• Aucun résultat trouvé

Somatic embryogenesis-derived coffee plantlets can be efficiently propagated by horticultural rooted mini-cuttings: A boost for somatic embryogenesis

N/A
N/A
Protected

Academic year: 2021

Partager "Somatic embryogenesis-derived coffee plantlets can be efficiently propagated by horticultural rooted mini-cuttings: A boost for somatic embryogenesis"

Copied!
9
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Scientia

Horticulturae

j o u r n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s c i h o r t i

Somatic

embryogenesis-derived

coffee

plantlets

can

be

efficiently

propagated

by

horticultural

rooted

mini-cuttings:

A

boost

for

somatic

embryogenesis

Frédéric

Georget

a,∗

,

Philippe

Courtel

b

,

Eduardo

Malo

Garcia

b

,

Martin

Hidalgo

c

,

Edgardo

Alpizar

b

,

Jean-Christophe

Breitler

a

,

Benoît

Bertrand

a

,

Hervé

Etienne

a

aCIRAD,UMRIPME,F-34394Montpellier,France

bECOM,ExportadoraAtlanticS.A,Managua,Nicaragua,

cNICAFRANCE,Managua,Nicaragua

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13October2016

Receivedinrevisedform

15December2016 Accepted16December2016 Keywords: Clonalpropagation F1hybrids Rejuvenation Productioncosts

a

b

s

t

r

a

c

t

Ingeneral,thecurrentindustrialsomaticembryogenesis(SE)propagationprocessesforcoffeearecostly becausetheyarenotproductiveenough.WeshowthatSE-derivedplantletsfromC.arabicahybridswere temporarily−between10and25weeksofdevelopmentinnursery−abletorootwithahighsuccessrate (upto90%)whateverthegenotypetested,beforegraduallylosingthatcapacity.Wetookadvantageof thistransientrootingcapacity,probablyduetotherejuvenationprocessoccurringduringSE,toestablish anewpropagationsystembasedonthecontinuouscultureofrejuvenatedSEplantsandontheserial rootingofcuttingsundernurseryconditions,knownashorticulturalrootedmini-cutting(HRMC).The excessivelylowSEefficiencywithanembryo-to-plantletconversionrateofonly37%canbegreatlyoffset bythemuchhigherHRMCmultiplicationrate(14insixmonths)andbetteroverallquality.Fifteen week-oldrootedmini-cuttingsprovedtobemoreuniform(2–4.5vs.1–5.5cmforplantheightdistribution)and vigorous(1.41vs.0.81mmforstemdiameter)thansame-agesomaticseedlings.Thiseffectpersisted forfiveyearsafterfieldplanting,mainlythroughaslightlygreatercollardiameter(43.3vs40.6mm), whereasatrootlevelnodifferenceswerefound.TheHRMCmethodisexpectedtodramaticallyreduce arabicahybridproductioncosts(byupto50%atUS$0.27/plantreadyforfieldplanting)andthusto promotethemassutilizationofgeneticallysuperiorhybridclonesofcoffee.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Morethan 85% ofarabica coffee isproduced in Latin Amer-ica,fromtreescomprisingasmallnumberofso-called“American” varieties,derivedfromanarrowgeneticbase.Thesehomozygous varieties,knownas“lines”,reproducefromseed.SomeF1hybrid varietieshavebeencreatedbycrossingtraditionalAmerican vari-etieswithsomewildparentsoriginatingfromEthiopia(thecenter oforiginoftheCoffeaarabicaspecies)(Bertrandetal.,2011).The hybridvarieties produce20–40%more thanthe bestcultivated lines.Giventheirheterozygousstructure,F1hybridsmustbe veg-etativelypropagated.Thebestindividualisselectedfromthebest

Abbreviations: RH, Relative Humidity; HRMC, Horticultural Rooted

Mini-Cuttings;SES,omaticEmbryogenesis.

∗ Correspondingauthor.

E-mailaddress:frederic.georget@cirad.fr(F.Georget).

F1familiestobecloned,therebycreatinganF1hybridclone(Van derVossenetal.,2015).

Itisdifficulttopropagatearabicacoffeetreesbyconventional horticultural techniques such as cuttings, as they are rooting-recalcitrant,orbybudgrafting,whichrequirestoomuchmanpower (Etienneet al.,2002).Ininvitroconditions,micro-cutting tech-niqueshavebeendevelopedforcoffeebutcannotbeconsidered formasspropagation,asitisverydifficulttoestablishaxenic cul-turesinvitroanditinvolvestoomuchworkforlowmultiplication rates(Bertrand-Desbrunaisetal.,1991).Somaticembryogenesis (SE)hasbeeneffectivelymasteredonanindustrial levelforthe C.arabicaspecies(BobadillaLandeyetal.,2013).TheCIRAD-ECOM groupconsortiumhasbeenproducingbetweenoneandtwomillion intraspecificF1hybridplantsperannuminNicaraguaandMexico since2007(Georgetetal.,2010).Inspiteoftheseachievements, thearabica SEprocess isstill impededby twotechnical bottle-necks:anembryo-to-plantletconversionratethatistoolow,and excessiveplantlossesinthenurseryateachstepofthe acclimatiza-http://dx.doi.org/10.1016/j.scienta.2016.12.017

(2)

178 F.Georgetetal./ScientiaHorticulturae216(2017)177–185

tionandhardeningprocess,whichrendersthispropagationsystem insufficientlycost-effectiveandproductive(Etienneetal.,2013). Atpresent,theseexcessiveproductioncostsareamajorobstacle tothemassdisseminationofcoffeeF1hybridsinCentralAmerica. AsimilarsituationisfoundwiththeC.canephoracoffeespecies,but alsoinmanyotherwoodyspecies,leadingtosomaticseedling pro-ductioncoststhataretoohigh,therebyholdingbackthelarge-scale utilizationofsomaticseedlingsasplantingmaterials(Lelu-Walter etal.,2013).

Recently, we discovered that very young C. arabica plants derivedfromSEwereabletorootwithahighsuccessrate.Inthis paper,wedescribethedevelopmentofamini-cuttings propaga-tionsystemusingsomaticseedlings.Severalissuesareexamined toassessthetechnique.First,weprovideareminderofthe limi-tationsoftheSEmethodbymeasuringthebiologicalefficiencyof thefinalstagesofthispropagationsystem.Wethengoontotest theproductionofrootedmini-cuttingsbyevaluatingthegenotypic effect,theincidenceofsomaticseedlingageonthecapacityof root-ing,andthefeasibilityofsuccessivemultiplicationcycles(serial cuttings)fromasinglesomaticseedling.Weproceedtocompare thevigorandthehomogeneityofthematerialproducedbyrooted mini-cuttingscomparedtosomaticseedlingsatnurseryandfield level.Finallyweperformapilotproductiontoestimatethegainin productivityachievedandtheconsequencesforproductioncosts.

2. Materialsandmethods

2.1. Producingsomaticembryo-derivedplantletsandassessing theefficiencyofthelastSEsteps

SomaticseedlingsderivedmainlyfromsixF1hybridsobtained bycrossingtraditionaldwarfAmericanvarieties(Caturra,T5296 and17931Sarchimorlines)andwildaccessionsoriginatingfrom EthiopiaandSudan(Bertrandetal.,2005,2006)wereusedinthis study.Inthispaper,thesehybridswillbecalledH1,H3,H5,H10, H16andH17.

Theregeneration of cotyledonary somaticembryo of C. ara-bicaspecieshasalready beendescribed indetail(Etienne2005; BobadillaLandeyetal.,2013).Plantletconversionwasobtained afterdirectsowingofcotyledonarysomaticembryosinthenursery. Cotyledonaryembryosweresownverticallyontopofthesubstrate comprisingamixofPeatmoss(Pro-mix,PremierTechLtd,Canada) and sand.Somatic embryo culture density in theplastic boxes (l.w.h=30/21/10cm)wasapproximately3600persquaremeter. Thecultureswereplacedunderatransparentroofthatprovided 50%shade,andwerewateredfor2minstwicedaily.The conver-sionofthesomaticembryosintoplantswasgenerallyobserved12 weeksaftersowing,andwascharacterizedbytheemergenceofa stembearingatleasttwopairsoftrueleaves.Forthegrowthand hardeningstepinthenursery(21weeks),plantletsgrownfrom somaticembryosweretransferred to1lplastic bagscontaining soilandcoffeepulp(3/1,v/v)underconventionalnursery condi-tionsuntiltheyreachedtherequiredsizeforplantinginthefield (approx.30cm).Duringthisstage,theshade(50%light intercep-tion)andrelativehumidity(RH,90%)weregraduallyreducedover 4weeksto0%lightinterception,withnaturalRHrangingfrom40 to80%.

ThebiologicalefficiencyofthelastSEstepsinthenursery,i.e. plantletconversionaverageduration oftheacclimatizationstep wasmeasuredfromtheresultsoftheindustrialproduction,mainly withH1(SarchimorT5296xRomeSudan)andH3hybrids(Caturra xEthiopian531),of5millionembryosregeneratedinNicaragua between2010and2012.Theembryo-to-plantletconversionrate andtheaveragedurationoftheweaningphaseinthenurserywere usedasbiologicalindicators.

2.2. Experimentaldesigntoestablisharootedmini-cutting vegetativepropagationprocess

The technique known as ‘horticultural rooted mini-cuttings (HRMC)’isillustratedinFig.1andcomprisesthefollowingstages: 2.2.1. Cuttingoriginandcharacteristics

Theplantsusedtoinitiatethepropagationcycleare 15-week-oldnurseryplantletsderivedfromsomaticembryos(Etienneetal., 2012).Thesizeoftheplantletsisaround4–6cminheightwith 3pairsoffullydevelopedleaves(Fig.1A).“Tipmini-cutting”–so calledbecauseitbearstheterminalapex–isused.Itisformedof twopairsofdevelopedleaves(Fig.1B).Finesecateursareusedto makethecut,justabovethethirdpairofleaves,inordertokeep alongenoughinternode.Itisonly3–4cm long,hencetheterm “mini-cutting”tosignifytheminiaturizationoftheplantmaterial comparedtothe20cm-longconventionalcuttings.

2.2.2. Rootingandhardeningconditions

Therootingprocessconsistedofinsertingthemini-cuttingsinto trays(Fig.1C)filledwithsubstratecomposedofamixtureof30% sandand70%commercialpeatofthePeatmosstype(Pro-mix, Pre-mierTechLtd,Canada).Thetrayswerethenplaced inweaning greenhousesunderaplastictunnelwithupto95%RHanda tem-peraturerangingfrom18to20◦Catnightto25-30◦Cduringthe day.Theplasticwasremovedgradually5–6weekslater.

Aftera6-weeklongweaningperiod(Fig.1D),therooted mini-cuttingswereplacedfor4–5weeksunderhardeningconditionsat anight/daytemperatureof16–18/20–25◦Canda60–80%RH.After thehardening,therootedmini-cuttingsreachinganaverageheight of8–10cm(Figs.1E,1F)weretransferreddirectlyinto1.5lpolybags (Fig.1G)intraditionalcoffeeseedlingnurseriesfor4months–the timeneededfortheplanttobedevelopedenoughi.e.25–35cmtall tobefieldplanted(Fig.1H).

2.3. Evaluationofthegenotypiceffectontherootingcapacityof mini-cuttings

Thepilotproductionof225,000mini-cuttingsderivedfromSE (15weeksaftersomaticembryosweregerminatedandweanedin thegreenhouse)wassubjectedtotheprotocoldescribedaboveand rootingrateswerethenassessed.Rootingcapacitywasevaluated on225,000cuttingsofH1(T5296×RumeSudan),H3(Caturra×Et 531), H5 (T5296×Et06) and H10(T5296×Rume Sudan) clones (between50,000to60,000cuttingsforeachclone)byobserving thepresenceoftheadventitiousrootsatthebottomofeach mini-cutting,andcalculatingtheratebetweenthenumberofcuttings initiallysetintraysandthenumberofrootedplantstransferredto bagsinnurseriesafter10weeksoftherootingprocess.

2.4. Rootingcapacityofmini-cuttingsdependingonthe SE-derivedplantletage

Toestablishtheoptimumageforsomaticembryo-derived nurs-eryplantletstoproducerootedmini-cuttings,mini-cuttingswere producedfromsomaticseedlings atregularintervalsovera 40-weeknurseryperiodandtestedfortheirrootingcapacity.Todo this,threereplicationsof50mini-cuttingswerecarriedoutwith theH1hybridcloneforeachofthefollowingperiodsoftime:10, 15,20,25,30,35and40weeksaftersowingthesomaticembryos underexvitroconditions.Therootingresponsewasassessed10 weeksafter plantingthegeneratedmini-cuttings bynotingthe presence/absenceofrootsandmeasuringthelengthofthemain roots.Plantswithrootsupto3cminlengthwereconsideredas rooted.

(3)

Fig.1.Setting-upofanexperimentalrootedmini-cuttingvegetativepropagationprocessfromrejuvenatedsomaticembryogenesis-derivedplants.A:15-weekrejuvenated

plantsderivedfromthesomaticembryogenesisprocesssowninaplasticbox;B:Cuttingsfromsomaticseedlings;C:Plantingofthemini-cuttingsinplugtrays;D:Rooted

mini-cuttingsobtainedafter6weeksofacclimatizationinthegreenhouse;E:8-weekrootedmini-cuttingsinplotsubstrate;F:8-weekbarerootedmini-cuttings;G:3-month

rootedmini-cuttingshardeninginthenursery;H:6-monthrootedmini-cuttingsinnurserybagsreadytobeplantedinthefield.

2.5. Propagationratesachievedovera6-monthperiodthrough successivemultiplicationcycleswithrootedmini-cuttings

Aninitialpoolof26,000somaticseedlings(H1andH3hybrids) underwentsuccessiveserialmini-cuttingcycleswithinaperiodof 6months.Thenumberofcuttingsobtainedandtherootingrate ofthecuttingsweremonitoredthroughoutthisperiodaftereach mini-cuttingcycle.Inordertomaintainandtoprolongthejuvenile status,alltheplantsproducedfromtheinitialpoolwerekeptinthe greenhousewithstrongmineralnutrition,andintotalconfinement forthedurationoftheexperiment.

2.6. Qualitativecomparisonofplantsderivedfromsomatic seedlingsvsfromrootedmini-cuttingsatnurserystageand5 yearslaterinthefield

i)Inthegreenhouse:thisstudywascarriedoutundercommercial productionconditionsattheendoftheacclimatizationprocess, i.e.fifteenweeksaftersowingplantlets(somaticembryosand rootedmini-cuttingsrespectively).Thequalityoftheplantlets from batchesof somatic seedlings was compared to that of rootedmini-cuttingsundersimilargreenhouseconditions.Two hundredplantsderivedfromsomaticseedlingswerecompared

to200plantsderivedfromrootedmini-cuttingsafter15weeks’ weaninginthegreenhouse.Fourreplicationsoffiftyplantseach werecarriedoutfortheH1hybridandwererandomlychosen ineachtypeofcontainer,i.e.plasticboxesforsomaticseedlings orplugtraysforrootedmini-cuttings.Theplantbatcheswere assessedbystudyingthevariabilityinplantandrootsizes,and stemandrootdiametersandfortheiruniformgrowth. ii)Inthefield:H1hybridplantsderivedfromsomaticseedlings

and rootedmini-cuttingswereplantedin2010in Nicaragua (Cumplidafarm,Matagalpa)tocarryoutafirstagronomic eval-uationoftheconformityofthematerialproducedinbothways. Twohectaresofeachmaterialwereplantedandphenotypically observedin thefield (8000plants),five years afterplanting. Inthetwoparcels,100plantsderivedfromsomaticseedlings werecomparedto100plantsderivedfromrootedmini-cuttings andparameterssuchasplantheight,stemdiameter,internode number,primarybranchmortality,andprimarybranchlength weremeasured.Moreover,amongthestudiedplants,10plants ofeachmaterialshowingthesamevigor(withthesamestem diameter)wereuprootedtocomparetheroot systems.Root diameter,plantheight,mainrootlength,rootfreshweightand stemfreshweightwereassessed.

(4)

180 F.Georgetetal./ScientiaHorticulturae216(2017)177–185

Table1

Somaticembryo-to-plantletconversionrateandaveragedurationforplantletconversionasobtainedfromproductiondataintheframeworkofthecommercialdissemination

ofCoffeaarabicahybridsinNicaragua(ExportadoraAtlanticS.A.,ECOMgroup,datafrom2010to2012).Theplantletconversiondurationvaluesaremeans±SD.

Hybridclones No.ofembryossowed Embryo-to-plantletconversion(%) Durationforplantletregeneration(weeks)

H1(T5296×RS) 3478141 35±3.5 30±7 H3(Caturra×ET531) 1454886 36±2.8 34±10 H10(T5296×RS) 78543 56±4.9 44±12 H16(T5296×ET01A1) 142964 41±2.2 18±1 H17(Catuai×ET59A2) 264344 31±3.6 16±2 Otherhybrids 223029 33±2.8 19±4 Total/Average 5641907 37±3.5 30±11

2.7. Productioncostsofrootedmini-cuttingscomparedto

somaticseedlingsandseedlings

The production costs for plants ready to be field planted

(around30–40cmheight)regeneratedfromdifferentmaterials,i.e.

seedlings,somaticseedlingsandrootedmini-cuttings,were

calcu-latedintheproductionunitsandnurseriesofExportadoraAtlantic

S.A(ECOMgroup,Nicaragua)thencomparedwitheachother.The

costswerecalculatedin2014fromthepilotproductionof300,000

rootedmini-cuttingsderivedfromaninitialpoolof20,000somatic

seedlingsingreenhousesandtransferredtonurserybags,200,000

Caturraseedlingsinnurserybags,3millionsomaticembryosfrom

H1andH3hybridsproducedintheExportadoraAtlanticS.A.

labora-toriesand650,000somaticseedlingsofbothhybridsacclimatized

inthegreenhouseandthentransferredtonurserybags.

2.8. Statisticalanalysis

MostofdatawereanalyzedbyANOVAfollowedbytheFisher

LeastSignificanceDifferencetest(LSD).Varioussmalllettersinthe

tablesindicatesignificantdifferencesforeachparameterbetween

means(P≤0.05).Thedataarethemeansofmeasurement±SDon

independentsamples.Thebarsrepresentthestandarddeviations

(SD).

3. Resultsanddiscussion

3.1. Theembryo-to-plantletconversionstepisamajorbottleneck

inthecoffeeSEpropagationprocess

Theembryo-to-plantletconversionstepinthegreenhousefor

cotyledonaryembryosisthetrickieststageoftheSEpropagation

procedure.Atpresent,thisstageisamajorbottleneckin

indus-trialtermsas,forallthegenotypesstudied,onaverageonly37%

ofembryosregenerateplantletssuitableforsubsequenttransfer

tonurserybags(Table1).Inaddition,theaveragetimetakento

weanandacclimatizesomaticembryosisalsotoolongand con-firmstheinefficiencyofthisstage.Onaverage,ittakes30weeksto harvestalltheplantletshavingreachedtheexpectedsize.In addi-tion,plantletconversionandgrowthisasynchronouswithinthe samebatchofplantsandfourtofivesuccessiveharvestingrounds areoftenneededtoselectalltheplantletssuitableforthefollowing stagesinthenursery(datanotshown).Thisheterogeneousgrowth, whicharisesfromtheinvitrogerminationstageinabioreactor, complicatesmanagementofthetechnicalproceduresandentails extramanpower,eventhough,intermsofdevelopment,mostof theplantshavecaughtupwithseedlingsbytheendofthenursery stage(Barry-Etienneetal.,2002;Menéndez-Yuffáetal.,2010)

Industrialorpre-industrialapplicationofSEcurrentlyinvolves onlya fewwoodyspecies, suchas Douglas-fir(CellFor,Canada, http://www.cellfor.com/),whiteandSitkaspruces(Arborgen,USA, http://www.arborgen.com/),radiata,loblollyandslashpines (For-estGenetics, New Zealand, http://www.forest-genetics.com/) in thegymnosperms,alongwiththehybridyellowpoplar

(Interna-tionalPaper,USA,http://www.internationalpaper.com/),oilpalm (FelpaInc.,Malaysia,http://www.felpaglobal.com/),C.canephora (AgromodSA-deCV/Nestlé,Mexico,http://www.agromod.mx/),C. arabica(CIRAD/ECOM,Mexico,CostaRicaandNicaragua, http:// www.ecomtrading.com/) and Cocoa (Nestlé, Indonesia, http:// www.nestle.co.id/ina/) in the angiosperms. Despite these few examplesforwhichannualproductionnowexceedsafew hun-dredthousand,orevenafewmillionplants,mostofthetimethe SEpropagationproceduresforwoodyplantsarenotcost-effective astherearemanytechnicalobstacles.Thequalityofregenerated somaticembryos,theirlowconversionratesforexampleincocoa (Guillouetal.,2014)andincoffee(thispaper),andtheincidence ofsomaclonalvariationsontheconformityofthebananaandoil palmplantsproduced(Côteetal.,2000;Jaligotetal.,2011)are majordrawbacks.

3.2. Genotypeeffects

Fig.2showsthatrootingcapacityofmini-cuttingsundernursery conditionswasupto90%with15-week-oldsomaticseedlings.The genotypiceffectisoftenhighinvegetativereproductionprocesses (Lardetetal.,2009;BongaandDurzan,1987;Celestinoetal.,2013). Here,withmini-cuttingsharvestedfrom10-to25-week-oldyoung somaticseedlings,nogenotypiceffectwasfoundinthevarious hybrids’responsesforrootingcapacity.

3.3. Evidenceofrejuvenationinsomaticseedlingsthrough transientlyrecoveredrootingcapacityofArabicamini-cuttings

TheabilityofC.arabicamini-cuttingstorootwaslinkedtothe juvenilenatureoftheplantfromwhichthecuttingwastaken.In akinetic study,we tookacloserlookatthis phenomenon.The rootingcapacity of mini-cuttingstakenfrom C.arabicasomatic seedlingsdeclinedwiththeincreasingageofthesomaticseedlings fromwhichtheyhadbeencollectedinthenursery(Fig.3).Thisis particularlyobviousbetween25–35-week-oldsomaticseedlings withcorrespondingrootingratesof80–20%,respectively.When mini-cuttings were harvested from 35 to 40-week-old nursery plants,rootingcapacitywasstabilizedataround15–20%.The tran-sientrootingcapacityofmini-cuttingsderivedfromcoffeesomatic seedlingswasprobablylinkedtotherejuvenationprocessresulting fromthesuccessivecelldedifferentiation/re-differentiation mech-anismsoccurringduringtheonsetoftheSEprogramme.

Formanywoodyspecies,maturetreesarerecalcitrantto vegeta-tivepropagation.Greenwoodetal.(2001)showedthatthedecline inadventitiousrootingcapacityinforesttreecuttingsisgenerally oneofthemostdramaticeffectsofthematurationprocessandisthe mostwidelyusedmorphologicalandphysiologicalmarkertoassess maturation.Somaticembryogenesisinvitroisthemostefficient methodusedforinducingrejuvenation(Pierik1990;Carronetal., 1995;Perrinetal.,1997).Forexample,43–55%rootingfrequencies wereobtainedininvitroshootsfromtwoH.brasiliensisgenotypes regeneratedfromsomaticseedlings,whereasitwasimpossibleto initiaterootinginshootsobtainedfromthematureplantmaterial

(5)

Fig.2.Evaluationofmini-cuttingrootingcapacityofseveralC.arabicaF1hybridclones.Rootingcapacitywasevaluatedon50,000to60,000plantlets/clonebyobserving

thepresenceofrootsatthebottomofeachplanttenweeksafterrootinginduction.Rootingcapacityvaluesaremeansof50,000measurements±SD(standarddeviation).

ThebarsrepresenttheSD.

Fig.3.Evolutionofrootingcapacityinmini-cuttingsdependingontheageofthesomaticseedlings(i.e.growthdurationinnursery)fromwhichthemini-cuttingsweretaken.

Thekineticswereperformedovera10–40-weekperiodofsomaticseedlingdevelopmentinnurserybags.Eachpointrepresentsanaverageof150values(3replicationsof

50mini-cuttings)±SD.

(Lardetetal.,2009).Aginginplantswasfoundtoinducecyto-and histomorphologicalchanges andmodifycertainmetabolic path-ways inSequoiadendron giganteum(Mankessietal.,2011).DNA methylationplaysakeyroleinthevariousmaturationalchanges observedinplantsduringtheirontogeneticdevelopment–the pre-vailinghypothesisis thatduringhigher organismdevelopment, genomicDNAbecomesmoremethylated,resultinginthe modifica-tionortheswitchingonandoffofthegeneexpressionresponsible forthevariationinmaturationaltraitsfound(FinneganandKovac, 2000).Forexample,morepercentageofDNAmethylationisfound fromneedlebasesofmaturePinusradiatathanjuvenileones,to thetuneofrespectively60vs30%(Fragaetal.,2002).Recently, differencesingeneexpressionwerefoundbetweenjuvenileand adultmaterialfortheappletree(Gaoetal.,2014).Incoffee,we usedSE-inducedrejuvenationtoinitiateaHRMCpropagation pro-cess.Weshowedthatthetimingforimplementingthispropagation mustbeveryaccurateifrootingistobesuccessful,reliableand highlyefficient. The“actionwindow” is veryephemeral during earlyplantdevelopment– approx. between10–25 weeksafter plantingsomaticembryosinthenursery.

3.4. Possibleserialmultiplicationcycleswithrooted mini-cuttingsprocess

Startingfromapoolof26,000youngsomaticseedlings,335,844 rootedmini-cuttingswereproducedinthegreenhousewithina periodof6monthsofcultivation,i.e.amultiplicationrateof14 (Fig.4).Rootingcapacityduringtheserialrootedcuttingcyclesover the6-monthperioddidnotdecreaseandremainedupto90%.We observedthatthejuvenilestatusoftheyoungmini-cuttings pro-ducedcouldbeprolongedformorethan6monthswithoutanyloss ofrootingcapacityintheplantsbyinfluencingplantgrowthand forcingconditionsinthenursery,throughsuccessivecyclesof mini-cuttings,whilekeepingtheplantsconfinedwithupto90%RHand atahightemperature(rangingfrom20to25◦Catnightto30–35◦C duringtheday).Whenextrapolatedoveraperiodofoneyear,the multiplication rateshouldbearoundthirty-seven mini-cuttings fromoneSE-rejuvenatedplant.Similarcombinedtwo-step propa-gationprocesseshaverecentlybeenestablishedinconifers.Forest GeneticsLtdandArbogeninNewZealandannuallyproduceabout 50,000P.radiatasomaticseedlingswhicharesubsequentlymass

(6)

182 F.Georgetetal./ScientiaHorticulturae216(2017)177–185

Fig.4.AmplificationrateofArabicacoffeehybridsthroughserialrootedmini-cuttingprocess.Westartedfromaninitialbatchof22,614rejuvenatedsomaticseedlingsand

serialcuttingsweretakenperiodicallyfromitwithina6monthsperiod.Duringtheexperiment,plantsweremaintainedunderconfinedconditionsinthegreenhouse.The

experimentwascarriedoutin2013attheExportadoraAtlanticS.ACompany,Sebaco,Nicaragua.

Table2

Comparisonofseveralmorphologicalparametersbetween15-week-oldsomatic

seedlingsandrootedmini-cuttingsofH1Hybrid(T5296xRumeSudan)inthe

greenhousenursery.Morphologicalparametervaluesaremeansof200

measure-ments±SDonindependentsamples.Thecomparisonwasbasedonananalysis

ofvariance(ANOVA)betweensomaticseedlingsandrootedmini-cuttings.

Val-uesfollowedbydifferentlettersaresignificantlydifferentatP≤0.05(FischerLeast

SignificanceDifferencetest).

Morphologicalparameters Somatic seedling Rooted mini-cutting F Prob Plantheight(cm) 3.14±1.26a 3.34±0.92a 1.08 0.31 Stemdiameter(mm) 0.81±0.17a 1.41±0.29b 215.2 0.00 Rootlength(cm) 4.75±2.04a 4.15±1.29a 3.7 0.05 Rootdiameter(mm) 0.58±0.24a 0.94±0.28b 61.4 0.00

propagatedbyrootedcuttingstoproduce2.5–3millionplantsper

year(Bonga2015).InSitkaSpruce(Lelu-Walteretal.,2013), juve-nilesomaticseedlingstockisintensivelymanagedasoutdoorstock plants,whichareregularlyhedgedinordertostimulatethe pro-ductionofrootedaxillaryshoots.Thesesomaticseedling-derived donorplantsarerenewedevery5years,aftereachhasproduced 250cuttings(Thompson2014).

3.5. Evidenceofbettervigorandhomogeneityofrooted mini-cuttingscomparedtosomaticseedlings

Somatic seedlings and rootedmini-cuttings were compared forvigorandhomogeneity15weeksafterplantinginthe green-housenursery.Table2shows,forboth,thedifferentmorphological parametermeasurementson200plantssampled.Asregardsplant vigor,rootedmini-cuttingsweresignificantlymorevigorousthan somaticseedlingswithalargerstem(1.41vs.0.81mm)androot

diameter (0.94 vs. 0.58mm). As regards the other parameters, nostatisticaldifferenceswerefound.Whencomparedtosomatic seedlings,therootedmini-cuttingbatchesdisplayedgreater homo-geneityforplantheightandrootlengthdistribution(Fig.5).The majority ofplants derived from mini-cuttingswere groupedin a2–4.5plantsizerange,whereasmostofthesomaticseedlings werefoundinalarger1–5.5cmsizerange(Fig.6A).Similar differ-encesbetweenrootedmini-cuttingsandsomaticseedlingswere observedforrootlength(Fig.6B).Somaticseedlingsshowedthe widestdistributionoffrequenciesforrootlength.Mostoftheplants derivedfromsomaticseedlingshadrootlengthsrangingfrom3to 7cmlong,whereastherewasaclearpeakinthedistributionof rootedmini-cuttingrootlengthsataround4–6cm.Current stud-iesareaimedatanin-depthassessmentofgrowthcharacteristics underfieldconditionsinplantsderivedfromrootedmini-cuttings. Thefirstresultshaveshowedthat,overall,therearenosignificant differencesbetweensomaticseedlingsandrootedmini-cuttings, fiveyearsafterfieldplanting.Indeed,nosignificantdifferencewas foundformostoftheabovegroundparametersbetweenthetwo typesofmaterial(100plantsforeachmaterial),exceptforthestem collardiameter,whichwassignificantlybiggerinplantsderived fromrootedmini-cuttings,which denotes slightlygreater vigor (Table3).Asregardsrootsystemparameters,nosignificant dif-ferencewasobservedforanyoftheparametersstudiedforthetwo originsofplants(Table4).

3.6. Markedlyreducedpropagationcostsofrooted mini-cuttingscomparedtosomaticseedlings

InCentralAmerica,asix-month-oldnurseryplantderivedfrom aseedlingandreadyforplantinginthefieldhasaproductioncost

Fig.5.Morphologicalappearanceofsomaticseedlingsandrootedmini-cuttings.A:Heterogeneousappearanceofsomaticseedlings,15weeksafterdirectlysowingembryos

(7)

Fig.6. Comparisonoffrequencydistributionofplantheight(cm)[A]androotlength(cm)[B]parametersbetween15-week-oldnurseryplantsderivedfromsomaticseedlings

androotedmini-cuttingsfromtheH1hybrid(T5296×RumeSudan).Twohundredplantletsderivedfromsomaticseedlingswerecomparedto200plantsderivedfromrooted

mini-cuttingsthroughtheirdistributioninsizerangesforplantheight(cm)androotlength(cm).

ofaroundUS$0.20andthesellingpriceinthenurseriesranges fromUS$0.30–0.50(dependingonthecountryofCentral Amer-ica)whichamountstoatotalinvestmentofUS$1500–2500per hectarefora renovationcrop(5000plants/ha).Asix-month-old nurseryhybridplantpropagatedfromasomaticseedlingandready forthefieldhasaproductioncostofaroundUS$0.60andthe sell-ingpriceisaroundUS$0.80-1,whichrepresentsthreetimesthe priceof aseedling plant.Asix-month-oldhybrid plantderived fromarootedmini-cuttinghasaproductioncostofaroundUS$ 0.27,whichamountstoacostreductionofaround50%compared tosomaticseedlingsandrepresentsonly1.5timesthecostofa tra-ditionalseedling.GiventheearlinessofF1hybridproduction,the

lowplantationdensity(4000plants/ha)andtheirhigher produc-tivity(upto20–40%)(Bertrandetal.,2005,2011),theadditional investmentcomparedtothatoftraditionalseedlings(estimatedat US$1500)israpidlypaidbackthreetofouryearsafterplanting.A coffeeplantationhasalifecycleusuallyrangingfrom15to20years. But,thesomaticseedlingsellingpriceofUS$0.80–1forhybrids, representsanimportantbottleneckforthelarge-scale commer-cializationofF1arabicahybrids.ByusingtheHRMCmethod,we estimatedthatC.arabicahybridplantscouldbesoldbetweenUS$ 0.65–0.70,whichwouldbemoreaffordableforfarmers.

Veryfewstudieshaveprovidedinformationaboutthe produc-tioncosts ofplants derived fromSE. In anycase, based onthe

(8)

184 F.Georgetetal./ScientiaHorticulturae216(2017)177–185

Table3

Comparisoninthefieldbetweenaerialpartsofsomaticseedlingsandrootedmini-cuttingsofH1Hybrid(T5296×RumeSudan),fiveyearsafterplanting.Measurementswere

madeon200plants(100foreachmaterial)andplantswerechosenrandomlyfromthefourhectareparcel.Thecomparisonwasbasedonananalysisofvariance(ANOVA)

betweensomaticseedlingsandrootedmini-cuttings.ValuesfollowedbydifferentlettersaresignificantlydifferentatP≤0.05(FischerLeastSignificanceDifferencetest).

Morphologicalparameters Somaticseedling Rootedmini-cutting F Prob

Stemdiameteratcollar(mm) 40.6±5.3a 43.3±3.2b 6.5 0.01

Plantheight(cm) 210±2a 214±2.2a 1.54 0.21

No.ofplantinternodes 38.5±4.9a 40.4±4.9a 2.75 0.10

Primarybranchlength(cm) level10fromtheapex

45.1±8.7a 45.5±9.1a 0.03 0.85

No.ofprimarybranchinternodes level10fromtheapex

11.8±2.5a 13.0±2.8a 3.64 0.06

Primarybranchlength(cm) level15fromtheapex

59.2±6.7a 57.2±9.2a 0.92 0.34

No.ofprimarybranchinternodes level15fromtheapex

15.0±1.5a 15.8±2.2a 0.00 0.92

Primarybranchmortalitypercentage(%) 12±4a 11±5a 0.81 0.36

Table4

Comparisoninthefieldbetweenrootpartsofsomaticseedlingsandrootedmini-cuttingsofH1Hybrid(T5296×RumeSudan),fiveyearsafterplanting.Measurementswere madeon20excavatedplants(10foreachmaterial).Forthestudy,10plantsofeachmaterialwherechosenwiththesamevigor(diameterstem)andthenextractedfromthe ground.Thecomparisonwasbasedonananalysisofvariance(ANOVA)betweensomaticseedlingsandrootedmini-cuttings.Morphologicalparametervaluesaremeansof 10measurements±SDonindependentsamples.ValuesfollowedbydifferentlettersaresignificantlydifferentatP≤0.05(FischerLeastSignificanceDifferencetest).

Morphologicalparameters Somaticseedling Rootedmini-cutting F Prob

Stemdiameteratcollar(mm) 40.0±1.7a 40.8±1.4a 0.71 0.42

Plantheight(cm) 210±0.2a 197±6.7a 0.05 0.52

Rootdiameter(mm) 49.9±5.3a 51.4±4.9a 0.22 0.64

Mainrootlength(cm) 31.2±3.6a 31.2±4.4a 0.00 1

Freshbiomassstump(kg) 0.5±0.1a 0.5±0.1a 1.11 0.32

Freshbiomassaerialpart(kg) 2.6±0.2a 2.7±0.3a 0.46 0.51

limiteddataavailable,theyareallcurrentlytoohighto

commer-ciallybeacceptable.Inloblollypine,theproductioncostsofsomatic

seedlings(US$0.30–0.40)werebetween7.5–10timeshigherthan

thoseofplantsconventionallyproducedbyseedlings,i.e.US$0.05

(Bettingeretal.,2009).InSitkaspruce,somaticseedlingswere esti-matedtocostbetweenD 2–3/plantcompetingwiththeD 0.25 foraseedlingtransplant(Thompson,2014).Hence,forthesetwo species,thecostofa somaticseedlingisabout10timesthatof aseedling.Now,ifSitkasprucesomaticseedlingsaregrownfirst innurserybedstoproducecuttingsforrooting,thecostofSitka sprucerootedcuttingsdecreasestotwicethecostofaseedling. Seedlingandplantingahectareofrootedcuttingsthusbecomes economicallymorerealistic.

Asregardscoffee, Carvalhoet al.(2013)studiedthe produc-tioncostsof400,000plantletsofC.arabicaproducedbySEand reportedacostof US$0.37/plant,whichisquitedifferentfrom thecostobtainedinourstudy(US$0.60).Recently,aninteresting comparativecoststudywasdoneinC.canephorabetweenplants producedbySEandtraditionalrootedcuttingsmaturetreesfrom clonalgardensunderfieldconditions(AlvesdosSantosetal.,2015). ThecostofasomaticseedlingwasevaluatedatUS$0.23whilea rootedcuttingatUS$0.12,whichisapproximatelyhalfofthecost weobtainedfortheC.arabicaF1hybrids.

4. Conclusion

Thisstudyshows that HRMC canefficiently complement SE for producing arabica hybridsin much larger quantitiesand at cheapercost.Wedemonstratethatthelowbiological productiv-ityobservedfortheSEprocedures–particularlyduringthelate stagesofplantletconversion–canbelargelycompensatedby high-yieldinghorticulturalpropagationinthenursery.Plantsderived fromHRMCaremoreuniformandvigorousthansomaticseedlings. Weshowthatthiseffectpersistsforseveralyearsafterplanting out.Subsequently,incoffeethecommercialvegetative propaga-tionofhybridplantsshouldbeenvisagedasfollows:laboratories stillremainkeytoproducingtherejuvenatedmaterial,theexvitro

rootedmini-cuttingtechniqueisoutsourcedtothebest profession-alsinornamentalcropnurseriesandtheacclimatizationisdone bycurrentnurseriesorbyfarmersthemselves,whoareusedto doingexactlythatfromseedlings.Themethodologypresentedin thispapercouldbeextendedtotheothercropswheretheSE propa-gationprocessisstillnotcost-effectiveandthusexpandthegeneral useofSE.

References

AlvesdosSantos,M.R.,CarolinaAugustodeSouza,C.A.,JosileneFelixdaRocha,J.F.,

VenturadeAraujo,L.,Espindula,M.C.,2015.Comparisonofeconomic

efficiencybetweeninvitroandFieldMethodsforVegetativePropagationof CoffeaCanephora.Aust.J.BasicAppl.Sci.9,1–7.

Barry-Etienne,D.,Bertrand,B.,Schlongvoïgt,A.,Etienne,H.,2002.The

morphologicalvariabilitywithinapopulationofcoffeesomaticembryos producedinabioreactoraffectstheregenerationandthedevelopmentof plantsinthenursery.PlantCellTissueOrg.Cult.68,153–162.

Bertrand,B.,Etienne,H.,Cilas,C.,Charrier,A.,Baradat,P.,2005.Coffeaarabica

hybridperformanceforyield,fertilityandbeanweight.Euphytica141, 255–262.

Bertrand,B.,Alpizar,E.,Etienne,H.,Charmetant,P.,2006.Biochemicalcomposition

ofgreencoffeeandbeveragequalityofArabicahybridsinvolving

Sudanese-Ethiopianorigins.Comparisonwithtraditionalvarietiesatvarious elevations.TreePhysiol.26,1239–1248.

Bertrand,B.,Alpizar,E.,Lara,L.,SantaCreo,R.,Hidalgo,M.,Quijano,J.M.,

Montagnon,C.,Georget,F.,Etienne,H.,2011.PerformanceofCoffeaarabicaF1

hybridsinagroforestryandfull-suncroppingsystemsincomparisonwith Americanpurelinecultivars.Euphytica181,147–158.

Bertrand-Desbrunais,A.,Noirot,M.,Charrier,A.,1991.Minimalgrowthinvitro

conservationofcoffee(Coffeaspp.).PlantCellTissueOrg.Cult.27,333–339.

Bettinger,P.,Clutter,M.,Siry,J.,Kane,M.,Pait,J.,2009.Broadimplicationsof

southernUnitedStatespineclonalforestryonplanningandmanagementof forests.Int.For.Rev.11,331–345.

BobadillaLandey,R.,Cenci,A.,Georget,F.,Bertrand,B.,Camayo,G.,Dechamp,E.,

Simpson,J.,Herrera,J.C.,Santoni,S.,Lashermes,P.,Etienne,H.,2013.High

geneticandepigeneticstabilityinCoffeaarabicaplantsderivedfrom

embryogenicsuspensionsandsecondaryembryogenesisaseevealedbyAFLP,

MSAPandthephenotypicvariationrate.PLoSOne8(2),e56372,http://dx.doi.

org/10.1371/journal.pone.0056372.

Bonga,J.M.,Durzan,D.J.(eds),1987.CellandTissueCultureinForestry.Volume1.

GeneralPrinciplesandBiotechnology(232pp),Volume2.SpecificPrinciples

andMethods:GrowthandDevelopments(447pp),Volume3.CaseHistories:

(9)

Bonga,J.M.,2015.Acomparativeevaluationoftheapplicationofsomatic embryogenesis,rootingofcuttings,andorganogenesisofconifers.Can.J.For. Res.45,379–383.

Côte,F.X.,Folliot,M.,Domergue,R.,Dubois,C.,2000.Fieldperformanceof

embryogeniccellsuspension-derivedbananaplants(MusaAAA,cv.Grande naine).Euphytica112,245–251.

Carron,M.P.,Etienne,H.,Lardet,L.,Campagna,S.,Perrin,Y.,Leconte,A.,Chaine,C.,

1995.Somaticembryogenesisinrubber(HeveabrasiliensisMüll.Arg.).In:

SomaticEmbryogenesisinWoodyPlants.Springer,Netherlands,pp.117–136.

Carvalho,C.H.S.,Paiva,A.C.S.,Souza,D.S.,Silva,E.Q.,Custódio,A.A.,Borato,P.B.,

Marques,B.N.,(2014,January).CUSTODEPRODUC¸ÃODEMUDASCLONAISDE

CAFÉARÁBICAPRODUZIDASPOREMBRIOGÊNESESOMÁTICA1.InEmbrapa

Café-Artigoemanaisdecongresso(ALICE).InSIMPÓSIODEPESQUISADOS

CAFÉSDOBRASIL,8.,2013,Salvador.SustentabilidadeeinclusãoSocial.

Brasília,DF:EmbrapaCafé,2013.

Celestino,C.,Carneros,E.,Ruiz-Galea,M.,Alonso-Blázquez,N.,Alegre,J.,Toribio,

M.,2013.Cloningstonepine(PinuspineaL.)bysomaticembryogenesis.In:

Mutke,S.,Piqué,M.,Calama,R.(Eds.),MediterraneanStonePinefor Agroforestry.Zaragoza:CIHEAM/FAO/INIA/IRTA/CESEFOR/CTFC,2013,Options Méditerranéennes:SérieA,105.SéminairesMéditerranéens,pp.89–96.

Etienne,H.,Anthony,F.,Dussert,S.,Fernandez,D.,Lashermes,P.,Bertrand,B.,2002.

Biotechnologicalapplicationsfortheimprovementofcoffee(CoffeaarabicaL.) (review).InVitroCell.Dev.Biol.Plant38,129–138.

Etienne,H.,Bertrand,B.,Montagnon,C.,Dechamp,E.,Jourdan,I.,Alpizar,E.,Malo,

R.,Georget,F.,2012.Unexempledetransferttechnologiqueréussien

minipropagation:lamultiplicationdeCoffeaarabicaparembryogenèse

somatique.Cah.Agric.21,115–124,http://dx.doi.org/10.1687/agr.2012.0553.

Etienne,H.,Bertrand,B.,Georget,F.,Lartaud,M.,Montes,F.,Dechamp,E.,Verdeil,

J.-L.,Barry-Etienne,D.,2013.Developmentofcoffeesomaticandzygotic

embryostoplantsdiffersinthemorphological,histochemicalandhydration

aspects.TreePhysiol.33(6),640–653,http://dx.doi.org/10.1093/treephys/

tpt034.

Etienne,H.,2005.Protocolofsomaticembryogenesis:coffee(CoffeaarabicaL.and

C.canephoraP.).In:Jain,S.M.,Gupta,P.K.(Eds.),ProtocolsforSomatic EmbryogenesisinWoodyPlants.Series:ForestrySciences,Vol.77.Springer, theNetherlands,590p.,Hardcover.ISBN:1–4020-2984–5.Pp.167–179.

Finnegan,E.J.,Kovac,K.A.,2000.PlantDNAmethyltransferases.PlantMol.Biol.43

(2–3),189–201.

Fraga,M.F.,Rodríguez,R.,Ca ˜nal,M.J.,2002.GenomicDNA

methylation–demethylationduringagingandreinvigorationofPinusradiata. TreePhysiol.22(11),813–816.

Gao,Y.,Yang,F.Q.,Cao,X.,Li,C.M.,Wang,Y.,Zhao,Y.B.,Zhang,X.Z.,2014.

Differencesingeneexpressionandregulationduringontogeneticphase changeinappleseedlings.PlantMol.Biol.Rep.32(2),357–371.

Georget,F.,Bertrand,B.,Malo,E.,Montagon,C.,Alpizar,E.,Bobadilla,R.,Dechamp,

E.,Jourdan,I.,Etienne,H.,2010.Anexampleofsuccessfultechnologytransfer

inmicropropagation:multiplicationofCoffeaarabicabysomatic

embryogenesis.In:Proceedingsofthe23rdInternationalConferenceonCoffee Science(ASIC):3–8October2010,Bali,Indonesia.ASIC,editor.Vevey, Switzerland,pp.496–506.

Greenwood,M.S.,Cui,X.,Xu,F.,2001.Responsetoauxinchangesduring

maturation-relatedlossofadventitiousrootingcompetenceinloblollypine (Pinustaeda)stemcuttings.Physiol.Plant.111,373–380.

Guillou,C.,Fillodeau,A.,Brulard,E.,Verdier,D.,Simon,M.,Landmann,A.,Broun,P.,

2014.NestléCocoaplan:cocoapropagationbysomaticembryogenesis.The

ThirdInternationalConferenceoftheIUFROUnit2.09.02:Somatic EmbryogenesisandOtherVegetativePropagationTechnologies,Proc.(p.75).

Jaligot,E.,Adler,S.,Debladis,E.,Beulé,T.,Richaud,F.,Ilbert,P.,Finnegan,J.,Rival,A.,

2011.Epigeneticimbalanceandthefloraldevelopmentalabnormalityofthein

vitro-regeneratedoilpalmElaeisguineensis.Ann.Bot.108(8),1453–1462.

Lardet,L.,Dessailly,F.,Carron,M.P.,Montoro,P.,Monteuuis,O.,2009.Influencesof

agingandcloningmethodsonthecapacityforsomaticembryogenesisofa matureHeveabrasiliensisgenotype.TreePhysiol.29(2),291–298.

Lelu-Walter,M.-A.,Thompson,D.,Harvengt,L.,Sanchez,L.,Toribio,M.,Paques,L.E.,

2013.SomaticembryogenesisinforestrywithafocusonEurope:

state-of-the-art,benefits,challengesandfuturedirection.TreeGen.Genomes 9,883–899.

Mankessi,F.,Saya,A.R.,Montes,F.,Lartaud,M.,Verdeil,J.L.,Monteuuis,O.,2011.

HistocytologicalcharacteristicsofEucalyptusurophylla×Eucalyptusgrandis shootapicalmeristemsofdifferentphysiologicalages.Trees25,415–424.

Menéndez-Yuffá,A.,Barry-Etienne,D.,Bertrand,B.,Georget,F.,Etienne,H.,2010.A

comparativeanalysisofthedevelopmentandqualityofnurseryplantsderived

fromsomaticembryogenesisandfromseedlingsforlarge-scalepropagationof

coffee(CoffeaarabicaL.).PlantCellTissueOrg.Cult.102,297–307,http://dx.

doi.org/10.1007/s11240-010-9734-4.

Perrin,Y.,Doumas,P.,Lardet,L.,Carron,M.P.,1997.Endogenouscytokininsas

biochemicalmarkersofrubber-tree(Heveabrasiliensis)clonerejuvenation. PlantCellTissueOrg.Cult.47(3),239–245.

Pierik,R.,1990.Rejuvenationandmicropropagation.In:Nijkam,H.J.J.,VanderPlas,

L.H.W.,VanAartrijk,J.(Eds.),ProgressinPlantCellularandMolecularBiology. ProcVIIthIntCongonPlantTissue&CellCulture.KluwerDordrecht, Amsterdam,theNetherlands,pp.91–101.

Thompson,D.,2014.Challengesforthelarge-scalepropagationofforesttreesby

somaticembryogenesis–areview.In:ProceedingsoftheThirdInternational ConferenceoftheIUFROUnit2.09.02onWoodyPlantProductionIntegrating GeneticandVegetativePropagationTechnology.September18–12, Vitoria-Gasteiz,Spain.

VanderVossen,H.,Bertrand,B.,Charrier,A.,2015.Nextgenerationvariety

developmentforsustainableproductionofarabicacoffee(CoffeaarabicaL.):a review.Euphytica204(2),243–256.

Références

Documents relatifs

High gellan gum concentration and secondary somatic embryogenesis: two key factors to improve somatic embryo development in Pseudotsuga menziesii [Mirb.].. Marie-Anne

Improved material from most forest tree breeding programmes around the world is typically produced in seed orchards where selected parents are allowed to interbreed and produce

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Among conifer species, somatic embryogenesis of Larix is becoming a model for its multiple uses and its integration into breeding programs is now undertaken for

Morphological aspects of somatic embryogenesis in rattan, a, Primary and creamy callus proliferating on an apex of a secondary root cxplant; bar, 0.5

A cybrid bas been obtained by symmetric protoplast fusion between Willow leaf mandarin (Citrus deliciosa Ten.) and Eureka lemon (Citrus /imon (L.) Buno.). The cybrid possessed

E.E., Effect of basal medium, growth regulators and phytagel concentration on initiation of embryogenic cultures from immature zygotic embryos of loblolly pine (Pinus taeda L.),

Indeed our results show that, whatever the growth regulators in the culture medium, explants pre- pared from small translucent embryonic structures (STE) were more embryogenic and