• Aucun résultat trouvé

J2000-Rhône: a distributed hydrological model including water-use modelling to assess sustainability of the water resource

N/A
N/A
Protected

Academic year: 2021

Partager "J2000-Rhône: a distributed hydrological model including water-use modelling to assess sustainability of the water resource"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02606805

https://hal.inrae.fr/hal-02606805

Submitted on 16 May 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

J2000-Rhône: a distributed hydrological model including water-use modelling to assess sustainability of the water

resource

Isabelle Braud, F. Branger, I. Gouttevin, Eric Sauquet, F. Tilmant, Marielle Montginoul

To cite this version:

Isabelle Braud, F. Branger, I. Gouttevin, Eric Sauquet, F. Tilmant, et al.. J2000-Rhône: a distributed hydrological model including water-use modelling to assess sustainability of the water resource. 10th HyMeX workshop, Jul 2017, Barcelona, Spain. pp.1, 2017. �hal-02606805�

(2)

J2000-Rhône: a distributed hydrological model

including water use modelling to assess

sustainability of the water management

Isabelle Braud (1), Flora Branger (1), Isabelle Gouttevin (3), Eric Sauquet (1), François Tilmant (1),

Marielle Montginoul (2)

(1) Irstea, UR HHLY, Villeurbanne, France (

isabelle.braud@irstea.fr

)

(2) Irstea, UMR G-EAU, Montpellier, France

References:

Branger, F., Gouttevin, I., Tilmant, F., Cipriani, T., Barachet, C., Montginoul, M., Le Gros, C., Sauquet, E., Braud, I., Leblois, E., 2016. Modélisation hydrologique distribuée du Rhône, Rapport final, 110 pp.

http://cemadoc.irstea.fr/oa/PUB00051555-modelisation-hydrologique-distribuee-rhone.htm

BRGM: http://www.brgm.fr/decouverte/ouvrages-cartes-brgm-editions/cartes-geologiques-numeriques

JAMS: http://jams.uni-jena.de/

Krause, P., et al., 2006, Multiscale investigations in a mesoscale catchment – hydrological modelling in the Gera catchment, Adv. Geosci., 9, 53–61.

RGA, 2010. http://www.agreste.agriculture.gouv.fr/recensement-agricole-2010/

Soil Eurpean Data base: http://eusoils.jrc.ec.europa.eu/ESDB_Archive/ESDB/

Vidal et al., 2010, Int. J. Climatology, 30(11): 1627-1644. DOI:DOI: 10.1002/ioc2003

Acknowledgements: This work was conducted with the support of Agence de L’Eau

Rhône-Méditerranée Corse, FEDER funds and CNR. Data were provided by Météo-France, EDF, Banque Hydro. The University of Jena helped in developping the model.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Poster P4.17

1. CONTEXT AND OBJECTIVES

Context:

Mediterranean and Alpine catchments are hot spots of climate, land use and practices changes, raising questions about the future of water resources in these catchments. To anticipate such changes and compare different adaptation solutions, process-based distributed models can provide useful results for stakeholders, provided the models are able to handle water uses impact and management.

Objectives:

• Develop a distributed hydrological model over the whole Rhône catchment

• Include a representation of the prevailing water uses : dam influence / irrigation / drinking water

• Use this tool for prospective studies as to the future of the water resource

3. J2000-RHONE: MODEL

DESCRIPTION AND SET UP

J2000-Rhône principles

• A fully distributed process-based hydrological model, based on the Hydrological Response Unit (HRU) concept (modeling units considered homogeneous in terms of topography, geology, land use and soil properties) (Fig. 2)

• Modular open-source codes modules developed in the JAMS modeling platform

• Natural hydrology: adaptation of the J2000 model (Krause et al., 2006) to the French context (Fig.3)

• Building of new modules for dams and derivations (Fig. 5), irrigation (Fig. 6) and drinking water (econometric model)

Figure 3: Processes modelled at the HRU scale. Routing of the three runoff components is performed from HRU to HRU until reaching the

river where a kinematic wave approximation is used

2. THE RHONE CATCHMENT

Study catchment (Fig. 1)

• A 95 000 km2 watershed

• A large diversity in topography (from 0 to 4807 m), climates (Alpine, Oceanic, Mediterranean)

• A large anthropogenic impact on water resources through a large diversity of water uses: dams and derivations, irrigation, drinking water (around 13 M inhabitants)

Figure 1: Location and topography of the Rhône catchment. Red triangles are the main dams. Photos

illustrate the various landscapes and water uses

(irrigation, dams). The bottom graph shows the impact of a dam on the interannual monthly water cycle

Input data

• Input rainfall and reference ET0 computed from SAFRAN climate data base (Vidal et al., 2010) + crop coefficient for the main land uses

• ASTER 30 m DTM aggregated to 200 m • Corine Land Cover 2006

• Pedology: Soil European Data base 1/1000000 • Geology at 1/250000 (BRGM)

• Location and volume of the main dams • RGA 2010 data base for information on

irrigated surfaces and crops + association of an irrigation type to each crop

Model set up and evaluation

• Model run at the daily time step for 1985-2012 • Parameter assigned according to available

knowledge and literature

• No calibration, but an iterative improvement of the model to keep a physical meaning to

parameters

5. MODEL RESULTS AND

PROSPECTIVE SCENARII

Model evaluation in natural conditions

• The iterative strategy of model improvement leads to improved performance (Fig. 7)

• Distinction between plain and mountain

• Adjustment of soil water storage capacity, impervious fraction

(a )

(b )

6. CONCLUSIONS AND PERSPECTIVES

Main achievements

• A model set up at the scale of the whole Rhône catchment, and including the main water uses

• Feasibility for use in climate and practices changes sensitivity analyses demonstrated

Directions for improvements

• Formalization of the iterative model improvement based on hydrological signatures (on-going PhD)

• Get data at the right scale to better specified water withdrawals points

• Coupling with agent-based model for irrigation decision

Figure 9: Interannual monthly WSI computed for three typical “cantons” with (a) climate change only (from top to bottom: ref, RPC 2.6, 4.5, 8.5) and (b) with climate change

and change of irrigation from aspersion to drip irrigation Figure 8: Computed drinking water pressure index

(demand/resource) for year 2009 for natural (left) and influenced hydrology (right)

Figure 7: Nash criteria (a) before and (b) after model improvement. The number of stations with Nash >0.5 increases from 16% to 50%

Figure 2: HRUs of the Rhône

catchment and discharge gauging

stations used for the evaluation

Climate and irrigation change scenario (Fig. 9)

• One climate change scenario (one GCM only)

• Change irrigation practices (from aspersion to drip)

• Compute a Water Stress Index (WSI=demand/resource)

Figure 5: Dam and

derivation module. (a) An interannual objective function is estimated from

data and applied daily to the model. (b) Illustration

for the Loire-Ardèche derivation

Figure 6: Main irrigated crop at the “canton” scale

randomly distributed on the HRUs. Irrigation (aspersion,

drip, gravitational) is

computed as the difference between water demand and

available water with two parameters: objective % soil filling and network efficiency.

Water is taken in the closest river reach Alpine Mediterranean Oceanic Irrigation Dam So il Su rface /V eg eta tion Su b -So il ●hydrometric stations [234] — river network —HRUs 0 10 20 30 Mois D éb its (m 3/ s) J F M A M J J A S O N D OBS

Avec barrages + dérivations Sans barrage ni dérivation

Moyenne mensuelle interannuelle des débits observés et simulés pour la station de l'Ardèche à Pont-de-Labeaume (V5004010)

Comparaison sur la période 1987 - 2012

Storage in snow melt period and release in winter

Interannual monthly regime

(a) (b)

Pressure on resources due to drinking water (Fig. 8) Year 2009 Pressure index Catchment area (km2) Irrig type drip ▪ aspersion Wsi ▪ < 20% ▪ [20-40%] [40-80%] ▪ > 80%

(a) WSI (b) WSI

Zoom on an irrigation area in the Saône catchment

Climate change and no change in irrigation practice

Climate change and irrigation changed from aspersion to drip irrigation

Références

Documents relatifs

Elle a pour principal objectif de faire le point, de manière non exhaustive, sur les recherches et programmes en robotique spatiale, en biologie et en sciences de

À partir des données actuellem ent disponibles et avec les approches mises en oeuvre sur le terrain et en laboratoire, les études des réseaux de diffusion

La formation F3 constitue, dans de nombreuses loca- lités du Haut-Atlas central, la base de cette série permo- triasique, calée entre les formations dont le critère d'âge est signalé

Silicon fusion bonding, anodic bonding, and intermediate material bonding using glass frit, solder, or gold, have been reported as promising methods for

Le troisième pont sur le Bosphore est un pont exceptionnel, d’une part, pour sa situation, entre l’Asie et l’Europe, et d’autre part, pour sa suspension hybride

Une deuxième série d’essais concerne des échantillons, correspondant à un temps d’hydratation fixe de 40 jours, soumis à des essais de cisaillement direct à

L'objectif de cette étude était d'obtenir des liants de type pouzzolanique à température ambiante (20° C) à partir de l'activation alcaline des géopolymères à