• Aucun résultat trouvé

Sectional invariants of scroll over a smooth projective variety

N/A
N/A
Protected

Academic year: 2022

Partager "Sectional invariants of scroll over a smooth projective variety"

Copied!
28
0
0

Texte intégral

(1)

Sectional Invariants of Scrolls Over a Smooth Projective Variety

YOSHIAKIFUKUMA(*)

ABSTRACT- L etXbe a smooth complex projective variety of dimensionnand letEbe an ample vector bundle of rankronX. Then we calculate theith sectional Euler numberei(PX(E);H(E)) and theith sectional Betti numberbi(PX(E);H(E)) for i2n 3 or iˆ1, and the ith sectional Hodge number of type (j;i j) hij;i j(PX(E);H(E)) fori2n 1and0ji, wherePX(E) is the projective space bundle associated withEandH(E) is its tautological line bundle. Moreover we define a new invariantv(X;E) of (X;E) forrn 1. This invariant is thought to be a generalization of curve genus. We will investigate some properties of this invariant.

1. Introduction.

LetX be a projective variety of dimensionndefined over the field of complex numbers, and letLbe an ample (resp. a nef and big) line bundle on X. Then (X;L) is called apolarized(resp. quasi-polarized)variety. IfXis smooth, then we say that (X;L) is a polarized (resp. quasi-polarized) manifold. In order to study polarized varieties, it is important to use an invariant of (X;L). There are the following three invariants of (X;L) which are well-known.

The degreeLn.

The sectional genusg(L).

TheD-genusD(L).

By using these invariants, many authors studied polarized varieties. In particular, P. Ionescu classified polarized manifolds by the degree under the assumption thatLis very ample withLn8 ([13], [14], and [15]), and

(*) Indirizzo dell'A.: Department of Natural Science, Faculty of Science, Kochi University, Akebono-cho, Kochi 780-8520, Japan.

E-mail: fukuma@kochi-u.ac.jp

(2)

T. Fujita classified polarized varieties by the D-genus and the sectional genus ([3]).

In [5], in order to study polarized varieties more deeply, the author introduced the notion of theith sectional geometric genusgi(X;L) of (X;L) for every integeriwith 0in. This is a generalization of the degree and the sectional genus of (X;L). Namely g0(X;L)ˆLn and g1(X;L)ˆg(L).

Here we recall the reason why this invariant is called theith sectional geometric genus. Let (X;L) be a polarized manifold of dimension n2 with BsjLj ˆ ;, where BsjLjis the base locus of the complete linear system jLj. L etibe an integer with 1in. L etXn ibe the transversal inter- section of general n i members of jLj. In this case Xn i is a smooth projective variety of dimension i. Then we can prove that gi(X;L)ˆhi(OXn i), that is,gi(X;L) is the geometric genus ofXn i.

Hence we can expect that gi(X;L) has analogous properties of the geometric genus ofi-dimensional varieties.

In [6] and [7], we introduced the notion of theith sectional H-arith- metic genusxHi (X;L)of(X;L). By definition we can prove that if BsjLj ˆ ;, then xHi (X;L)ˆx(OXn i), where Xn i is the transversal intersection of general n i members of jLj. Namely xHi (X;L) is the Euler-Poincare characteristic of the structure sheaf ofXn i. (x(OXn i) is called the arith- metic genus ofXn iin the sense of Hirzebruch. (See [12, 15.5, Section 15, Chapter IV]. We also callx(OXn i) the H-arithmetic genus ofXn i.)

In [8], we also introduced someith sectional invariants of (X;L), that is, the ith sectional Euler number ei(X;L), the ith sectional Betti number bi(X;L) and theith sectional Hodge numberhj;i ji (X;L) of type (j;i j) for every integer j with 0ji, and we investigated some properties of these. In particular we proved that polarized manifolds' version of the Hodge duality and the Hodge decomposition hold (see [8, Theorem 3.1]).

In this paper we consider theith sectional Euler number and theith sectional Betti number of scrolls over a smooth projective variety. In this paper we say that a polarized manifold (P;H) is ascroll over a smooth projective variety X if there exists an ample vector bundleEonXsuch that (P;H)(PX(E);H(E)), whereH(E) is the tautological line bundle on PX(E).

In section 3, we calculate ei(PX(E);H(E)) and bi(PX(E);H(E)) for i2n 3 and iˆ1 (see Theorems 3.1 and 3.2). We also calculate hj;i ji (PX(E);H(E)) for i2n 1 and 0ji(see Theorem 3.3). In par- ticular, by using these results, we can calculate these invariants of (PX(E);H(E)) completely fornˆ1 or 2 (see Corollaries 3.1, 3.3 and 3.4).

(3)

In section 4, we will define a new invariant of generalized polarized manifolds. Here a generalized polarized manifoldmeans the pair (X;E) whereXis a smooth projective variety andEis an ample vector bundle on X. L etr:ˆrank(E). Here we state the history of invariants of (X;E). First in [2], Fujita introduced the c1-sectional genus and the O(1)-sectional genus of (X;E). Next, in [1], for the case whererˆn 1, Ballico defined an invariant of (X;E) which is called thecurve genus cg(X;E)of(X;E) (see Definition 2.3), and several authors (in particular Lanteri, Maeda, Som- mese, and so on) studied this invariant.

As a generalization of the curve genus, for any ample vector bundleE withrn 1, Ishihara ([16, Definition 1.1]) defined an invariantg(X;E), which is called thecr-sectional genus of(X;E), and in [9] we investigated some properties aboutg(X;E). We note that ifn rˆ1, theng(X;E) is the curve genus. This invariant means the following: If a general element of H0(E) has a zero locusZwhich is smooth of expected dimensionn r, then g(X;E)ˆg(Z;detEjZ), that is,g(X;E) is the sectional genus of (Z;detEjZ).

Recently Fusi and Lanteri generalized this invariant. See [11] for detail.

In this paper, we will introduce a new invariantv(X;E) of generalized polarized manifolds (X;E) withrn 1, which is defined by using a result in section 3 (see Definition 4.1). Here we note thatv(X;E) is equal to the curve genus ifrˆn 1. We will investigatev(X;E) and give some results about this invariant (see Theorems 4.1 and 4.2, and Proposition 4.1).

The author would like to thank the referee for giving useful comments and suggestions.

Notation and Conventions.

We say thatXis avarietyifXis an integral separated scheme of finite type. In particularXis irreducible and reduced ifXis a variety. Varieties are always assumed to be defined over the field of complex numbers. In this article, we shall study mainly a smooth projective variety. The words

``line bundles'' and ``Cartier divisors'' are used interchangeably. The tensor products of line bundles are denoted additively.

O(D): invertible sheaf associated with a Cartier divisorDonX.

OX: the structure sheaf ofX.

x(F): the Euler-Poincare characteristic of a coherent sheafF. hi(F):ˆdimHi(X;F) for a coherent sheafF onX.

hi(D):ˆhi(O(D)) for a Cartier divisorD.

q(X)(ˆh1(OX)): the irregularity ofX.

(4)

bi(X):ˆdimHi(X;C).

KX: the canonical divisor ofX.

Pn: the projective space of dimensionn.

Qn: a smooth quadric hypersurface inPn‡1. (orˆ): linear equivalence.

det (E):ˆ ^rE, whereEis a vector bundle of rankronX.

PX(E): the projective space bundle associated with a vector bundleEonX.

H(E): the tautological line bundle onPX(E).

E_: the dual of a vector bundleE.

ci(E): thei-th Chern class of a vector bundleE.

ci(X):ˆci(TX), where TX is the tangent bundle of a smooth projective varietyX.

For a real numbermand a non-negative integern, let [m]n:ˆ m(m‡1) (m‡n 1) if n1;

1 if nˆ0:

(

[m]n:ˆ m(m 1) (m n‡1) if n1;

1 if nˆ0:

(

Then fornfixed, [m]nand [m]nare polynomials inmwhose degree aren.

For any non-negative integern,

n! :ˆ [n]n if n1;

1 if nˆ0:

Assume thatmandnare integers withn0. Then we put m

n :ˆ[m]n n!

We note that m

n ˆ0 if 0m<n, and m 0 ˆ1.

2. Preliminaries.

NOTATION2.1. (1) LetYbe a smooth projective variety of dimensioni, letTY be the tangent bundle ofY, and letVY(ˆV1Y) be the dual bundle of TY andVYj :ˆ ^jVY. For every integerjwith 0ji, we put

hi;j(c1(Y); ;ci(Y)):ˆx(VjY)

ˆ Z

Y

ch(VjY)Td(TY):

(5)

(Here ch(VjY) (resp. Td(TY)) denotes the Chern character ofVjY(resp. the Todd class ofTY). See [10, Example 3.2.3 and Example 3.2.4].)

(2) Let (M;L) be a polarized manifold of dimensionm. For every in- tegersiandjwith 0jim, we put

Cji(M;L):ˆXj

lˆ0

( 1)l m i‡l 1 l

cj l(M)Ll;

wji(M;L):ˆhi;j(C1i(M;L); ;Cii(M;L))Ln i:

(3) Let M be a smooth projective variety of dimensionm. For every integersiandjwith 0jim, we put

H1(i;j):ˆ

X

i j 1 sˆ0

( 1)shs(VjM) ifj6ˆi;

0 if jˆi;

8>

><

>>

:

H2(i;j):ˆ

Xj 1

tˆ0

( 1)i tht(Vi jM ) if j6ˆ0;

0 if jˆ0:

8>

><

>>

:

DEFINITION 2.1. (See [8, Definition 3.1].) Let (M;L) be a polarized manifold of dimensionm, and letiandjbe integers with 0imand 0ji.

(1) Theith sectional Euler number ei(M;L)of(M;L) is defined by the following:

ei(M;L):ˆXi

lˆ0

( 1)l m i‡l 1 l

ci l(M)Lm i‡l:

(2) Theith sectional Betti number bi(M;L)of(M;L) is defined by the following:

bi(M;L):ˆ

e0(M;L) if iˆ0;

( 1)i ei(M;L) Xi 1

jˆ0

2( 1)jbj(M)

!

if 1im:

8>

>>

<

>>

>:

(3) The ith sectional Hodge number hij;i j(M;L) of type (j;i j) of

(6)

(M;L) is defined by the following:

hij;i j(M;L):ˆ( 1)i jnwji(M;L) H1(i;j) H2(i;j)o :

REMARK2.1. (1) Ifiˆ0, then

e0(M;L)ˆb0(M;L)ˆh0;00 (M;L)ˆLm: (2) Ifiˆ1, then

e1(M;L)ˆ2 2g(L);

b1(M;L)ˆ2g(L);

h1;01 (M;L)ˆh0;11 (M;L)ˆg(L):

(3) Ifiˆm, then

em(M;L)ˆe(M);

bm(M;L)ˆbm(M);

hmj;m j(M;L)ˆhj;m j(M);

hm j;jm (M;L)ˆhm j;j(M):

PROPOSITION2.1. Let(M; L)be a polarized manifold of dimensionm.

(1)For every integer i with0im, the following hold:

(1.1) bi(M;L)ˆPi

kˆ0hk;i ki (M;L).

(1.2) hj;i ji (M;L)ˆhi j;i j(M;L).

(1.3) hi;0i (M;L)ˆh0;ii (M;L)ˆgi(M;L).

(2)Assume that L is base point free. Then for every integers i and j with 1im and0ji the following hold.

(2.1) bi(M;L)bi(M).

(2.2) hj;i ji (M;L)hj;i j(M).

PROOF. See [8, Theorem 3.1 (3.1.1), (3.1.3), (3.1.4) and Proposition 3.3 (2) and (3)]. p

(7)

PROPOSITION2.2. For every integersa,k,landrwith0l, Xl

jˆ0

( 1)j r‡j a j

r k l j

ˆ( 1)l k a‡l l

:

PROOF. See [8, Proposition 2.5]. p

NOTATION2.2. LetXbe a smooth projective variety of dimensionn1 and letE be an ample vector bundle of rankronX. We put P:ˆPX(E), H:ˆH(E) andm:ˆdimP. Thenmˆn‡r 1. In this paper we assume thatr2.

REMARK2.2. LetX,E,P,H,m,nandrbe as in Notation 2.2.

(1) By [18, (2.1) Proposition], we have

bj(P)ˆbj(X)‡bj 2(X)‡ ‡bj 2r‡2(X):

(2) Leti be an integer withim. Thenn‡r 1iand we obtain ri n‡1.

(2.1) Ifi2n 2 andi 1j, then

j 2r‡2(i 1) 2(i n‡1)‡2

ˆ2n 1 i 1:

So by (1) above, ifi2n 2 andi 1j, then by (1) we have

bj(P)ˆ Xl

kˆ0

bj 2k(X) if jˆ2l;

Xl

kˆ0

bj 2k(X) if jˆ2l‡1:

8>

>>

>>

><

>>

>>

>>

:

By the same argument as this, ifi2n 1, then we see that

bi(P)ˆ Xl

kˆ0

bi 2k(X) if iˆ2l;

Xl

kˆ0

bi 2k(X) if iˆ2l‡1:

8>

>>

>>

><

>>

>>

>>

:

(8)

(2.2) Assume that im 1. If iˆ2n 3 and i 1j, then j 2r‡22. If this equality holds, then iˆn‡r 1ˆm. But this contradicts the assumption. Hencej 2r‡21, and by (1) above we have

bj(P)ˆ Xl

kˆ0

bj 2k(X) if jˆ2l;

Xl

kˆ0

bj 2k(X) if jˆ2l‡1:

8>

>>

>>

<

>>

>>

>:

By the same argument as this, if im 1, n1 (resp. n2) and iˆ2n 2 (resp.iˆ2n 3), then we see thatb2n 2(P)ˆPn 1

kˆ0b2n 2 2k(X) (resp.b2n 3(P)ˆPn 2

kˆ0b2n 3 2k(X)).

DEFINITION2.2. LetX be a smooth projective variety of dimensionn and letEbe a vector bundle of rankronX.

(1) TheChern polynomial ct(E) is defined by the following:

ct(E)ˆ1‡c1(E)t‡c2(E)t2‡ :

(2) For every integerjwithj0, thejth Segre class sj(E)ofEis defined by the following equation:ct(E_)st(E)ˆ1, wherect(E_) is the Chern poly- nomial ofE_andst(E)ˆP

j0sj(E)tj.

REMARK2.3. (1) LetXbe a smooth projective variety and letF be a vector bundle onX. L et~sj(F) be the Segre class which is defined in [10, Chapter 3]. Thensj(F)ˆ~sj(F_).

(2) For every integer i with 1i,si(F) can be written by using the Chern classes cj(F) with 1ji. (For example, s1(F)ˆc1(F), s2(F)ˆc1(F)2 c2(F), and so on.)

DEFINITION2.3. LetX be a smooth projective variety of dimensionn and letE be an ample vector bundle of rankn 1 on X. Then thecurve genus cg(X;E)of(X;E) is defined as follows:

cg(X;E)ˆ1‡1

2(KX‡c1(E))cn 1(E):

3. Sectional invariants of scrolls over a smooth projective manifold.

THEOREM3.1. Let X,E, P, H, m, n and r be as in Notation2.2. Then the following hold.

(9)

(3.1.1)If i2n 1, then ei(P;H)ˆ(i n‡1)cn(X).

(3.1.2)If n2, then e2n 2(P;H)ˆ(n 1)cn(X)‡cn(E).

(3.1.3)If n3, then e2n 3(P;H)ˆ(n 2)(cn(X) cn(E)) cn 1(E)(KX‡c1(E)).

(3.1.4)e1(P;H)ˆ (n 2)sn(E) (c1… † ‡E KX)sn 1(E).

(3.1.5)e0(P;H)ˆsn(E).

PROOF. By [10, Example 3.2.11] and Remark 2.3 (1), for every integerl with 0lm

cl(P)ˆXl

jˆ0

Xj

kˆ0

r k j k

ck pE_

H(E)j kcl j…pTX†:

(Herep:P!Xdenotes the projection.) Hence ei(P;H)

ˆXi

jˆ0

( 1)j m i‡j 1 j

ci j(P)Hm i‡j

ˆXi

jˆ0

( 1)j m i‡j 1 j

Xi j

sˆ0

Xs

uˆ0

r u s u

cu pE_

H(E)m i‡j u‡sci j s…pTX†

( )

ˆ X

0k‡ti0k;t

X

i t k jˆ0

( 1)j r‡j‡n i 2 j

r k i t k j

!

ck pE_

ct…pTX†H(E)m k t: By Proposition 2.2 and [3, (3.7) in Chapter 0], we get

ei(P;H) …1†

ˆ X

0k‡ti0k;t

( 1)i t k k‡(n i 2)‡i t k i t k

ck pE_

ct…pTX†H(E)m k t

ˆ X

0k‡ti0k;t

( 1)i t k n t 2 i t k

ck pE_

ct…pTX†H(E)m k t

ˆ X

0k‡ti0k;t

( 1)i t k n t 2 i t k

ck E_

ct…TX†sn k t(E):

(10)

Here we put

E(i;k;t):ˆ( 1)i t k n t 2 i t k

ck E_

ct…TX†sn k t(E):

In order to calculate ei(P;H), we have only to consider the case where E(i;k;t)6ˆ0. We note that ifk‡t>n, thenck E_

ct…TX†sn k t(E)ˆ0. So we may assume thatk‡tn.

(a) The case wherei2n 1.

First we note that if (n;i)ˆ(1;1), then

ei(P;H)ˆe1(P;H)ˆ2 b1(P;H)ˆ2 2g1(P;H)ˆ2 2q(X)ˆc1(X):

So we assume that (n;i)6ˆ(1;1).

Here we note that (n t 2) (i t k)ˆn i 2‡k n‡k 1 1 and k‡ti. Hence n t 2

i t k

6ˆ0 if and only if one of the following holds.

(a.1)i t kˆ0.

(a.2)i t k>0 andn t 2<0.

(a.1) Ifi t kˆ0, then 2n 1iˆt‡kn. Hencenˆ1 andiˆ1.

But this contradicts the assumption here.

(a.2) If i t k>0 and n t 2<0, then tˆn 1 or n because k‡tnandk0. Hence (t;k)ˆ(n 1;0), (n 1;1) or (n;0).

If (t;k)ˆ(n 1;0), then n t 2

i t k

ˆ 1

i n‡1

ˆ( 1)i n‡1: If (t;k)ˆ(n 1;1), then

n t 2 i t k

ˆ 1 i n

ˆ( 1)i n: If (t;k)ˆ(n;0), then

n t 2 i t k

ˆ 2 i n

ˆ( 1)i n(i n‡1):

(11)

Hence if (n;i)6ˆ(1;1), then ei(P;H)

ˆ( 1)2(i n‡1)cn 1(TX)s1(E)‡( 1)2(i n)c1(E_)cn 1(TX)

‡( 1)2(i n)(i n‡1)cn(TX)

ˆ(i n‡1)cn(X):

Therefore in any case

ei(P;H)ˆ(i n‡1)cn(X) ifi2n 1.

(b) The case whereiˆ2n 2. Here we note thatn2 in this case.

Then n t 2

i t k

ˆ n t 2

2n t 2 k

. Here we note that (n t 2)2n t 2 k. Hence n t 2

2n t 2 k

6ˆ0 if and only if one of the following holds.

(b.1)kˆn.

(b.2)k<nandn t 2<0.

(b.1) If kˆn, then tˆ0 because t‡kn and t0, and n t 2

2n t 2 k

ˆ1. Here we note thatn t 20 in this case because n2 andtˆ0. Hence

E(2n 2;n;0)ˆ( 1)2n 2 ncn(E_)ˆcn(E):

(b.2) Ifk<nandn t 2<0, thentˆn 1 orn. Hence (t;k)ˆ(n 1;0), (n 1;1) or (n;0). By the same argument as (a.2), we obtain

E(2n 2;0;n 1)‡E(2n 2;1;n 1)‡E(2n 2;0;n)

ˆ( 1)2(2n 2 n‡1)cn 1(X)s1(E)‡( 1)2(2n 2 n)c1(E_)cn 1(X)

‡( 1)2(2n 2 n)(n 1)cn(X)

ˆ(n 1)cn(X):

(12)

Hence we get

e2n 2(P;H)ˆ(n 1)cn(X)‡cn(E):

(c) Assume that iˆ2n 3. Here we note that n3 in this case. Then n t 2

2n t k 3

6ˆ0 if and only if one of the following holds.

(c.1)kˆn.

(c.2)kˆn 1.

(c.3)kn 2 andt>n 2.

First we consider the case (c.1). Thentˆ0 becausek‡tnandt0.

So we have

E(2n 3;n;0)ˆ( 1)2n 3 0 n n 0 2

2n 3 0 n

cn(E_)

ˆ n 2 n 3

cn(E)

ˆ (n 2)cn(E):

Next we consider the case (c.2). Then tˆ0 or 1, and n t 2

2n t k 3

ˆ1. Hence we haveE(2n 3;n 1;0)ˆ cn 1(E)s1(E)ˆ

ˆ cn 1(E)c1(E) andE(2n 3;n 1;1)ˆcn 1(E)c1(X).

Finally we consider the case (c.3). Then (k;t)ˆ(0;n 1), (1;n 1) or (0;n). Hence by the same argument as above

E(2n 3;0;n 1)‡E(2n 3;1;n 1)‡E(2n 3;0;n)ˆ(n 2)cn(X):

Therefore e2n 3(P;H)

ˆ (n 2)cn(E) cn 1(E)c1(E)‡cn 1(E)c1(X)‡(n 2)cn(X)

ˆ(n 2)(cn(X) cn(E))‡cn 1(E)(c1(X) c1(E))

ˆ(n 2)(cn(X) cn(E)) cn 1(E)(KX‡c1(E)):

(13)

(d) The case whereiˆ1. Then by (1) we get e1(P;H)

ˆ X

0k‡t10k;t

( 1)1 t k n t 2

1 t k

ck E_

ct…TX†sn k t(E)

ˆ (n 2)sn(E)‡(c1 E_

‡c1…TX†)sn 1(E)

ˆ (n 2)sn(E) (c1… † ‡E KX)sn 1(E):

(e) The case whereiˆ0. Then by (1) we gete0(P;H)ˆsn(E).

We get the assertion of Theorem 3.1. p

By Theorem 3.1, we get the following fornˆ1 and 2.

COROLLARY3.1. Let X,E, P, H and n be as in Notation2.2.

(3.1.1)Assume that nˆ1. Then we get the following:

ei(P;H)ˆ i(2 2g(X)) if i1;

degE if iˆ0:

(

(3.1.2)Assume that nˆ2. Then we get the following:

ei(P;H)ˆ

(i 1)c2(X) if i3;

c2(X)‡c2(E) if iˆ2;

(c1… † ‡E KX)c1(E) if iˆ1;

s2(E) if iˆ0:

8>

>>

><

>>

>>

:

THEOREM3.2. Let X,E, P, H, m, n and r be as in Notation2.2. Then the following hold.

(3.2.1)If mi2n 1, then bi(P;H)ˆbi(P).

(3.2.2)If n2and m>2n 2, then b2n 2(P;H)ˆb2n 2(P)‡cn(E) 1.

(3.2.3)If n3and m>2n 3, then

b2n 3(P;H)ˆb2n 3(P)‡(n 2)cn(E)‡cn 1(E)…KX‡c1(E)† ‡2 2q(X):

(3.2.4)b1(P;H)ˆ2‡(n 2)sn(E)‡…c1(E)‡KX†sn 1(E).

(3.2.5)b0(P;H)ˆsn(E).

(14)

PROOF. Sinceei(P;H) has been calculated in Theorem 3.1, we need to studyXi 1

kˆ0

( 1)kbk(P). By using Remark 2.2, we calculate this.

(a) The case where i2n 1. Since bm(P;H)ˆbm(P), we assume that i<m.

(a.1) Assume thati is even. Theni2n. Here we note thatbj(X)ˆ0 if j>2n. Then

Xi 1

kˆ0

( 1)kbk(P)

ˆXn

kˆ0

i

2 k

b2k(X) Xn

kˆ1

i

2 k‡1

b2k 1(X)

ˆXn

kˆ0

n k‡1

… †b2k(X) Xn

kˆ1

(n k‡2)b2k 1(X)‡i 2n 2 2 e(X):

Here we note that by Remark 2.2 (2.1), we havebi(P)ˆXn

kˆ0

b2k(X) because i2nin this case. Sinceiis even, we have

bi(P;H) bi(P)

ˆ( 1)i ei(P;H) 2Xi 1

jˆ0

( 1)jbj(P)

! Xn

kˆ0

b2k(X)

ˆ(i n‡1)cn(X) 2Xn

kˆ0

(n k‡1)b2k(X)

‡2Xn

kˆ1

(n k‡2)b2k 1(X) (i 2n 2)e(X) Xn

kˆ0

b2k(X)

ˆ(n‡3)e(X)‡Xn

kˆ0

(2k 2n 3)b2k(X)‡Xn

kˆ1

(2n 2k‡4)b2k 1(X)

ˆXn

kˆ0

(2k n)b2k(X) Xn

kˆ1

(2k n 1)b2k 1(X):

Here we prove the following.

CLAIM3.1. (1)Xn

kˆ0

(2k n)b2k(X)ˆ0.

(2)Xn

kˆ1

(2k n 1)b2k 1(X)ˆ0.

(15)

PROOF. (1) Assume thatnˆ2l. Then we note that (2k n)b2k(X)ˆ0 if kˆl. So by Poincare duality

Xn

kˆ0

(2k n)b2k(X)

ˆXl 1

kˆ0

(2k n)b2k(X)‡ Xn

kˆl‡1

(2k n)b2k(X)

ˆXl 1

kˆ0

(2k n)b2k(X)‡Xl 1

kˆ0

(n 2k)b2n 2k(X)

ˆXl 1

kˆ0

(2k n)b2k(X) Xl 1

kˆ0

(2k n)b2k(X)

ˆ0:

Ifnˆ2l‡1, then by Poincare duality Xn

kˆ0

(2k n)b2k(X)

ˆXl

kˆ0

(2k n)b2k(X)‡ Xn

kˆl‡1

(2k n)b2k(X)

ˆXl

kˆ0

(2k n)b2k(X)‡Xl

kˆ0

(n 2k)b2n 2k(X)

ˆXl

kˆ0

(2k n)b2k(X) Xl

kˆ0

(2k n)b2k(X)

ˆ0:

Hence we obtain the assertion of (1).

(2) This can be proved by the same argument as (1). p By Claim 3.1,bi(P;H)ˆbi(P) ifi2n 1 andiis even.

(16)

(a.2) Assume thatiis odd. Then Xi 1

jˆ0

( 1)jbj(P)

ˆXn

kˆ0

i‡1

2 k

b2k(X) Xn

kˆ1

i 1

2 k‡1

b2k 1(X)

ˆXn

kˆ0

(n k‡1)b2k(X) Xn

kˆ1

(n k‡1)b2k 1(X)

‡ i‡1

2 n 1

e(X):

By Remark 2.2 (2.1), we havebi(P)ˆXn

kˆ1

b2k 1(X) becausei2n 1 in this case. Hence by Theorem 3.1 and Claim 3.1, we have

bi(P;H) bi(P)

ˆ (i n‡1)e(X) 2Xi 1

jˆ0

( 1)jbj(P)

! bi(P)

ˆ (n‡2)e(X)‡Xn

kˆ0

(2n 2k‡2)b2k(X) Xn

kˆ1

(2n 2k‡3)b2k 1(X)

ˆXn

kˆ0

(n 2k)b2k(X) Xn

kˆ1

(n 2k‡1)b2k 1(X)

ˆ0:

Thereforebi(P;H)ˆbi(P) ifi2n 1 andiis odd.

In any case, ifmi2n 1, thenbi(P;H)ˆbi(P).

(b) The case whereiˆ2n 2 and 2n 2<m. Then by Remark 2.2 (2.1) we obtain

bj(P)ˆ Xl

kˆ0

bj 2k(X) if jˆ2l, Xl

kˆ0

bj 2k(X) if jˆ2l‡1 8>

>>

>>

<

>>

>>

>:

(17)

for every integerjwithj<2n 2:Hence X

2n 3 jˆ0

( 1)jbj(P)ˆXn 2

kˆ0

(n k 1)b2k(X) Xn 1

kˆ1

(n k)b2k 1(X):

By assumption, we haven‡r 1ˆmi‡1ˆ2n 1. So by Remark 2.2 (2.2) we obtain

b2n 2(P)ˆXn 1

kˆ0

b2k(X):

Therefore

b2n 2(P;H) b2n 2(P)

ˆ e2n 2(P;H) 22nX3

jˆ0

( 1)jbj(P)

!

b2n 2(P)

ˆ(n 1)e(X)‡cn(E) Xn 2

kˆ0

(2n 2k 2)b2k(X)

‡Xn 1

kˆ1

(2n 2k)b2k 1(X) Xn 1

kˆ0

b2k(X)

ˆ(n 1)e(X)‡cn(E) Xn 2

kˆ0

(2n 2k 1)b2k(X)

‡Xn 1

kˆ1

(2n 2k)b2k 1(X) b2n 2(X)

ˆ(n 1)e(X)‡cn(E)‡e(X) 1 Xn 1

kˆ0

(2n 2k)b2k(X)

‡Xn 1

kˆ1

(2n 2k‡1)b2k 1(X)‡b2n 1(X)

ˆne(X)‡cn(E) 1 Xn 1

kˆ0

(2n 2k)b2k(X)

‡Xn

kˆ1

(2n 2k‡1)b2k 1(X):

(18)

Since

Xn 1

kˆ0

(2n 2k)b2k(X)ˆXn

kˆ0

(2n 2k)b2k(X);

we obtain

b2n 2(P;H) b2n 2(P)

ˆne(X)‡cn(E) 1 Xn

kˆ0

(2n 2k)b2k(X)

‡Xn

kˆ1

(2n 2k‡1)b2k 1(X)

ˆcn(E) 1‡Xn

kˆ0

(2k n)b2k(X) Xn

kˆ1

(2k n 1)b2k 1(X):

By Claim 3.1, we get

b2n 2(P;H)ˆb2n 2(P)‡cn(E) 1:

(c) The case where iˆ2n 3 and i<m. Then by Remark 2.2 (2.2) we obtain

bj(P)ˆ Xl

kˆ0

bj 2k(X) if jˆ2l, Xl

kˆ0

bj 2k(X) if jˆ2l‡1 8>

>>

>>

<

>>

>>

>:

for every integerjwithj<2n 3. Hence X

2n 4 jˆ0

bj(P)ˆXn 2

kˆ0

(n k 1)b2k(X) Xn 2

kˆ1

(n k 1)b2k 1(X):

By assumption we haven‡r 1ˆmi‡1ˆ2n 2. Hence by Remark 2.2 (2.2) we obtain

b2n 3(P)ˆXn 1

kˆ1

b2k 1(X):

(19)

Therefore

b2n 3(P;H) b2n 3(P)

ˆ e2n 3(P;H)‡22nX4

jˆ0

( 1)jbj(P) b2n 3(P)

ˆ (n 2)…e(X) cn(E)† ‡cn 1(E)…KX‡c1(E)†

‡Xn 2

kˆ0

(2n 2k 2)b2k(X) Xn 2

kˆ1

(2n 2k 2)b2k 1(X) Xn 1

kˆ1

b2k 1(X)

ˆ (n 2)…e(X) cn(E)† ‡cn 1(E)…KX‡c1(E)†

‡Xn 2

kˆ0

(2n 2k 2)b2k(X) Xn 2

kˆ1

(2n 2k 1)b2k 1(X) b2n 3(X)

ˆ (n 2)…e(X) cn(E)† ‡cn 1(E)…KX‡c1(E)†

2e(X)‡2b2n 2(X)‡2b2n(X) 3b2n 3(X) 2b2n 1(X)

‡Xn 2

kˆ0

(2n 2k)b2k(X) Xn 2

kˆ1

(2n 2k‡1)b2k 1(X)

ˆ (n 2)…e(X) cn(E)† ‡cn 1(E)…KX‡c1(E)†

‡Xn

kˆ0

(2n 2k)b2k(X) Xn

kˆ1

(2n 2k‡1)b2k 1(X) 2e(X)‡2b2n(X) b2n 1(X)

ˆ (n 2)e(X)‡(n 2)cn(E)‡cn 1(E)…KX‡c1(E)†

‡Xn

kˆ0

(n 2k)b2k(X) Xn

kˆ1

(n 2k‡1)b2k 1(X)

‡(n 2)e(X)‡2b2n(X) b2n 1(X):

(20)

Sinceb2n(X)ˆ1 andb2n 1(X)ˆb1(X)ˆ2q(X), by Claim 3.1 we obtain b2n 3(P;H) b2n 3(P)

ˆ(n 2)cn(E)‡cn 1(E)…KX‡c1(E)† ‡2 2q(X):

(d) The case whereiˆ1.

Then by Theorem 3.1 (3.1.4) and the definition ofb1(P;H) b1(P;H)ˆ e1(P;H)‡2b0(P)

ˆ2‡(n 2)sn(E)‡…c1(E)‡KX†sn 1(E):

(e) The case whereiˆ0.

Then by Theorem 3.1 (3.1.5) and the definition ofb0(P;H), b0(P;H)ˆe0(P;H)ˆsn(E):

Therefore we get the assertion. p

COROLLARY3.2. Let X,E, P, H, m and n be as in Notation2.2. If n2 and m>i2n 2, then bi(P;H)bi(P).

PROOF. Ifi2n 1, then by Theorem 3.2 (3.2.1) we get the assertion.

Next we consider the case where iˆ2n 2. SinceE is ample, we have cn(E)1. Therefore by Theorem 3.2 (3.2.2), we seeb2n 2(P;H)b2n 2(P).

This completes the proof. p

COROLLARY3.3. Let X,E, P, H, m and n be as in Notation2.2.

(3.3.1)Assume that nˆ1. Then we get the following:

bi(P;H)ˆ bi(P) if mi1;

degE if iˆ0:

(

(3.3.2)Assume that nˆ2. Then we get the following:

bi(P;H)ˆ

bi(P) if mi3;

b2(P)‡c2(E) 1 if iˆ2;

c1(E)(c1… † ‡E KX)‡2 if iˆ1;

s2(E) if iˆ0:

8>

>>

<

>>

>:

PROOF. By Theorem 3.2, we get the assertion. (Here we note that if nˆ2, then 2n 2ˆ2<n‡r 1ˆmbecause we assumer2 in this

paper.) p

(21)

REMARK 3.1. Since E is ample, we see that if nˆ1 or 2, then bi(P;H)0 for anyi.

Here we calculatehj;i ji (P;H) for the case wheremi2n 1.

THEOREM 3.3. Let X, E, P, H, m and n be as in Notation 2.2. If mi2n 1and0ji, then hj;i ji (P;H)ˆhj;i j(P).

PROOF. First we note that we can take an ample line bundleAonX such thatE Atis ample and spanned for every positive integert. Hence H(E At) is ample and spanned. We also note that there exists an iso- morphismf:PX(E At)!PwithH(E At)ˆf(Hp(At)), where p:P!X is the projection. Therefore Hp(At) is also ample and spanned. By thisf, we identifyPX(E At) andP. By Theorem 3.2 we have

bi(P;H(E At))ˆbi(P):

Hence

bi(P;Hp(At))

ˆbi(P;H(E At))

ˆbi(P):

On the other hand by Proposition 2.1 (1.1) and (2) we have hj;i ji (P;Hp(At))ˆhj;i j(P)

because Hp(At) is ample and spanned. But since F(t):ˆ

:ˆhj;i ji (P;Hp(At)) hi;i j(P) is a polynomial in t and F(t)ˆ0 for every positive integert, we see thatF(0)ˆ0, that is,

hj;i ji (P;H)ˆhi;i j(P):

This completes the proof. p

COROLLARY3.4. Let X,E, P, H, m and n be as in Notation2.2.

(3.4.1)Assume that nˆ1. Then we get the following:

hij;i j(P;H)ˆ hj;i j(P) if mi1and0ji;

degE if iˆ0and jˆ0:

(

(22)

(3.4.2)Assume that nˆ2. Then we get the following:

hij;i j(P;H)ˆ

hj;i j(P) if mi3 and0ji;

h0;2(P) if iˆ2 and jˆ0;

h2;0(P) if iˆ2 and jˆ2;

h1;1(P)‡c2(E) 1 if iˆ2 and jˆ1;

12(c1(E)(c1… † ‡E KX))‡1 if iˆ1 and jˆ0;1;

s2(E) if iˆ0 and jˆ0:

8>

>>

>>

>>

>>

<

>>

>>

>>

>>

>:

PROOF. If nˆ1, then by Corollary 3.3 and Theorem 3.3 we get the assertion.

Assume thatnˆ2. Then by Corollary 3.3 and Theorem 3.3 we get the assertion for the case wheremi3 and 0ji. If (i;j)ˆ(2;0) (resp.

(2;2)), then by Proposition 2.1 (1.3) and [5, Example 2.10 (8)] we have h0;22 (P;H)ˆg2(P;H)ˆh2(OP)ˆh0;2(P) (resp. h2;02 (P;H)ˆg2(P;H)ˆ

ˆh2(OP)ˆh0;2(P)ˆh2;0(P)). Moreover by Corollary 3.3 (3.3.2) and Pro- position 2.1 (1.1) we geth1;12 (P;H)ˆh1;1(P)‡c2(E) 1.

Assume that iˆ1. Then by Proposition 2.1 (1.1) we have b1(P;H)ˆh1;01 (P;H)‡h0;11 (P;H). Moreover by Proposition 2.1 (1.2) we haveh1;01 (P;H)ˆh0;11 (P;H). Therefore by Corollary 3.3 we get the asser- tion for the caseiˆ1.

By Corollary 3.3 we get the assertion for the case whereiˆ0. p REMARK 3.2. Since E is ample, we see that if nˆ1 or 2, then hj;i ji (P;H)0 for anyiandjwith 0jim.

4. Anew invariant of generalized polarized manifolds.

Here we use Notation 2.2. Assume that iˆ2n 3, n3 andi<m.

Then by Theorem 3.2 (3.2.3) we see that (n 2)cn(E)‡cn 1(E)(KX‡c1(E)) is even because b2n 3(P;H) and b2n 3(P) are even (see [8, Theorem 3.1 (3.1.2)]). We put

v(X;E):ˆ1‡1

2…(n 2)cn(E)‡cn 1(E)(KX‡c1(E))†:

Here we note thatrn 1 sincen‡r 1ˆmi‡1ˆ2n 2.

Ifrˆn 1, then

v(X;E)ˆ1‡1

2…KX‡c1(E)†cn 1(E):

(23)

Sov(X;E) is thought to be a generalization of the curve genuscg(X;E) of (X;E) (see Definition 2.3). Here we definev(X;E) again.

DEFINITION4.1. Let (X;E) be a generalized polarized manifold of di- mensionn3. Assume thatrn 1. Then the invariantv(X;E) of (X;E) is defined as follows.

v(X;E):ˆ1‡1

2…(n 2)cn(E)‡cn 1(E)(KX‡c1(E))†:

Sinceb2n 3(P;H) b2n 3(P)ˆ2v(X;E) 2q(X) by Theorem 3.2 (3.2.3), we can propose the following conjecture.

CONJECTURE 4.1. Let (X;E) be a generalized polarized manifold of dimension n3. Assume that rn 1. Then v(X;E)q(X).

Here we study the non-negativity ofv(X;E).

THEOREM 4.1. Let (X;E)be a generalized polarized manifold of di- mension n3. Assume that rn 1. Then v(X;E)0.

PROOF. If rˆn 1, then v(X;E) is the curve genus and then v(X;E)0 by [19, Theorem 1]. So we may assume thatrn.

IfrnandKX‡c1(E) is nef, then (KX‡c1(E))cn 1(E)0 becauseEis ample. Furthermorecn(E)1. So we obtainv(X;E)2.

IfrnandKX‡c1(E) is not nef, then (X;E)(Pn;OPn(1)n) by [22, Theorem 1 and Theorem 2]. In this case (KX‡c1(E))cn 1(E)ˆ n and cn(E)ˆ1. Hencev(X;E)ˆ0. Therefore we get the assertion. p

THEOREM 4.2. Let (X;E)be a generalized polarized manifold of di- mension n3. Assume that rn 1.

(1)If v(X;E)ˆ0, then(X;E)is one of the following.

(1.1) (Pn;OPn(1)n).

(1.2) (Pn;OPn(1)n 1).

(1.3) (Pn;OPn(1)n 2 OPn(2)).

(1.4) (Qn;OQn(1)n 1).

(1.5) XPP1(F)for some vector bundleF of rank n onP1, and E  njˆ11(H(F)‡pOP1(bj)), where p:X!P1 is the bundle projection.

(24)

(2) If v(X;E)ˆ1, then(X;E)is one of the following.

(2.1) XPC(F)for some vector bundleF of rank n on a smooth elliptic curve C, andEF OPn1(1)n 1for any fiber F of the bundle projection X!C.

(2.2) KX‡det(E)ˆ OX andrˆn 1.

PROOF. If v(X;E)1, then by the proof of Theorem 4.1, one of the following cases occurs:

(4.2.1)rˆn 1.

(4.2.2)rnandKX‡c1(E) is not nef.

If rˆn 1 and v(X;E)ˆ0 (resp. v(X;E)ˆ1), then 0ˆv(X;E)ˆ

ˆcg(X;E) (resp. 1ˆv(X;E)ˆcg(X;E)) and by [19, Theorem 1 and Theo- rem 2] we get the above types.

IfrnandKX‡c1(E) is not nef, then (X;E)(Pn;OPn(1)n) by [22, Theorem 1 and Theorem 2] and then v(X;E)ˆ0. Hence we get the as- sertion. p

REMARK 4.1. (1) If (X;E) is the type (2.2) in Theorem 4.2, then a classification of (X;E) has been obtained by [20].

(2) Ifv(X;E)1, then we see thatv(X;E)q(X).

PROPOSITION 4.1. Let (X;E) be a generalized polarized manifold of dimension n3. Assume that rn 1 and E is spanned. Then

v(X;E)q(X).

PROOF. Set (P;H):ˆ(PX(E);H(E)). ThenHis ample and spanned. So by Proposition 2.1 (2.1) we obtain

b2n 3(P;H)b2n 3(P):

On the other hand

b2n 3(P;H) b2n 3(P)

ˆ2v(X;E) 2q(X):

Hence we get the assertion. p

REMARK4.2. (1) By Theorem 4.2 we can determine the type of (X;E) such thatv(X;E)ˆq(X) andq(X)1.

(25)

(2) For every integer q2, there exists an example of (X;E) with v(X;E)ˆqˆq(X) (This was given by the referee.): Let C be a smooth projective curve withg(C)ˆq2. We note that there exist vector bundlesF andGonC with rankF ˆnand rankG ˆn 1 such thatE:ˆH(F)p(G) is an ample vector bundle of rankn 1 onX, whereX:ˆPC(F),H(F) is the tautological line bundle ofF and p:X!C is the bundle projection. Then we can easily check thatv(X;E)ˆcg(X;E)ˆq2.

(3) We see that if E is ample and spanned, rankE ˆn 1 and v(X;E)ˆq(X)2, then (X;E) is isomorphic to the type in (2) above.

This has been proved by [17, Theorem].

Here we give the following conjecture which was pointed out by the referee:

CONJECTURE4.2. Let X be a smooth projective variety of dimension n3and letEbe an ample vector bundle on X withrankE ˆr. Assume that rn 1 and q(X)2. If E is spanned and v(X;E)ˆq(X), then rˆn 1.

REMARK4.3. We consider the case wherern3. (The following (a) and (b) were also pointed out by the referee.)

(a) IfKX‡c1(E) is not ample, then by [4, Main Theorem] (X;E) is one of the following 6 types and we can calculatev(X;E) andq(X):

(a.1) (Pn;OPn(1)n‡1). In this case (v(X;E);q(X))ˆ(1‡(1=2) (n 2)(n‡1);0).

(a.2) (Pn;OPn(1)n). In this case (v(X;E);q(X))ˆ(0;0).

(a.3) XPC(F) for a vector bundleF of ranknon a smooth curve C, and E H(F)p(G) for a vector bundle G on C with rankG ˆn, wherep:X!Cis the bundle projection. In this case (v(X;E);q(X))ˆ(g(C)‡(n 1)(g(C) 1‡c1(F)‡c1(G));

g(C)).

(a.4) (Pn;OPn(1)n 1 OPn(2)). In this case (v(X;E);q(X))ˆ

ˆ(n 1;0).

(a.5) (Pn;TPn). In this case (v(X;E);q(X))ˆ(1‡(1=2)(n 2) (n‡1);0).

(a.6) (Qn;OQn(1)n). In this case (v(X;E);q(X))ˆ(n 1;0).

Here we consider the case where (X;E) is the type (a.3) above. Then 1cn(E)ˆc1(F)‡c1(G) becauseEis ample. Henceg(C) 1‡c1(F)‡

(26)

‡c1(G)0 and we get v(X;E)g(C)ˆq(X). Moreover if g(C)1, then we see thatv(X;E)q(X)‡(n 1)>q(X).

We also note that ifEis spanned by global sections, thencn(E)2 by [21, (3.4) Theorem] and we obtainv(X;E)q(X)‡(n 1)>q(X).

(b) Next we assume that KX‡c1(E) is ample. Then we can prove the following:

PROPOSITION 4.2. (1) If KX‡c1(E) is ample, then v(X;E)1‡

‡1

2(n 1).

(2)If KX‡c1(E)is ample andEis spanned, then v(X;E)n.

PROOF. (1) By assumption, we have cn(E)1 and (KX‡c1(E))cn 1(E)1. Hence we get the assertion of (1).

(2) Since Eis spanned and KX‡c1(E) is ample, we see thatcn(E)2 by [21, (3.4) Theorem]. Hence (n 2)cn(E)‡(KX‡c1(E))cn 1(E) 2(n 2)‡2 because the term on the left is even. Therefore we get the assertion of (2). p

The above results suggest that for the case where rn and v(X;E)6ˆq(X) there are some gaps for the value of v(X;E) q(X), de- pending onn. We will investigate this in a future paper.

REFERENCES

[1] E. BALLICO,On vector bundles on3-folds with sectional genus1,Trans. Amer.

Math. Soc.,324(1991), pp. 135-147.

[2] T. FUJITA,Ample vector bundles of small c1-sectional genera,J. Math. Kyoto Univ.,29(1989), pp. 1-16.

[3] T. FUJITA,Classification Theories of Polarized Varieties,London Math. Soc.

Lecture Note Ser. 155, Cambridge University Press, (1990).

[4] T. FUJITA, On adjoint bundles of ample vector bundles,Complex algebraic varieties (Bayreuth, 1990), pp. 105-112, Lecture Notes in Math., 1507, Sprin- ger, Berlin, 1992.

[5] Y. FUKUMA,On the sectional geometric genus of quasi-polarized varieties, I, Comm. Alg.,32(2004), pp. 1069-1100.

[6] Y. FUKUMA, Problems on the second sectional invariants of polarized manifolds,Mem. Fac. Sci. Kochi Univ. Ser. A Math.,25(2004), pp. 55-64.

[7] Y. FUKUMA,On the second sectional H-arithmetic genus of polarized mani- folds,Math. Z.,250(2005), pp. 573-597.

[8] Y. FUKUMA,On the sectional invariants of polarized manifolds,J. Pure Appl.

Alg.,209(2007), pp. 99-117.

(27)

[9] Y. FUKUMA- H. ISHIHARA,A generalization of curve genus for ample vector bundles, II,Pacific J. Math.,193(2000), pp. 307-326.

[10] W. FULTON, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete,2(1984), Springer-Verlag.

[11] D. FUSI - A. LANTERI, Ample vector bundles with small g q, Comm.

Alg.,34(2006), pp. 2989-3008.

[12] F. HIRZEBRUCH,Topological methods in algebraic geometry,Grundlehren der mathematischen Wissenschaften,131Springer-Verlag, 1966.

[13] P. IONESCU,Embedded projective varieties of small invariants,in Proceed- ings of the Week of Algebraic Geometry, Bucharest 1982, Lecture Notes in Math.,1056(1984), pp. 142-186.

[14] P. IONESCU, Embedded projective varieties of small invariants, II, Rev.

Roumanie Math. Puves Appl.,31(1986), pp. 539-544.

[15] P. IONESCU, Embedded projective varieties of small invariants, III, in Algebraic Geometry, Proceedings of Conference on Hyperplane Sections, L'Aquila, Italy, 1988 Lecture Notes in Math.,1417(1990), pp. 138-154.

[16] H. ISHIHARA, A generalization of curve genus for ample vector bundles, I, Comm. Alg.,27(1999), pp. 4327-4335.

[17] A. LANTERI- H. MAEDA- A. J. SOMMESE,Ample and spanned vector bundles of minimal curve genus,Arch. Math.,66(1996), pp. 141-149.

[18] A. LANTERI- D. STRUPPA,Projective manifolds whose topology is strongly reflected in their hyperplane sections,Geom. Dedicata,21(1986) pp. 357-374.

[19] H. MAEDA, Ample vector bundles of small curve genera, Arch.

Math.,70(1998) pp. 239-243.

[20] T. PETERNELL- M. SZUREK- J. A. WISÂNIEWSKI,Fano manifolds and vector bundles,Math. Ann.,294(1992) pp. 151-165.

[21] J. A. WISÂNIEWSKI,Length of extremal rays and generalized adjunction,Math.

Z.,200(1989), pp. 409-427.

[22] Y. G. YE- Q. ZHANG,On ample vector bundles whose adjoint bundles are not numerically effective,Duke Math. J.,60(1990) pp. 671-687.

Manoscritto pervenuto in redazione il 10 luglio 2007.

(28)

Références

Documents relatifs

When a surface (or a variety) varies in a family, the Picard number takes various values in general, and it is usually not easy to determine which values are actually taken.. In

SOMMESE, Zero-cycles and k-th order embeddings of smooth projective surfaces, In: &#34;Problems in the theory of surfaces and their classification&#34; (F.. Catanese,

V’Ve ask now in general the question that has been asked and answered for curves: what is the greatest possible geometric genus of an irreducible, nondegenerate variety

shown is that for a general hypersurface X of high degree, the image of the Abel- Jacobi is no larger than what is required if the Hodge Conjecture is going to

1. Goxeter, Shephard and Artin groups. Local deformation theory of representations. The correspondence between projective reflections and their fixed points. Commuting and

We construct the de Rham moduli space M^(X, G) for principal G-bundles with integrable connection, and the Dolbeault moduli space Mp^(X, G) for principal Higgs bundles for the group

This is the moduli space M(A, P) for ^-semistable A-modules with Hilbert polynomial P. In both constructions, that of§ 1 and that of§ 4, we use Grothendieck's embedding of this

Section i is a review of filtrations, gradings, differential algebras, and spectral sequences. We also give Deligne's definition of a mixed Hodge structure there. Section 2 and