• Aucun résultat trouvé

A state-space representation of the GR4J rainfall-runoff model

N/A
N/A
Protected

Academic year: 2022

Partager "A state-space representation of the GR4J rainfall-runoff model"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02606378

https://hal.inrae.fr/hal-02606378

Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A state-space representation of the GR4J rainfall-runoff model

L. Santos, Guillaume Thirel, C. Perrin

To cite this version:

L. Santos, Guillaume Thirel, C. Perrin. A state-space representation of the GR4J rainfall-runoff model. EGU General Assembly 2017, Apr 2017, Vienna, Austria. pp.1, 2017. �hal-02606378�

(2)

A state-space representation of the GR4J rainfall-runoff model

Léonard Santos, Guillaume Thirel and Charles Perrin

Irstea, HBAN - Hydrosystems and Bioprocesses, Antony, France

EGU2017-4851

Contact:

! PhD student: Léonard Santos leonard.santos@irstea.fr +331-40-96-61-97

http://webgr.irstea.fr

A state-space representation of the GR4J rainfall-runoff model

Léonard Santos, Guillaume Thirel and Charles Perrin

Irstea, HBAN - Hydrosystems and Bioprocesses, Antony, France

EGU2017-4851

Contact:

! PhD student: Léonard Santos leonard.santos@irstea.fr +331-40-96-61-97

http://webgr.irstea.fr

Objectives

% Harmonize the mathematical equations of the GR4J model (Perrin et al. , 2003) within a state-space representation

% Replace the sequential resolution of equations by a global resolution with adaptative time-stepping

% Represent the unit hydrographs as a state variables model Constraints

% Keep similar performances

% Keep a lumped model with four free parameters

1. Structural modifications

The two unit hydrographs cannot be written as state space variable model.

The following options were chosen:

% Substitute the two unit hy- drographs by a

“Nash Cascade”

(Nash, 1957)

% Place it before the split of flow components

E P

S

Q x1

R F(x2) x3

Q9

Qr

Interception

Production store

Routing store

HU2

QNC

2x4

Perc Pn

Pn-Ps

Pr Ps

En Es

Q1

F(x2) Qd

... Nash

Cascade

E P

S

Q R F(x2) x3

Q9

Qr

Interception

Production store

Routing store

Perc Pn

Pn-Ps

Pr Ps

En Es

Q1

F(x2) Qd

Unit

Hydrographs

x4 2x4

UH2

UH1

Sh1

Sh2

Shn

Fig. 1: Substitution of the unit hydrographs of the original GR4J model (left) by a

“Nash cascade” for the state-space model (right)

2. Mathematical modifications

% All the state variables are expressed as v˙ = f (v, u) (v is the states vector and u the inputs) and merged in one system

% The “Nash cascade” is formulated with eleven stores and an outflow coef- ficient dependent on the GR4J time base (x4) parameter (to easily compare it with U H2)

The state-space formulation can be written as:

S˙ S˙h1h2

...

hn

=

Ux1−β1

t−1)νβ−1S(t)β + (En − Pn)

S(t) x1

α

− 2EnS(t)x

1 + Pn

Pn

S(t) x1

α

+ x

1−β 1

−1)Utνβ−1S(t)βn−1x

4 Sh,1(t)

n−1

x4 Sh,1(t) − n−1x

4 Sh,2(t) ...

n−1

x4 Sh,n−1(t) − n−1x

4 Sh,n(t) Φn−1x

4 Sh,n(t) − x−1)U1−γ3

tR(t)γ + xxω2

3R(t)ω

Greek letters are fixed parameters, latin letters are model states and inputs, xn are free parameters

3. Evaluation methodology

% 650 French catchments to get general conclu- sions

% Calibration of the mod- els using the KGE0 as an objective function

% Comparison of perfor- mances, output hydro- graphs, parameter val- ues and internal fluxes

% Tests at daily and hourly time steps

River Dives at Saint-Lambert-sur-Dive

Fig. 2: Locations of the 650 test catchments

4. Daily models results

Original GR4J model State−space GR4J model

Performances comparison (calibration on high flows)

KGE'(Q) 0.00.20.40.60.81.0

● ●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

● ●

●●

● ●

●●

● ●●

x1 parameter

State−space GR4J model x1 0500100015002000

0 500 1000 1500 2000

Original GR4J model x1

● ●

● ●

● ●

● ●

●●

●●

●●

● ●

● ●

● ●

● ●

● ●

● ●

●●

●●

● ●

● ●

x4 parameter

State−space GR4J model x4 012345

0 1 2 3 4 5

Original GR4J model x4

Fig. 3: KGE0 and parameter values of the state-space model compared to the original GR4J

% Very similar performances and parameter values (except x4)

% On all the catchments hydrographs, the peak flows are lower for the state-space representation

% Discrepancies in the internal fluxes (see figure 6)

+ + + + + + + + + + + + + + ++

+ + + + + + + + + +

+ ++ + + + + + ++ +

++ ++ + +

+ +

+ ++ + +

+ +

++ + ++ + +

+ + + + + + + + + ++ + + + ++ + +

+

+

++

++ + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Date Flow[m3 /s]

janv. 2002 févr. 2002 mars 2002 avril 2002 mai 2002

0246810 100806040200 Rainfall [mm/j]

+ Observations

Original GR4J outputs State−space outputs

River Dives at Saint−Lambert−sur−Dive

Fig. 4: Simulated hydrographs of the River Dives in winter and spring 2002

References

Ficchì, Andrea, Perrin, Charles, & Andréassian, Vazken. 2016. Impact of temporal resolution of inputs on hydrological model performance: An analysis based on 2400 flood events. Journal of Hydrology, 538(Jul), 454–470.

Nash, J. E. 1957. The form of the instantaneous unit hydrograph. Int. Assoc. Sci. Hydrol. Publ., 45(3), 114–

121.

Perrin, Charles, Michel, Claude, & Andréassian, Vazken. 2003. Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279(1-4), 275–289.

5. Temporal consistency

% For the original GR4J model, time step changes are made possible by the changes in parameters values (Ficchì et al. , 2016)

% State space model parameter values are stable, time step changes are managed by the integration of the differential equations

0 500 1000 1500 2000

0500100015002000

x1 parameter

Daily st−space x1 [mm]

Hourly stspace x1 [mm]

−10 −8 −6 −4 −2 0 2

10864202

x2 parameter

Daily st−space x2 [mm/day]

Hourly stspace x2 [mm/day]

0 50 100 150 200 250 300

050100150200250300

x3 parameter

Daily st−space x3 [mm]

Hourly stspace x3 [mm]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00.51.01.52.02.53.0

x4 parameter

Daily st−space x4 [day]

Hourly stspace x4 [day]

0 500 1000 1500 2000

0500100015002000

x1 parameter

Daily original x1 [mm]

Hourly original x1 [mm]

−10 −8 −6 −4 −2 0 2

10864202

x2 parameter

Daily original x2 [mm/day]

Hourly original x2 [mm/hour]

0 50 100 150 200 250 300

050100150200250300

x3 parameter

Daily original x3 [mm]

Hourly original x3 [mm]

0 1 2 3 4 5

012345

x4 parameter

Daily original x4 [day]

Hourly original x4 [day]

Fig. 5: Scatter plots of the four daily and hourly parameters of the original GR4J (left) and the state-space representation (right)

6. Discrepancies in internal fluxes

% High exchange values occur sooner after rainfall in the state-space model

% Calibrated x4 parameters create faster and higher response from the

“Nash cascade” than with the unit hydrograph in the original GR4J

% These two patterns seem related

% No real consequences on performances

Date

Water exchange [mm/j]

Jan 2002 Feb 2002 Mar 2002 Apr 2002 May 2002

−3−2−10123 50403020100 Rainfall [mm/j]

Classic GR4J exchanges State−space exchanges

River Dives at Saint−Lambert−sur−Dive

Fig. 6: Simulated water exchanges of the River Dives in winter and spring 2002

0 1 2 3 4 5 6

0.00.20.40.60.81.01.2

Time (t)

Outflow q(t)

Unit hydrograph response with x4 = 2 Nash cascade response with x4 = 2

Nash cascade response with a calibrated x4 value

Fig. 7: Comparison of the impulse responses of U H2 and a 11-stores “Nash

cascade”

Conclusion

% Mathematically more uniform and continuous version of the GR4J model

% This version should not substitute the original GR4J model, as it does not outperform the original model and have a higher computational time

% It could be useful for specific applications like time variable modelling, data assimilation or multimodel approaches (see poster EGU2017-4093 Friday, 28 Apr, 17:30–19:00)

EGU General Assembly - April 2017 - Vienna

Références

Documents relatifs

In the Euclidean space, we obtain a representation formula which generalizes the Weierstrass repre- sentation formula of minimal surfaces.. We also obtain as particular cases

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Keywords: Australia (South West), Australian Aborigines (Noongars), state relations, indigenous land claims (native title), representations of space, social and territorial

El modelo del marco lógico nos permitirá la vinculación integral de los problemas encontrados en el diagnóstico (árbol de problemas o deman- das de la población, así como conocer

The routing function of the model is fed with the rainfall that does not feed the production store (P s − P n ) plus a per-.. Details of the equations of the GR4 model and discrete

This paper introduces a new model for the SoC estimation using a Switching Markov State-Space Model (SMSSM): the battery behavior is described by a set of potential linear state-

In ASD observers, we discovered a different pattern of SF sampling across time: in the first 80 ms, high SFs lead ASD observers to a higher accuracy than neurotypical observers,

D’après les tableaux (Tableau 1 et Tableau 2), les résultats des deux méthodes de Saint Venant (version standard et version modifiée) pour le cas de sources profondes dans