• Aucun résultat trouvé

Stress corrosion cracking of Ni-base alloys in PWR primary water

N/A
N/A
Protected

Academic year: 2021

Partager "Stress corrosion cracking of Ni-base alloys in PWR primary water"

Copied!
32
0
0

Texte intégral

(1)

HAL Id: cea-02437062

https://hal-cea.archives-ouvertes.fr/cea-02437062

Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Stress corrosion cracking of Ni-base alloys in PWR

primary water

C. Guerre

To cite this version:

C. Guerre. Stress corrosion cracking of Ni-base alloys in PWR primary water. EPRI Alloy 690/52/152 Primary Water Stress Corrosion Cracking- Research Collaboration Meeting 2016, Nov 2016, Tampa, United States. �cea-02437062�

(2)

STRESS CORROSION CRACKING

OF NI-BASE ALLOYS

IN PWR PRIMARY WATER

Catherine GUERRE

26 MAI 2016 CEA | 16es Journées Scientifiques de la DANS | PAGE 1

Den-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France

CEA and MINES ParisTech : E. Chaumun, P. Laghoutaris CEA : O. Raquet

Mines ParisTech: J. Crépin, C. Duhamel, M. Sennour, F. Gaslain, H.T. Le Ecole Polytechnique: E. Héripré

CNRS: J. Chêne

AREVA : P. Combrade, P. Scott (retired) EDF : Th. Couvant , F. Vaillant (retired) IRSN : M. le Calvar, I de Curières

(3)

Nickel base alloys

26 MAI 2016 CEA | CEA Nuclear Energy Division Annual Scientific Committee Meeting (Saclay, Oct. 12-14, 2016) | PAGE 2

Alloy 600, U-bend 1200 hr @ 325°C Alloy 82, U-bend, 2500 hr @ 400°C

[Laghoutaris 2009]

[Chaumun 2016]

• Alloy 600 MA, Alloy 600 TT (Ni-16Cr-9Fe) and its weld metals (Alloy 82 and Alloy 182) • Alloy 690 TT (Ni-30Cr-10Fe)

and its weld metals (Alloy 52 and Alloy 152)

intergranular and oxidized cracks

Alloy 82

[Chaumun 2016]

Alloy 600 MA

Less

susceptible to

SCC

(4)

Introduction

26 MAI 2016 CEA | EPRI meeting, December 2016) | PAGE 3

Since the first laboratory SCC crack for Alloy 600 in high temperature water (Coriou 1959), many laboratory studies have been performed :

• Parametric studies : effect of hydrogen, temperature, microstructure, chemistry, … • Time to initiation and crack growth rate

• More recently : local characterization of SCC crack tips

thanks to the development of high-resolution characterization techniques such as analytical transmission electron microscopy (ATEM) or atom probe tomography as well as site-specific sample preparation with focused ion beam (FIB)

Towards a SCC mechanism for nickel alloys (to confirm the low susceptibility of Alloy 690)

Primary crack : the deepest propagating crack

(from Laghoutaris 2009 and Sennour et al. 2009)

Cr-depleted area

(5)

26 MAI 2016 CEA | EPRI meeting, December 2016) | PAGE 4

(6)

SCC initiation of Alloy 690

26 MAI 2016 CEA | EPRI meeting, December 2016) | PAGE 5

F. Vaillant et al., published in 2005 International PWSCC of Alloy 600 Conference and Exhibit Show (MRP-154)

Experimental conditions of the French R&D program (EDF and CEA)

- 21 industrial tubes (high MA temperature (1040-1080°C, generally H2) + TT 700°C) : intergranular carbides

- 19 experimental tubes, (MA (980°C<T<1040°C, NH3 or H2) + TT 700°C) • some with intergranular carbides

• others with inter + intra carbides, among them WE092 and WE094 with a 2 steps HT

(7)

26 MAI 2016 CEA | EPRI meeting, December 2016) | PAGE 6

CERTS in simulated primary water at 360°C (5 10

-8

s

-1

).

It was concluded :

- Not significant SCC susceptibility on most of the tested materials (CERTS

specimen)

- Except for experimental heats with unusual microstructure (intragranular

carbides) : IGSCC

(8)

SCC initiation of Alloy 690 : conclusion

26 MAI 2016 CEA | EPRI meeting, December 2016) | PAGE 7

Conclusion (as presented International PWSCC of Alloy 600 Conference

and Exhibit Show (MRP-154) 2005)

- All of the many the laboratory tests that have been performed have

demonstrated a very high resistance to SCC of Alloy 690 in PWR primary

water.

- In a few cases, a limited susceptibility to PWSCC has been observed in

laboratory tests for Alloy 690 with a microstructure characterized by

intragranular carbide precipitation (and low grain boundary coverage with

carbides) when subjected to extremely severe loadings.

- For these cases, an approach based on the strain rate damage model was

developed. Based on this model, no significant cracking would be expected in

roll transitions of SG tubes during the lifetime of PWR plants.

- Moreover, the results show that no SCC is expected for industrial products

having the specified intergranular carbide microstructure.

(9)

26 MAI 2016 CEA | EPRI meeting, December 2016) | PAGE 8

Alloy 600 with model microstructure :

influence of intergranular carbides precipitation on SCC

inititiation (GB oxidation)

(10)

Alloy 600 with model microstructures

26 MAI 2016 CEA | EPRI meeting, December 2016) | PAGE 9

WF675

Intragranular carbides

Model microstructure alloys

- Alloy 600 heat WF675

(very susceptible to SCC in PW) - Heat treatment in vacuum :

- Solution annealed + water quenching

-> no carbide

- Solution annealed + air cooling

-> low intergranualar carbide precipitation

- Solution annealed + water coolling + 16 hr at 700 °C

-> high intergranular carbide precipitation

- No CW or CW up to 50 % (250 Hv to app. 320 Hv)

(11)

26 MAI 2016 CEA | EPRI meeting, December 2016) | PAGE 10

Sample SA “Solution Annealed”

No carbide High IG precipitation

1050 ºC for 1 h + water quenching

1050 ºC for 1 h + water quenching

+ tempering at 700 ºC for 16 h

(12)

Alloy 600

30 µm

30 µm

Solution annealed (SA)

Strong intergranular carbide precipitation

Heat WF675 Susceptible to SCC Zr chips A600 samples

1050°C – 1h water quenching ageing 700°C – 16h

Model microstructure

500 nm STEM-DF

Carbides

(Cr

7

C

3

)

P. Laghoutaris, thesis

Alloy 600 with model microstructures

| PAGE 11 CEA | EPRI meeting, December 2016)

(13)

Solution – annealed (no IG carbide)

16O 18O

12C

2 Masse 68

Nano-SIMS analysis on intergranular attack formed during exposure in water. Exposure conditions : • 1340 hr in nominal primary water at 325°C • 67 hr in water containing tracers (18O) at 325°C

-> 18O is located at the tip of the IG

penetration and in the outer part of the oxide surface layer

-> 18O transport during 67 hr up to

the tip of the oxidized grain boundary

-> long and thin IGA

Nano-SIMS analysis were performed by Nathalie Vallé Public research centre Gabriel Lippmann, Material analysis department

18

O /

16

O

Alloy 600

GB

Alloy 600 with model microstructures

| PAGE 12 CEA | EPRI meeting, December 2016)

(14)

Alloy with IG carbide precipitation

Nano-SIMS analysis

Same exposure conditions.

-> large and short IGA

18

O /

16

O

18

O /

16

O

C

16

O

18

O

12

C

2

Alloy 600 with model microstructures

| PAGE 13 CEA | EPRI meeting, December 2016)

(15)

26 MAI 2016 CEA | EPRI meeting, December 2016) | PAGE 14

Alloy 600 with model microstructures

oxide penetration

Cr carbides Alloy with IG carbide precipitation

SEM image : large and thin IG oxidation

[Gaslain et al. 2016] [Laghoutaris 2009]

(16)

| PAGE 15 CEA | EPRI meeting, December 2016

oxide Intergranular chromium carbides [Gaslain et al. 2016] [Laghoutaris 2009]

No IG carbide Alloy with IG precipitation

Alloy 600 with model microstructures ….

FIB/SEM image : the oxidation is deeper in the case of the

alloy without any IG carbide

(17)

Alloy 182 : IG precipitation and oxidation

26 MAI 2016 CEA | EPRI meeting, December 2016) | PAGE 16

M. Wehbi EDF and MINES ParisTech (Env. Deg. 2015)

Correlation between grain boundary oxidation and IG oxidation for A182

Cinetic law of intergranular oxidation for two grain boundary coverages (GBC) for a Ni weld at 320°C (from M. Wehbi, PhD thesis, Mines ParisTech, 2014)

Dep th o f o x idiz e d GB (nm ) Crack No crack Time (hr) 20 % of carbides 50 % of carbides more IG carbides

-> Critical intergranular

oxidation : crack initiation

(18)

A690 microstructure

26 MAI 2016

| PAGE 17 CEA | EPRI meeting, December 2016)

WF771

WE092 (MA 1040°C – 1070°C)

A690 (industrial and experimental tubes)

SCC susceptibilty

IG precipitation

30 µm

Strong intergranular carbide precipitation

Solution annealed (SA)

A600 with model

mocrostructure

(19)

Nickel weld (Alloy 82) and SCC

| PAGE 18

29 NOVEMBRE 2016

(20)

Microstructure of nickel base weld metal

26 MAI 2016

| PAGE 19 CEA | CEA Nuclear Energy Division Annual Scientific Committee Meeting (Saclay, Oct. 12-14, 2016)

29 NOVEMBRE 2016 | PAGE 19

Weld B as-welded

111

100 110

IPF following S axis Weld A as-welded

• Heterogeneous grain size and elongated grains along the dendrite growth direction

• Morphology and texture depends on the weld (on the welding process)

• Representative elementary volume close to 1 cm3

L T S T 2 mm 2 mm {100} {110} {111} T 2 mm Weld B as welded S T [Chaumun 2016]

(21)

Approach

26 MAI 2016

| PAGE 20 CEA | CEA Nuclear Energy Division Annual Scientific Committee Meeting (Saclay, Oct. 12-14, 2016)

29 NOVEMBRE 2016

Microstructural analyses

Local mechanical

behavior

Initiation sites

To identify which microstructural parameters

associated with local mechanical behavior

enable SCC initiation

Macroscopic behavior

Local behavior

U-bend specimen tested in hydrogenated steam

at 400°C (200 bars)

10 µm

1 µm

Strain fields DIC using gold grids Stress (Finite elements)

(22)

Initiation test : macroscopic results

26 MAI 2016

| PAGE 21 CEA | CEA Nuclear Energy Division Annual Scientific Committee Meeting (Saclay, Oct. 12-14, 2016)

29 NOVEMBRE 2016 -0,01 -0,005 0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04 0 1000 2000 3000 4000 Ra tio Temps en heures -0,01 -0,005 0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04 0 1000 2000 3000 4000 Ra tio Temps en heures -0,01 -0,005 1E-17 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04 0 1000 2000 3000 4000 Ra tio Temps en heures -0,01 -0,005 0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04 0 1000 2000 3000 4000

Number of cracks / number of perpendicular grain boundaries

Alloy B/AW : A82 18%Cr, FCAW, as-welded

Alloy A/AW : A82 19%Cr, GTAW, as-welded Alloy A/HT : A82 19%Cr, GTAW, heat-treated

No crack

[Sennour2013] M. Sennour et al. JNM, 2013

Time (hr)

U-bends specimen tested in hydrogenated steam at 400°C (same mechanism as in PWR primary water but faster initiation)

- Weld B/As Welded is less susceptible to SCC

than weld A/As-Welded

- Weld B/Heat Treated is less susceptible than

weld B/As-welded

 “weld to weld” variability

 beneficial effect of the heat treatment assumed to be due to the formation of intergranular

chromium carbides [Sennour2013]

 but some scattering for the same weld + specimen size versus representative elementary volume

(23)

| PAGE 22

Initiation tests : scattering

Weld A 4 specimens | PAGE 22 2 mm 2 mm 2 mm 2 mm

Apex of the

U-bend

specimen

-0,01 -0,005 0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04 0 1000 2000 3000 4000 111 100 110 IPF suivant la direction S

Number of cracks / number of perpendicular grain boundaries

(24)

Chemical heterogeneities in the weld passes

| PAGE 23

SIMS analysis at different locations in weld passes (weld A):

at the root of the weld pass (with small grains or large grains ) and in the middle of the pass

111 100 110 IPF suivant la direction S S T

Area fraction of phases containing Al, Ti or S 0 1 2 3 4 5 6 7 0 5 10 15 20 25 30 35 40 45 50

Pied gros grains Milieu Pied petits grains Milieu Pied S ( % ) A lumi nium et Tit an e ( % ) S Al Ti Middle Root Small grains

More impurities at the roots of the weld passes (small grains or large grains).

[Chaumun 2016]

Root

(25)

SCC initiation and microstructure

| PAGE 24 Depending of the welding process, the chemical composition or the thermal treatment

 more impurities can be found in some places in the welds (roots of the welds passes for instance)

 chromium carbides can precipitate in the grain boundaries  modify the grain boundary cohesion energy

2 mm

But for the same chemistry and / or precipitation, not all the grain boundaries crack.

What about the mechanical fields ?

 Strain is not a sufficient parameter to model the SCC initiation behaviour [Chaumun et al., 2015] [Chaumun, 2016]

(26)

29 NOVEMBRE 2016 | PAGE 25

SCC initiation and stress

Finite elements computations

 Finite elements computation around selected cracked and uncracked grain boundary

cracked grain boundaries

uncracked grain boundaries

Grain boundary • Crystallographic orientation

(EBSD) and the experimental

displacement (DIC) are

applied to the bi-crystal system.

(27)

For selected cracked and uncracked grain boundaries (as observed by FIB)

Results : • σN

gb = Maximum normal stress σgb normalized

by the average normal stress of all computations Grain Boundary S T L

SCC initiation and stress

[Chaumun 2016]

FIB

(28)

 The average of the normalized maximum normal stress is higher for the cracked GB than for the uncracked ones -> towards an opening stress criteria.

SCC initiation and stress

0 0,5 1 1,5 2 2,5

σ

N gb max vraie 0 0,5 1 1,5 2 2,5

σ

N gb max Average = 1,70 Average = 0,67

Cracked GB

Uncracked GB

| PAGE 27 [Chaumun 2016]

(29)

SCC of Alloy 82 : conclusions

29 NOVEMBRE 2016 | PAGE 28

Alloy 82 is susceptible to SCC initiation in hydrogenated steam at 400°C.

Its susceptibility depends on the welding process, chemical composition and thermal treatment

 depending of the chemical composition, the heat treatment can induce intergranular chromium carbides formation that are beneficial.

The susceptibility depends on the location in the weld passes

 the roots of the weld passes can contain more impurities (correlation with the weld process and with the chemical composition).

The susceptibility depends on the GB binding energy which depends on the GB chemistry, on the strain discrepancy [Wehbi2014], on the precipitation, …

The susceptibility can not be explained by only one parameter

 BUT a coupling of parameters Tend to a initiation criterion =

mechanical behavior (maximal normal stress and deformation discrepancy) +

chemical parameter (intergranular oxide, grain boundary cohesion energy…)

Macro

scop

ic

be

ha

vio

r

Lo

cal

be

ha

vio

r

(30)

| PAGE 29

GB

binding

energy

IG chromium carbides GB impurities GB oxidation rate …. Strain discrepancy Welding process (for welds) Chemical composition Heat treatment

Normal

stress

400 µm

(31)

Conclusion and future work …

| PAGE 30 CEA | CEA Nuclear Energy Division Annual Scientific Committee Meeting (Saclay, Oct. 12-14, 2016)

To improve the modelling, the work in progress deals with :

- A better understanding of the oxidation of the grain boundaries (with or without intergranular carbides known to be of great importance for the SCC behavior, depleted grain boundary)

- As strain is not sufficient, stress maps must be known (finite element analysis is therefore needed).

The local applied stress must be compared to the binding energy of the grain boundary.

In the frame of the extension of the operating life of the PWR in France, a better understanding of the SCC mechanism for Alloy 600 will permit :

- to confirm the good behavior of Alloy 690 and its weld metals

- to model the SCC behavior of the remaining components in Alloy 600 (and its weld metals)

1 µm

oxide

316 L (pre-strain 11%)

500 h@340°C in PWR primary water

Work in progress in collaboration with IRSN

(32)

Direction de l’énergie nucléaire Département de physico-chimie Service de la corrosion et du comportement des matériaux dans leur environnement Laboratoire d’étude de la corrosion aqueuse

Catherine GUERRE : catherine.guerre@cea.fr

Commissariat à l’énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex

T. +33 (0)1 69 08 16 26 | F. +33 (0)1 69 08 15 86

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

[Chaumun 2016] PhD thesis, Mines ParisTech, 2016

[Gaslain et al. 2016] F O M Gaslain, H T Le, C Duhamel, C Guerre and P Laghoutaris, The role of intergranular chromium carbides on intergranular oxidation of nickel based alloys in pressurized water reactors primary water, EMAS 2015 Workshop IOP Publishing IOP Conf. Series: Materials Science and Engineering 109 (2016) 012004 doi:10.1088/1757-899X/109/1/012004

[Laghoutaris 2009], PhD thesis, Mines ParisTech, 2009

[Sennour et al. 2009] Advanced TEM characterization of stress corrosion cracking of Alloy 600 in pressurized water reactor primary water environment. M. Sennour, P. Laghoutaris, C. Guerre and R. Molins 2009 J. Nucl. Mater. 393 254-266

[Sennour et al. 2013] M. Sennour, E. Chaumun, b, J. Crépin, C. Duhamel, F. Gaslain, C. Guerre, I. de Curières, TEM investigations on the effect of chromium content and of stress relief treatment on precipitation in Alloy 82, Journal of Nuclear Materials, Volume 442, Issues 1–3, November 2013, Pages 262–269

Références

Documents relatifs

ينوناقلا ماظنلا يف يماسلا ةفيظولا ةناكم.. 9 لولأا لصفلا ةفيظولا ةناكم ةيماسلا ينوناقلا ماظنلا يف مضتت ن ةفيظولا لا ةيماس اهدوجو هنم دمتست

Arduino est excellent pour voir ce que l'on peut faire, mais c'est comme IKEA: vous câblez comme sur le dessin, vous chargez le programme, et vous êtes content.. Bien utiliser

Markov Paths on the Poisson-Delaunay Graph with applications to routing in mobile networks François Baccelli, Konstantin Tchoumatchenko, Sergei Zuyev.. To cite this version:

initialisée. Si on remplace l’indicateur de conversion ’c’ par ’s’, le caractère de fin de chaîne ’\0’ est 

Unité de recherche INRIA Sophia Antipolis 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex France Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC

Ces résultats montrent également que comme le plasma Ar, le plasma d’hélium présente une sélectivité entre un GaN chlorée et un GaN massif grâce à l’action de

For IOT purposes, Fieldwork (or field trials) is defined as work performed by IOT employees taking place outside NRC premises in an outdoor environment. In generally this will be a

This induced a reduction of the amount ofparticles with size greater than 20 mm but had almost no impact on the production of fines (amount ofparticles smaller than 2 mm).