´RÂ0¸U¶*BFfhK0jðB”l/¸Ue [ÁQu¸U´ T”M ³J¶*e~mx¶he~l2BDduQRO @NQu¸UB”S¹´ud BDT\î Áf¹´ C¸UB­iQRTUO ´Á¸UTUe~QRO~lDÄ

(94) Ga¶*Bœle [\@*O~Qu¸Ue ´ Che~l2¼cBDTÂô TU[œB”S¹³Je ¸U¶Ó¼NQRTxQR[œB¸UBDTxl0Q l0Âô O O ´u³0lDö ¸U¶*Bœ¸UTxQRCNl[œe ¸\QRTUTxQ AFe~l½l¼NQRTxlBœ³Je ¸U¶ lBDCNl´ Txl$QRCNS³Je ¸U¶&e C¸UBDTº{BDO BD[œBDC¸½l¼NQ me C*?&¾Ãe CÏ@*C*e ¸\´RÂa³aQ d BDO BDC*?R¸U¶Nlx¿ B”Í@NQRO~l¸U´ QRCNS^¸U¶*B½TUB”mBDe d BgQRTUTxQ AÁe~l0QRC¹X2nK ³Je ¸U¶ lBDCNl´ TxlJQRCNSH³Je ¸U¶¹e C¸UBDTº{BDO BD[œBDC¸2l¼NQ me C*?¹¾Ãe C¹@*C*e ¸2´R ³aQ d BDO BDC*?R¸U¶Nlx¿0B”Í@NQRO~l

(95) ¸U´ *Ä Ä^b5@Nmx¶&QRTUTxQ Ahm´ CÒN? @*TxQu¸Ue ´ CÓe~lg³BDO O º{µ5C*´u³JCÓe C&f¹»/f_ TxQ S*QRTÁ¾/í ò ïW¼7Ä ¿2¸U´hmTUB”Qu¸UBÁQ >0AÍ@*e~l/¸kd5e T¸U@NQROQRTUTxQ A

(96) ³Je ¸U¶œ? ´5´S½¼cBDTÂô TU[ÁQRCNmB Ä3Ga¶*Ba@*CNm´ TUTUBDO~Qu¸UB”S½f¹»/f_"TxQ S*QRT1³aQ d BÂô TU[ÁlQRTUB? BDC*BDTxQu¸UB”S½@Nle C*? Å2Q S*QR[ÁQRTxS­m´SB”l³Je ¸U¶ lCNQR¼Nl¶*´R¸xlDÄ1Ga¶*B2¸UTxQRCNl[œe ¸¸UB”S^¼c´u³BDTe~laQ lUl@*[œB”SÁ¸U´·ÌcB$@*C*e Âô TU[œO A­Se~l/¸UTUe Ì*@¸UB”S­´ C QRO O-¸UTxQRCNl[œe ¸

(97) QRC¸UBDC*CNQ lDÄ e~l2mx¶*´lBDCF´ CH¸U¶*B\l@*¼*¼c´ T¸ ÄÑ3e ? @*TUBÁî½l¶*´u³0la¸U¶*B½ÔÔÖ]äQRCNS^¸U¶*B\fhK0jÖ´RÂ1¸U¶*B ¼NQRTxQR[œB¸UBDTW´RÂ7e C¸UBDTUB”l/¸ d BDTxl@NlWK

(98) b>2IgÄ»{¸JmDQRC­ÌcB$lBDBDC­¸U¶NQu¸¸U¶*B

(99) ÔÔÖ]'¼*TU´ud5e~SB”lWQ½? ´5´SÁ¼*TUB”Se~m¸Ue ´ C^´RÂ-¸U¶*B$fÓb5V e CFQRO O=TUBD? e ´ CNlDÄ3»{¸0¼*TUB”Se~m¸xlW¸U¶*B

(100) ¸U¶*TUB”l¶*´ O~SFb>2I O ´mDQu¸Ue ´ C­¸U´œÌcB ÁS*]ÌcBDO ´u³¸U¶*B

(101) ¸U¶*TUB”l¶*´ O~SFb>2I e CNSe~mDQu¸UB”S^Ì5AÁ¸U¶*B fhK0j1Ä >0BP5¸”M3Q lgQuÂô TUBD[œBDC¸Ue ´ C*B”S-M=¸U¶*BDTUBÁQRTUB\¸/³´F¼c´lUle Ì*O BÁQ lUl@*[œ¼¸Ue ´ CNl2Âô T$¸U¶*BÓÆ\È=ɁʌËuɁÊ

(102) ¼=S5Âa´ C M´ C*BœO B”Q S*l2¸U´hQ C5@*[œBDTUe~mDQROke C¸UBD? TxQu¸Ue ´ C&QRCNSÏQRC*´R¸U¶*BDT½O B”Q S*l$¸U´ÓQ¹mO ´lB”S5º‹Âô TU[ÙBP¼*TUB”lUle ´ C´RÂa¸U¶*B­Ìc´ @*CNS-ÄF»(C8Ñ3e ? @*TUB^òM3³B­l¶*´u³ ¸U¶NQu¸¸U¶*B

(103) ¸/³´œQ lUl@*[œ¼¸Ue ´ CNlW? e d B

(104) d BDTUAÁmO ´lB

(105) Ìc´ @*CNS*laQRCNS­¸U¶*B$lUQR[œB

(106) ¼*TUB”Se~m¸Ue ´ C^´R¸U¶*Bgb>2IÖ¸U¶*TUB”l¶*´ O~S-Äk>0´R¸UB

(107) ¸U¶NQu¸”M e C¹´ @*T0le [\@*O~Qu¸Ue ´ C7M*¸Ue [œB½C*BDB”SB”SH¸U´­mDQRO~m@*O~Qu¸UB$¸U¶*B½Ìc´ @*CNSF³Je ¸U¶¹C5@*[œBDTUe~mDQRO7e C¸UBD? TxQu¸Ue ´ CHe~l0´ud BDTgî \¸Ue [œB”l0´RÂ1¸Ue [œB e C¹¸U¶*B\´R¸U¶*BDT$mDQ lB ÄgiW´ CNlB”Í@*BDC¸UO A M*¸U´^¶NQ d B\QÓ¾Œl/¸Ue O O3¸Ue ? ¶¸¿JÌc´ @*CNSh³Je ¸U¶hB×­me BDC¸UO A¹m´ [œ¼*@¸xQu¸Ue ´ CNQRO1m´l/¸

(108) QRCNS¹B”Q lA e C¸UBDTU¼*TUB¸xQu¸Ue ´ C7M¸U¶*B\ÔÔÖ]äSBDTUe d B”SF³Je ¸U¶¹¸U¶*B·Q lUl@*[œ¼¸Ue ´ C¹´RÂk@*C*e Âô TU[ Æ$È=ɁʌËuɁÊJ¼=S5ÂW´ C e~l0¼*TUBÂÃBDTUTUB”SFB”l¼cB”me~QRO O A Âô T0SB”le ? C*e C*?œf¹»/f_ TxQ S*QRTJlAl/¸UBD[FÄ ÆuɁÉUÆuà ÞxË ÁÞ݋ɁàÁÊ uÞÜÝ‹Ê ÆuÝ‹ÊŒË Ga¶*e~lJ¼NQRT¸0e C5d B”l/¸Ue ?Qu¸UB”l¸U¶*B½ÌcBD¶NQ d5e ´ TJ´RÂ3¸U¶*B\SBDTUe d B”S^ÔÔÖ] ³gÄ T”Ä ¸”Ä#¸U¶*B\QRTUTxQ AÁ? BD´ [œB¸UTUA­´RÂ1Ìc´R¸U¶F¸U¶*B½TUB”mBDe d BDT QRCNS\¸UTxQRCNl[œe ¸¸UBDT”Ä1>0´R¸UBa¸U¶NQu¸#¸U¶*BJ¼*TU´ ¼c´lB”S·Ìc´ @*CNS·¶NQ lkÌcBDBDC­SBDTUe d B”S·e C·¸U¶*B2m´ C¸UBP5¸#´RÂ=O e C*B”QRTWQRTUTxQ Al3Ì*@¸W¼c´lUle Ì*O A C*´ Cº{@*C*e Âô TU[FÄkiW´ CNlB”Í@*BDC¸UO A Mue ¸kTUBD[ÁQRe CNl1Q

(109) SBD? TUBDB´RÂNÂÃTUBDB”S´ [ä¸U´

(110) BDC*¶NQRCNmB¸U¶*Ba¼cBDTÂô TU[ÁQRCNmB ÄÔBÒNTxl/¸kQRCNQRO A5ÐDBW¸U¶*B e [œ¼NQ m¸W´RÂ-¸U¶*B2TUB”mBDe d BDTWQRTUTxQ A½? BD´ [œB¸UTUA·³J¶*e O B0¸U¶*B0¸UTxQRCNl[œe ¸¸UBDTWe~lW[ÁQ SBJÂÃTU´ [ÛQ\mO~Q lUle~mDQRONX2nK½Ä5]´R¸U¶Á¸UTxQRCNl[œe ¸¸UBDT QRCNSÓTUB”mBDe d BDTgQRTUB·[ÁQ SBœ³Je ¸U¶ lBDCNl´ TxlDĜGa¶*B·¸UTxQRCNl[œe ¸¸UBDTge~l½Q^Ò*PB”SX2nK¾Ã¶NQRO º{³aQ d BDO BDC*?R¸U¶Óe C¸UBDTº BDO BD[œBDC¸Wl¼NQ me C*?5¿3QRTUTxQ A ÄGa¶*BJTUB”mBDe d BDT1¶NQ l#Se À=BDTUBDC¸#O e C*B”QRT#QRTUTxQ A$? BD´ [œB¸UTUe B”l1µ BDBD¼*e C*?

(111) ¸U¶*B0QRTUTxQ A½QR¼cBDT¸U@*TUB ¾Ãe C­@*C*e ¸a´R ¿kÒ*PB”Sh¾Ãe‹Ä B Ä3¸U¶*B

(112) ¼c´le ¸Ue ´ CNl#´RÂ-¸U¶*B$ògBP5¸UTUBD[œB

(113) lBDCNl´ Txlk´RÂ-¸U¶*B

(114) O e C*B”QRTQRTUTxQ A\QRTUB0Ò*PB”SN¿Ä1»(C­´R¸U¶*BDTW³´ TxS*lDM ¸U¶*BDe Tge~l½ò ò^¼c´le ¸Ue ´ CNlgQ duQRe O~QRÌ*O B\Âô T$¸U¶*B H´R¸U¶*BDT½lBDCNl´ Txl·¾ *î”ó^¼c´lUle Ì*e O e ¸Ue B”lx¿ÄÁGa¶*BÁC5@*[\ÌcBDTg´RÂa´ ÌNlBDTUduQu¸Ue ´ CNl2e~l h1 h2. h3. h1. βR. a 4 jF4Yklk\m. Le. n. 3ipo. βI. i. u. o. iFq. Lf [q(2 cg 32rts%u. 3i. Lf s*vw. Lf. xf 32. ,8c8c8. M =8. 4. N =8. >8. /. 530. T = 64 h1. [−1, 1]. u. -. u. ,8c8. u. a 4zy{4$rU|r~}. Zq. 3n. i€. q. 3i. M =N =8. D = 23. λ 2. \0. 0. :5

(115) -{0.

(116)

(117) Ä ÔB\¶NQ d B½? BDC*BDTxQu¸UB”S¹QRO O¸U¶*BœQRTUTxQ AHm´ CÒN? @*TxQu¸Ue ´ CNl0QRCNShm´ [œ¼*@¸UB”S¹¸U¶*BœQ lUl´me~Qu¸UB”SHÔÔÖ]

(118) Ä=»(CÑ3e ? @*TUB\ó*M QR[œ´ C*?­¸U¶*B”lB *î”óÁÌc´ @*CNS*l

(119) ³Bœ¶NQ d B\¼*O ´R¸¸UB”Sh¸U¶*BœÌc´ @*CNSÓ³J¶*e~mx¶ÓO B”Q S*l2¸U´^¸U¶*BœO ´u³B”l/¸½b>2I ¸U¶*TUB”l¶*´ O~S4¾ŒSBDC*´R¸UB”S Ìc´ @*CNSÓK

(120) ¿

(121) QRCNS¹¸U¶*BœÌc´ @*CNSh³J¶*e~mx¶Ó¶NQ l2¸U¶*BœO ´u³B”l/¸$fÓb5VÕe Ch¸U¶*BÁQ lA5[œ¼¸U´R¸Ue~m\QRTUB”QÓ¾ŒSBDC*´R¸UB”SÓÌc´ @*CNSÓ]J¿Ä-ÔB·¶NQ d B C*´R¸Ue~mB”Sh¸U¶NQu¸\Ìc´R¸U¶Ï? BD´ [œB¸UTUe B”l

(122) O B”Q Se C*?F¸U´FÌc´ @*CNS&K QRCNSÏ]ÚQRTUB·C*´R¸½³Je ¸U¶&[œe C*e [\@*[ÙTUB”S@*CNS*QRCNmAh´ Tg[œe C*e [\@*[ ?QR¼7Ä8»(CNSBDB”S-M#Âô T·¸U¶*e~lÁm´ CÒN? @*TxQu¸Ue ´ C7Mke ¸­mDQRC4ÌcBhlBDBDC8¸U¶NQu¸Áe ¸ÁBPe~l/¸xl\Âô @*Tœ[œe C*e [\@*[·º{TUB”S@*CNS*QRCNmA8QRTUTxQ AlDÄ&ÔB ¶NQ d B½m´ [œ¼*@¸UB”SH¸U¶*B\Ìc´ @*CNS*l2Q lUl´me~Qu¸UB”S^¸U´Á¸U¶*B”lB½Âô @*T0¼c´lUle Ì*e O e ¸Ue B”l

(123) QRCNSF¼*O ´R¸¸UB”SH¸U¶*B\ÌcB”l/¸

(124) ´ C*B½e CF¸UBDTU[Ál0´RÂ#fÓb5V Âô T$m´ [œ¼NQRTUe~l´ Ch¼*@*TU¼c´lB ÄgGa¶*BœÌc´ @*CNSÓK¾Ãe‹Ä B Äg¸U¶*B·Ìc´ @*CNSÓ³Je ¸U¶h¸U¶*BœO ´u³B”l/¸gb>2I ¸U¶*TUB”l¶*´ O~SN¿0l¶*´u³0l0¸U¶NQu¸gÌcB¸¸UBDT Q lA5[œ¼¸U´R¸Ue~m¹¼cBDTÂô TU[ÁQRCNmBmDQRCÖÌcB´ ̸xQRe C*B”S-Äð»{¸FBPe~l/¸xlHQ8? BD´ [œB¸UTUA'm´ CÒN? @*TxQu¸Ue ´ CO B”Q Se C*?8¸U´"lO e ? ¶¸UO A'ÌcB¸¸UBDT Q lA5[œ¼¸U´R¸Ue~mJ¼cBDTÂô TU[ÁQRCNmB\¾ÃÌc´ @*CNS^]J¿#Ì*@¸a³Je ¸U¶^Q½³´ Txl/¸ab>2I¸U¶*TUB”l¶*´ O~S-Äk>0´R¸UB0¸U¶NQu¸”M5³B2¶NQ d B0´ ̸xQRe C*B”Sœ¸U¶*B$lUQR[œB TUB”l@*O ¸xlDMe‹Ä B ÄklUQR[œB2Ìc´ @*CNS*lQ lUl´me~Qu¸UB”S·¸U´\¸U¶*B

(125) lUQR[œB2´ ¼¸Ue [ÁQROc? BD´ [œB¸UTUe B”lDMe CÁ¸U¶*B

(126) ´ ¼*¼c´le ¸UB

(127) mDQ lB0³J¶*BDTUB0¸U¶*B

(128) TUB”mBDe d BDT e~l

(129) QÁÒ*PB”SÓX2nKðQRCNS¹³J¶*BDTUB½¸U¶*B\¸UTxQRCNl[œe ¸¸UBDT$QRTUTxQ A^? BD´ [œB¸UTUAHe~l

(130) ´ ¼¸Ue [œe ÐDB”SFÂô O O ´u³Je C*?­¸U¶*BœlUQR[œB\QuÂô TUBD[œBDC¸Ue ´ C*B”S ³aQ A Ä -æ é è ² Œë3®”ìŒé è ® »(Cg¸U¶*e~l1m´ TUTUB”l¼c´ CNSBDCNmB MD³BW¶NQ d BWSBDTUe d B”SgQ2mO ´lB”S5º‹Âô TU[ BP¼*TUB”lUle ´ Cg´R¸U¶*BWÔBDe~lUl/º{ÔBDe CNl/¸UBDe C½Ìc´ @*CNSgÂô T3f¹»/f_ I0Q S*QRTJ³Je ¸U¶Óm´ O ´mDQu¸UB”SHO e C*B”QRT2QRTUTxQ AlDÄ#»{¸

(131) ¶NQ lJÌcBDBDChlBDBDCF¸U¶NQu¸0¸U¶*B\ÔBDe~lUl/º{ÔBDe CNl/¸UBDe C¹Ìc´ @*CNSHÂô TJ¸U¶*B\¼NQRTxQR[œB¸UBDTJ´R e C¸UBDTUB”l/¸

(132) ¼*TU´ud5e~SB”l2Q^? ´5´S¹¼*TUB”Se~m¸Ue ´ Ch´RÂ#¸U¶*BœfÓb5VÕe CQRO O3TUBD? e ´ CNlDÄ

(133) »{¸gQRO~l´^¼*TUB”Se~m¸xl0¸U¶*B\¸U¶*TUB”l¶*´ O~SÓb>2IÚO ´mDQu¸Ue ´ C C*B”QRT0¸U¶*B\¸U¶*TUB”l¶*´ O~Shb>2I e CNSe~mDQu¸UB”ShÌ5AH¸U¶*BœfhK0j1Ä=ÔB·¶NQ d B\QRO~l´­e C5d B”l/¸Ue ?Qu¸UB”SH¸U¶*B·e CõN@*BDCNmB\´RÂQRTUTxQ A­? BD´ [œB¸UTUA ´ C^¸U¶*BgÌcBD¶NQ d5e ´ Ta´RÂ3¸U¶*B$ÔBDe~lUl/º{ÔBDe CNl/¸UBDe CFÌc´ @*CNS-Ä 7æ « è ê3ì ·ÞÉÊ uÆuÝ‹ÊŒË ÏË >0´R¸UB$¸U¶NQu¸ ¾/î ¿ ³J¶*BDTUB. T = 64. U5

(134) -{0. ƒ.  U‚. cB. \I]ID. „ 4bc4 . L^. . 3i. e. η 0 (Θ, α, γ). ! T X 1 p(Y; Θ + α) p(Y; Θ + γ) = N T N T exp − ζ(Θ, α, γ, t) , π σn t=1 1 2. 1 2.

(135) /. 1 1 [y − f (Θ + α, t)]H [y − f (Θ + α, t)] + 2 [y − f (Θ + γ, t)]H [y − f (Θ + γ, t)] 2 2σn 2σn  1 1 1 1 1 = 2 yH y − yH f (Θ + α, t) − yH f (Θ + γ, t) − f (Θ + α, t)H y − f (Θ + γ, t)H y σn 2 2 2 2  1 1 H H + f (Θ + α, t) f (Θ + α, t) + f (Θ + γ, t) f (Θ + γ, t) . 2 2. ζ(Θ, α, γ, t) =. E2BÒNC*B. z = y − 12 f (Θ + α, t) − 21 f (Θ + γ, t). M*³B$¶NQ d B 5. ¾/î ¿ ,0.

(136) ζ(Θ, α, γ, t) =. ¾/î R¿. 1 H 1 z z + ζ 0 (Θ, α, γ, t), 2 σn 4. 35. ³J¶*BDTUB S´5B”laC*´R¸0SBD¼cBDCNSF´ C MNQRCNS ζ 0 (Θ, α, γ, t) =. [f (Θ + α, t) − f (Θ + γ, t)]H [f (Θ + α, t) − f (Θ + γ, t)]. 1 2 σn. ÄkiW´ CNlB”Í@*BDC¸UO A M. ζ 0 (Θ, α, γ, t). Y. ! T X 1 0 1 H exp − ( 2 z z + ζ (Θ, α, γ, t)) dY σn 4 Ω t=1 ! T X1 ζ 0 (Θ, α, γ, t)) . = exp − 4 t=1. 1 η (Θ, α, γ) = N T N T π σn 0. Z. ·ÞÉÊ uÆuÝ‹ÊŒË ÏË ÁÆuÝ‹ÉÊ Ñ*TU´ [Ù¾/î ¿M¸U¶*BglB¸0´RÂ3ÂÃ@*CNm¸Ue ´ CNlae C5d ´ O d B”S­e C. „ 4 jF4 . . 3i. eJn. †. WWB. ,6.   η 0 (Θ, h1 , h1 ) = 1,       η 0 (Θ, −h1 , −h1 ) = 1, 0. G11. ¾/î ¿ ,7. n. 2 − 21 (βR. βI2 )T. σk2 2 r=1 σn. PM PN. σk2 2 σn. . . 1 − cos. 4π λ h1 (ak. η0. u. Θ.  1  η(h1 , h1 ) = 2−h  2 ,     2−h1    η(−h1 , −h1 ) = 2 , 1−h1 η(h1 , −h1 ) = , 2 PM PN σk  4π 2 1T  σβ k=1 r=1 σ2 [1−cos( λ h1 (ak +br ))]+1  2  n   2−h1 1   .  η(h1 , 0) = 2 2 1 PM PN σk2 1−cos σβ 2 T [ ( 2π k=1 r=1 σ2 λ h1 (ak +br ))]+1 n. Ga¶*B½lB¸J´RÂ3ÂÃ@*CNm¸Ue ´ CNlJe C5d ´ O d B”S­e C. Gkk , k = 2, 3. o. + br ) , o  1 − cos 2π . λ h1 (ak + br ). Ga¶*BDC7MNle CNmBgQRO O-¸U¶*B

(137) ÂÃ@*CNm¸Ue ´ CNl S´ÁC*´R¸0SBD¼cBDCNSF´ C MÌ5A­e C¸UBD? TxQu¸Ue C*?·³gÄ T”Ä ¸”Ä M*³B$´ ̸xQRe C. ¾‹ò ¿ (8. QRTUB$? e d BDCHÌ5A.   η 0 (Θ, hk , hk ) = 1,       η 0 (Θ, −hk , −hk ) = 1,. Ga¶*BDC7M. ,6. QRTUB$? e d BDCHÌ5A.  η (Θ, h1 , −h1 ) = exp +  k=1   n    η 0 (Θ, h , 0) = exp − 1 (β 2 + β 2 )2T PM PN 1 R I k=1 r=1 2.       . ¾/î ¿.  PM σk2 η (Θ, hk , −hk ) = exp −h2k N T k=1 , 2 σn   PM 2 σk η 0 (Θ, hk , 0) = exp − 41 h2k N T k=1 . 2 σn 0. .   η(hk , hk ) = 1,       η(−hk , −hk ) = 1,.    2 PM σk2 h  η(hk , −hk ) = exp −h2k N T k=1 exp − σk2 ,  2 σn  β      P  2  h2k  η(h , 0) = exp − 1 h2 N T M k=1 σk exp − . k 4 k σ2 4σ 2 6. n. β. ¾‹òî ¿. ¾‹ò ò ¿.

(138) Ga¶*B½lB¸J´RÂ3ÂÃ@*CNm¸Ue ´ CNlJe C5d ´ O d B”S­e C                                                                         . G12. QRTUB

(139) ? e d BDCHÌ5A. (.        M X N X σk2 2π 2π 2 β 1 − cos h (a + b ) + β h 1 − cos h (a + b ) + 1 k r R 2 1 k r σ2 R λ λ k=1 r=1 n    )   2π 2π 1 2 2 h1 (ak + br ) − βI h2 sin h1 (ak + br ) + h2 , βI 1 − cos λ λ 2 (        M X N X σk2 2π 2π 2 η 0 (Θ, −h1 , −h2 ) = exp 2T β 1 − cos h (a + b ) − β h 1 − cos h (a + b ) + 1 k r R 2 1 k r σ2 R λ λ k=1 r=1 n )       2π 2π 1 2 2 βI 1 − cos h1 (ak + br ) + βI h2 sin h1 (ak + br ) + h2 exp , λ λ 2 (        M X N 2 X σk 2π 2π 0 2 η (Θ, −h1 , h2 ) = exp 2T β 1 − cos h1 (ak + br ) + βR h2 1 − cos h1 (ak + br ) + σ2 R λ λ k=1 r=1 n )       2π 2π 1 βI2 1 − cos h1 (ak + br ) + βI h2 sin h1 (ak + br ) + h22 exp , λ λ 2 (        M N 2 XX σ 2π 2π 2 0 k η (Θ, −h1 , −h2 ) = exp 2T β 1 − cos h1 (ak + br ) − βR h2 1 − cos h1 (ak + br ) + σ2 R λ λ k=1 r=1 n )       2π 1 2 2π 2 βI 1 − cos h1 (ak + br ) − βI h2 sin h1 (ak + br ) + h2 exp . λ λ 2 0. η (Θ, h1 , h2 ) = exp 2T. ¾‹òRó¿. iW´ CNlB”Í@*BDC¸UO A M η(h1 , h2 ) = η(−h1 , h2 ) =. ¾‹ò 5¿. 2 − h1 t1 t2 , 2. 3-. ³J¶*BDTUB #)    M N T X X σk2 2π 1 exp 1 − cos h1 (ak + br ) + 2 2 σ2 λ σβ k=1 r=1 n √ πσβ × n h io 12 , 2  2 P P σβ σk M N T 2π 1 4 2 2 k=1 r=1 σ2 1 − cos λ h1 (ak + br ) + σ2 n β   h 2 i2 P P σk M N   T 2π   h2 2 k=1 r=1 σ2 sin λ h1 (ak + br ) n h P i t2 = exp  2 P σk N   4 T2 M  1 − cos 2π + σ12  2 k=1 r=1 σn λ h1 (ak + br ) β √ πσβ × n h io 12 . 2  σβ T PM PN σk2 2π 1 4 2 2 k=1 r=1 σ2 1 − cos λ h1 (ak + br ) + σ2 h2 t1 = exp − 22 2σβ. !. (. h22 4. ". b5e [œe O~QRTUO A Mke ¸œe~lœl/¸UTxQRe ? ¶¸Âô TU³aQRTxSÓ¸U´lBDB^¸U¶NQu¸ ÄgÔBÁQRO~l´^¶NQ d B M M n. G12 = 0. ¾‹ò ¿ c/. ¾‹ò ¿ (0. ³J¶*e~mx¶7Mk¸U´ ? B¸U¶*BDT·³Je ¸U¶Õ¾‹ò 5¿M#O B”Q SϸU´ M7QRCNS Ä\Ga¶*BDTUBÂô TUB Mc¸U¶*B·[ÁQu¸UTUe P e~l β. M. η(h1 , −h2 ) = η(−h1 , −h2 ). G21 = 0 G13 = 0 G31 = 0 G23 = 0. 7. G32 = 0. 3-. G.

(140) Se~QR? ´ CNQRO=³Je ¸U¶FBDO BD[œBDC¸xla? e d BDCHÌ5A 2−h1 2. G11 = 2 .  2−h1. G22. G33. 2. −. σ2 β 1 2 2T σn. σ2 β 1 2 2T σn. PM. PN. k=1. PM. k=1. ¾‹ò R¿. 1−h1. 4π 2 r=1 σk [1−cos( λ h1 (ak +br ))]+1. 1. PN. r=1. σk2 [1−cos( 2π λ h1 (ak +br ))]+1.    2 PM σk2 h 1 − exp −h22 N T k=1 exp − σ22 2 σn β     , PM =2 2 h22 1 2 k=1 σk exp − 2 h2 N T σ2 exp − 2σ2 n β    2 PM 2 σ h k 1 − exp −h23 N T k=1 exp − σ23 2 σn β  ,    PM =2 2 h23 1 2 k=1 σk exp − 2 h3 N T σ2 exp − 2σ2 n. {5. 2 , . ¾‹ò ¿ (6. ¾‹ò ¿ (7. β. aG ¶NQRC*µl#¸U´½¸U¶*B$SBÒNC*e ¸Ue ´ C^´R e C¾/î 5¿M mDQRC­ÌcB

(141) TUBD³JTUe ¸¸UBDC^Q lWe C¾/î”ó¿ÄkX2le C*?·QRO Oc¸U¶*B$Q lUl@*[œ¼¸Ue ´ CNlWQRCNS TUB”l@*O ¸xlJQRÌc´ud B M¸U¶*B½mO ´lB”S5º‹Âô TU[ BP¼*TUB”lUle ´ C^´R¸U¶*Bg[ÁQu¸UTUe P mDQRCHÌcBg³JTUe ¸¸UBDC¹Q l ¾Œó ¿ ;-. f (ϕ, h1 ). G11. WWB.   h2 h2 h2 WWB = Diag sup 1 , sup 2 , sup 3 , h1 G11 h2 G22 h3 G33. c8. ³Je ¸U¶ ? e d BDCHe C&¾/î”ó¿M7¾‹ò ¿M*QRCNSϾ‹ò ¿MTUB”l¼cB”m¸Ue d BDO A Ä >0´R¸UB\¸U¶NQu¸½e CÓ¸U¶*Bœ´ TUe ? e CNQROÂô TU[,´RÂW¸U¶*BœÔBDe~lUl/º{ÔBDe CNl/¸UBDe CÌc´ @*CNS"¾ ¿M7³Bœ¶NQ d B½¸U´F´ ¼¸Ue [œe ÐDB·¸U¶*Bœ[ÁQu¸UTUe P ³gÄ T”Ä ¸”Ä QRCNS Ägb5e CNmB SBD¼cBDCNS*l

(142) ´ C*O AH´ C Mc¸U¶*B\´ ¼¸Ue [œe ДQu¸Ue ´ C¹¸xQ lµHe~l2TUB”S@NmB”SF¸U´ ³J¶*e~mx¶ e~la[œ´ TUB

(143) ¸UTxQ m¸xQRÌ*O B Äk>0BP5¸”M*³B$? e d BgQœmO ´lB”S5º‹Âô TU[ BP¼*TUB”lUle ´ C­Âô T M M ¾Œó*î ¿ (6. G11 , G22 , G33. (7. /. h1 , h2 ,. h3. WWB. h2k , ∀k sup Gkk hk. hi. Gii. h2. k sup Gkk k = 2, 3. hk. WWBkk = sup. x exp(−ax) , a > 0, − exp(−2ax)]. x≥0 2[1. ³J¶*BDTUB. x = h2k. QRCNS. a = NT. PM. 2 k=1 σk 2 2σn. +. 1 2 2σβ. Äk»{Â1³BgSBDC*´R¸UB. g(x) =. x exp(−ax) 2[1−exp(−2ax)]. M¸U¶*BDC. dg(x) exp(−ax) [1 − ax − exp(−2ax) − ax exp(−2ax)] = , dx 4[1 − exp(−2ax)]2. ³J¶*e~mx¶&e~l·QRO ³aQ Al$C*BD?Qu¸Ue d B ÄiW´ CNlB”Í@*BDC¸UO A M [ÁQuPe [\@*[ Qu¸ ÄkÑ3e CNQRO O A M*³B$´ ̸xQRe C7ö ∀x > 0. g(x). e~l·Q¹[œ´ C*´R¸U´ C*e~mDQRO O ASB”mTUB”Q le C*?FÂÃ@*CNm¸Ue ´ C4QRCNS&¶NQ l½e ¸xl. x=0. sup hk. ³J¶*e~mx¶Fm´ CNmO @NSB”l¸U¶*Bg¼*TU´5´RÂ/Ä. 1 h2k PM =  σk2 Gkk 2 N T k=1 + σ2. î. n. ,8. ¾Œóò ¿. 1 2 σβ.  , k = 2, 3,. ¾Œó ó¿.

Références

Documents relatifs

In this paper, we derive the so-called Weiss-Weinstein bound (WWB) which is known to be an efficient tool in signal processing to obtain a fair overview of the estimation

Abstract—In this paper, we study the influence of the prior distribution on the Weiss-Weinstein bound (WWB) in the ubiq- uitous multiple change-point estimation problem.. As by

While the primary goal of this paper is to give closed-form expressions of the Weiss-Weinstein bound for the DOA estimation of a single source with an arbitrary planar array of

In this paper, we derive a closed- form expression of the WWB for 3D source localization using an arbitrary planar antenna array in the case of a deterministic known signal..

In a data-aided carrier estimation problem, a closed-form expression of the Weiss–Weinstein bound (WWB) that is known to be the tightest bound of the Weiss and Weinstein family

In this paper, we design a multiuser receiver using the linear min- imum mean square error (MMSE) as a signal detector in a system model where M mobile users are communicating in

So, “Joint range and angle estimation using MIMO radar with frequency diverse array,” IEEE Transactions on Signal Processing, vol. Xu, “Cognitive target tracking via

This drawback led us to consider the problem from a Bayesian point of view, for which we recently derived the Weiss-Weinstein bound (WWB) for a single change-point and known