• Aucun résultat trouvé

Infrared spectroscopy of mass-selected ions in FTICR and QIT mass spectrometers

N/A
N/A
Protected

Academic year: 2021

Partager "Infrared spectroscopy of mass-selected ions in FTICR and QIT mass spectrometers"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-00069121

https://hal.archives-ouvertes.fr/hal-00069121

Submitted on 9 Oct 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Infrared spectroscopy of mass-selected ions in FTICR and QIT mass spectrometers

Luke Mac Aleese, Joel Lemaire, Pierre Boissel, Jean-Yves Salpin, Jean-Michel Ortega, Francois Glotin, Philippe Maître

To cite this version:

Luke Mac Aleese, Joel Lemaire, Pierre Boissel, Jean-Yves Salpin, Jean-Michel Ortega, et al.. Infrared spectroscopy of mass-selected ions in FTICR and QIT mass spectrometers. 53rd American Society Mass Spectrometry Conference, 2005, San Antonio, United States. 2005. �hal-00069121�

(2)

Infrared spectroscopy of mass-selected ions in FTICR and

QIT mass spectrometers

(a) Laboratoire de Chimie Physique, UMR 8000 CNRS – Université Paris-Sud 11, Faculté des Sciences d’Orsay, bât. 350, 91405 ORSAY Cedex, France. (b) LURE-CLIO, UMR 130 CNRS – Université

Paris-Sud 11, Faculté des Sciences d’Orsay, bât. 209D, 91405 ORSAY Cedex, France. (c) Laboratoire Analyse et Environnement, UMR 8587 CNRS – Université d’Evry Val d’Essone, 91025 Evry Cedex

An infrared source : the Free Electron Laser CLIO in Orsay

Perspectives : IR spectroscopy of “real world” catalysts and related intermediates

Energy by micropulse (J)

Mean Power

(mW)

CLIO Laser power (3-90 um) + OPOs

CLIO Laser power for various electron energies

CLIO characteristics :

• infrared domain from 100 to 3000 cm

-1

overview of the « infrared fingerprint » region

• continuous & rapid tuneability

full spectrum (800-1600cm

-1

) in typically 1 hour

• spectral width around 0.2-0.5 % of central wavenumber (i.e. from  from 8 to 4 cm

-1

)

• continuous high power over all range (~800mW)

time

time

40 msec

8 sec

1 psec

16 nsec

=60-70 J

CLIO : a pulsed laser with a particular time structure

MICRA characteristics :

• Mass range 10-1000 amu

• Resolution 70000 @ 130 amu

• Permanent magnet 1.25 Tesla

• Vacuum 5.10-9 mbar

• Dimensions 120 x 80 x 60cm

• Weight 200 kg

Different ion sources :

• Electron impact

• Chemical ionisation

• MALDI

• Laser ablation-ionisation

Irradiation time ~ 500-2000 ms

NdYag 355 nm B

Excitation Detection Excitation

Trapping

IR FEL

MALDI target

matrix

NaCl AA

MICRA ICR cell : an open cell to provide optical acces to the trapped ions

A FT-ICR mass spectrometer : MICRA, the Mobile

FT-ICR Analyzer

An ESI-quadrupole ion trap mass spectrometer :

modified Esquire3000plus Bruker instrument

Ion trap characteristics :

• Mass range 50-3000 m/z

(extended : 200-6000 m/z)

• Resolution 0,15 uma

Ion sources used : electrospray

Modification : two symmetric holes

in the ring electrode

Irradiation time ~ 50-300 ms

Quadrupole ion trap : (1)modified ring

electrode : a hole was built to allow a focused laser beam in, (2)&(3)endcap electrodes

1

1

CLIO beam

Comparison between IRMPD spectra in ICR and QIT conditions. Test case : protonated Leucine methylester

Results :

Same absorption band position

Same absorption band width : 30-40 cm

-1

same internal energy of the ions

With the RF trap :

“real world” catalysts :

762.9 765.0 765.9 766.9 767.9 768.9 769.9 770.9 771.9 772.9 +MS, 0.0-2.2min (#1-#135) 0 1 2 3 4 7 x10 Intens. 762 764 766 768 770 772 774 m/z P PPh2 S Pd NTf2 Me2OC Me2OC Ph Ph M = 1048.3

High pressure in the trap : ion molecule reactions in a high

collision rate regime – “real” conditions chemistry.

Our 1

rst

target : functionalization of a secondary amine

N

H

O

+ 2

OH

O

N

70° C

THF

24h

100%

P PPh2 S Pd Me2OC Me2OC Ph Ph 0 .4 0 .8 1 .2 1 .6 2 0 4 00 8 00 1 2 00 8 00 1 4 00 2 0 00 1 46 8 72 8    72 5 1 47 9    2 04 8 - 2 09 0 C O s t r. 2 03 8 - 2 09 3 1 03 4 1 04 0 97 5 98 0 89 5 89 4 C a lc . In t . ( k m /m o l) IR M P D Y ie ld 0 0 .2 0 .4 0 .6 0 4 0 0 8 0 0 1 2 0 0 1 6 0 0 8 0 0 1 4 0 0 2 0 0 0 1 4 5 2    8 2 4    8 1 4 1 4 7 2 2 0 5 7 - 2 0 9 8 C O s t r. 2 0 6 2 - 2 1 0 4 C a lc . I n t . ( k m /m o l) I R M P D Y ie ld 0 0 . 3 0 . 6 0 8 0 1 6 0 6 0 0 1 0 0 0 1 4 0 0 1 8 0 0 M n ( B z )+   1 4 6 4 7 4 4    7 3 8 1 4 7 1 C a l c . I n t . ( k m / m o l ) I R M P D Y i e ld 0 0 .6 1 .2 0 4 0 8 0 6 0 0 1 0 0 0 1 4 0 0 1 8 0 0 M n ( B z ) 2 + 1 4 3 7    8 1 3    ( s h . 8 3 3 ) 8 1 4 1 4 5 2 9 1 1   9 1 4 C a lc . I n t . ( k m /m o l ) I R M P D

Y ie ld

Probing the spin state

Probing the coordination mode

Bz coordination change (

6

-> 

4

) upon CO

addition to an 18-electron complex

IRMPD spectroscopy also provides a good tool for probing the coordination mode of benzene. Heteroleptic Mn+(Bz)(CO) n

complexes have also been studied. Mn+(Bz)(CO)

3 is another

example of 18-electron complex, and the magnitudes of the

blue-shift of 11 and red-shift of 19 are similar to the ones observed for

Mn+(Bz)

2.

Upon addition of CO to Mn+(Bz)(CO)

3, Mn+(Bz)(CO)4 was

generated. Three additional bands were observed at 985, 975

and 1034 cm-1 for Mn+(Bz)(CO)

4, and the positions of 11 and 19

suggest that the Mn+-benzene interaction is weaker than in

Mn+(Bz)(CO)

3. The IRMPD spectrum of Mn+(Bz)(CO)4 is in very

good agreement with the calculated IR spectrum of the isomer

presenting an 4 coordination of benzene.

Metal

+

-Benzene complexes

As shown in the recent work of Duncan’s group (J.

Am. Chem. Soc. 2004 126 10981 and references

therein), the magnitude of the shifts of the vibrational bands of benzene provide a clear diagnostic of the

Metal+-benzene bonding scheme. The larger is the

interaction, the larger are :

- the blue-shift of 11 (out-of-plane H bend, 673 cm -1 in

Bz),

- the red-shift of 19 (in plane C ring distortion, 1486

cm-1 in Bz).

With this respect, our study of Mn+ complexes is

interesting. Within the first row transition metal M+

complexes, the mono- and di-benzene complexes display the smallest and largest shifts respectively :

- the first benzene is weakly bound to Mn+ in its

7S(s1d5) G.State,

- the Mn+-benzene interaction is large in the

18-electron Mn+(Bz)

2 Complex.

Luke Mac Aleese

(a)

, Joel Lemaire

(a)

, Pierre Boissel

(a)

, Jean-Yves Salpin

(c)

, Jean-Michel Ortega

(b)

,

François Glotin

(b)

, Philippe Maître

(a)

Laboratoire de Chimie Physique, Laboratoire pour l’Utilisation du Rayonnement Electromagnétique, CNRS & Université Paris-Sud 11, ORSAY, France

Laboratoire Analyse et Environnement, CNRS & Université d’Evry Val d’Essone, EVRY, France

ALYXAN (Startup company for developping portable ICR analyzers)

http://www.alyxan.com/ - michel.heninger@lcp.u-psud.fr

Ion formation / irradiation :

- MALDI in -cyano matrix

- UV 355 (3rd harmonic of Nd-YAG) - ~20 mJ/pulse

- Electrospray in water - Concentration : 10-5 mol/L

ICR

QIT

0 0.2 0.4 0.6 0.8 1 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 1000 1200 1400 1600 1800 2000

protonated leucine methylester

ICR

QIT

laser frequency (cm-1)

Infrared spectra of several protonated amino methyl esters and the related

homo and hetero proton bound dimers were studied at CLIO in the FT-ICR

mass spectrometer MICRA, and their infrared spectra were obtained after

irradiation with the free electron laser “CLIO” beam.

Leucine methyl ester crystal were compressed with a-cyano matrix into a

small pellet and placed in MICRA. After desoption, ionisation, selection and

relaxation, an IR spectrum was taken : ICR-IRMPD spectrum of protonated

leucine methyl ester is represented by the red line here.

Leucine methyl ester cristal was dissolved in water and electrosprayed in

the quadrupole ion trap Bruker : after isolation of the protonated species,

they were irradiated for a few milliseconds. The QIT-IRMPD spectrum of

protonated leucine methyl ester is represented in blue.

Pd (II) L L Pd( ) L L Pd( ) L L Pd( ) L L Pd( ) L L RNH2 H2O Pd (0) L L R NH H + R NH H H N H R OH H HO O H H

Proposed mechanism for the functionalization of an amine

Infrared spectroscopy of reactive intermediates

- Which intermediate is formed ?

- Which paths is used ?

- Which structure is active ?

- Importance of the ligands ?

- …

Optimization of the catalyst ?

… An opening to catalyst screening

+H

3N

O O

Références

Documents relatifs

The experimental setup consists of three traps: A linear Paul trap, a preparation Penning trap for beam cooling, and isobaric separation and a precision Penning trap for the

Chemical dynamics simulations are at the basis of the approach and two limit activation modes are discussed and used recently to study different classes of molecules. We should

Because mass attracts both ordinary and negative mass, the mass-Yinon combination will possess passive gravitational mass. Therefore, a beam of light can therefore be bent by the

Recently the relative abundances of the their peak edges are well defined. Unfortunately the mass flight. Even scans with constant peak width all spectra of Arnold

The purposes of this study were: (1) to estimate the head and trunk mass and COM in able-bodied and scoliotic girls using a force plate method, (2) to estimate head and trunk COM

An approach more generally applicable to all SIMS systems has been the use of kine- tic energy analysis of the secondary ions to suppress molecular species.. The kine- tic

Résumé - Les forces de spin dépendent de la saveur. ELl.es induisent ainsi des effets importants à travers la brisure chirale. La brisure d'isospin peut aussi être importante.

The ALMA Spectroscopic Survey in the HUDF: Nature and Physical Properties of Gas-mass Selected Galaxies Using MUSE Spectroscopy... The ALMA Spectroscopic Survey in the HUDF: Nature