• Aucun résultat trouvé

Institut de la Main & Hôpital St Antoine, Paris

N/A
N/A
Protected

Academic year: 2022

Partager "Institut de la Main & Hôpital St Antoine, Paris"

Copied!
39
0
0

Texte intégral

(1)

Physiopathologie et histoire naturelle de l’instabilité

scapho-lunaire

Christian Dumontier

Institut de la Main & Hôpital St Antoine, Paris

Merci à Antonio Pagliei et Emmanuel Camus

S

L

Tq

P

(2)

Plan

1. Rappel anatomique

2. Rappel biomécanique 3. Mécanisme lésionnel

4. Evolution naturelle des lésions SL

5. Comment les dépister ?

(3)

Rappel anatomique

Poignet = Groupe d’articulations qui interagissent entre elles

Longue évolution phylogénique Biomécanique compliquée

Lemur Fulvus Cercopithecus nictitans Pan Satyrus homo

(4)

Le couple scapho-lunaire

Le plus important sur le plan pathologique

Fx du scaphoïde: 0,8 - 4,3 /10000. 2-5% de toutes les

fractures, 11% des fractures de la main et 60% des fractures du carpe

Pathologie du lunatum: nécrose, luxations

Instabilités scapho-lunaires

Le plus sollicité sur le plan mécanique

Du grec ancien σκάφος skaphos (« carène de navire, (Par extension) vaisseau, navire ») avec le suffixe -oïde.

Du latin lunatum (en forme de lune)

(5)

Le ligament scapholunaire

Evolution de la

crête osseuse qui séparait l’espace radio-carpien

(6)

Anatomie du ligament scapholunaire

Joint les parties

proximales, dorsales et palmaires des

surfaces articulaires du scaphoïde et du lunatum

Berger RA. The gross and histologic anatomy of the scapholunate interosseous ligament. J Hand Surg Am. 1996 Mar;21 (2):170-8.

(7)

Anatomie du ligament scapholunaire

Forme en

C

: Antérieure, proximale, postérieure

172 Berger / Anatomy of the Scapholunate lnterosseous Ligament

Figure 2. Isolated fresh cadaveric scapholunate liga- ment complex from a distal perspective, demonstrating the lack of ligamentous coverage over the distal mar- gins of the joint between the scaphoid(S) and lunate (L). The distal edges of the dorsal (d) and palmar (p) regions of the scapholunate interosseous ligament are visible, as are the long radiolunate (LRL) and dorsal intercarpal (DIC) ligaments,

the distal edge of the scapholunate joint cleft is nor- mally free from ligamentous coverage (Fig. 2).

The histologic analysis provided substantial addi- tional detail regarding the tissue composition of the various regions of the SLI ligament and the interrela- tionships between adjacent regions and structures. All three planes of sectioning were found to be useful.

Objective magnifications from 1.6 x through 20 x with a 10 x eyepiece magnification were most com- monly employed in the analysis.

For descriptive purposes, the observations made on the SLI ligament will be presented by dividing the ligament into three distinct regions: dorsal, prox- imal, and palmar (Fig. 3, Table 1). Each region will be described first by its gross anatomic features fol- lowed by histologic observations.

Dorsal Region

Gross Anatomy. The dorsal region of the SLI liga- ment normally consists of transversely oriented col- lagen fascicles coursing between the radial margin of

A

Figure 3. Interpretive drawing of the relationship between the radius and the scapholunate interosseous ligament from a radial and slightly proximal perspective. The radius is depicted with the radial styloid region excised. This interpretation is based upon the findings of the gross anatomy study, and is intended as an orientation device. (A) The scapholunate interosseous ligament forms a smooth connection between the dorsal, proximal, and palmar margins of the scaphoid and lunate. (B) With the scaphoid removed, the subdivisions of the scapholunate interosseous ligament can be appreciated, as well as its relationship to surrounding capsular ligaments. The lunate (L) remains, serving as an attachment for the palmar capsular ligaments, including the long radiolunate (LRL) and short radiolunate (SRL) ligaments. The scapholunate interosseous (SLI) ligament is divisible into three regions; dorsal (d), proximal (px), and palmar (p). The radioscapholu- nate ligament (RSL) is a neurovascular pedicle that separates the palmar and proximal regions of the SLI ligament. Palmar (PST) and dorsal (DST) scaphotriquetral ligament fibers form distal extensions of the scapholunate ligament.

Localisation Composition Orientation des

fibres Epaisseur Rupture

Dorsal Collagène Transversale 3 mm 250N

Proximal Fibrocartilage Longitudinal variable 60N

Palmaire Collagène Oblique 1 mm 120N

The Journal of Hand Surgery/Vol. 21A No. 2 March 1996 Table 1. Comparative Features of the Regions of the Scapholunate Interosseous Ligament

173

Region Principal Tissue Type Fiber Orientation Average Thickness

Dorsal Collagen Transverse 3 mm

Proximal Fibrocartilage Superficially longitudinal Variable

Palmar Collagen Oblique 1 mm

the dorsal horn of the lunate and the ulnar-dorsal margin of the proximal pole of the scaphoid (Fig. 4).

It averages 3 mm in thickness and 5 mm in proxi- mal-distal width. In sagittal and transverse plane cross-sections, it is trapezoidal in shape because of a progressive shortening of fiber length from the dor- sal to the palmar surfaces. The dorsal region is inti- mately associated with a consistent attachment of the dorsal radiocarpal joint capsule, which obscures the distal half to three-quarters of the ligament from contact with the radiocarpal joint space. Distally, the dorsal region of the SLI ligament merges with the dorsal scaphotriquetral ligament, which is inconsis- tent in width, often appearing to be an integral part of the dorsal intercarpal ligament. Proximally, the dorsal region merges with the proximal region of the SLI ligament through a transition generally noted more by a change in tissue texture than any other characteristics. The normally taut transversely ori- ented fibers of the-dorsal region contrast sharply with the rubbery and often lax consistency of the proximal region.

Histology. The dorsal region of the SLI ligament histologically meets the criteria for designation as a true articular ligament? It is composed of collagen fascicles surrounded by perifascicular loose connec- tive tissue containing small arterioles, venules, and peripheral nerve fibers (Fig. 5). The superficial sur- face of the dorsal region is composed of collagen fibers arranged in sheets, coursing in planes ranging in orientation from tangential to perpendicular rela- tive to the orientation of the collagen fascicles com- posing the bulk of the actual ligament. The collagen fibers coursing perpendicular to the ligament fibers attach the dorsal radiocarpal joint capsule to the dor- sal region of the SLI ligament. Those fibers coursing tangential to the ligament fibers merge distally with the collagen fibers forming the dorsal scaphotrique- tral ligament. These fibers appear histologically to have a similar diameter mad orientation to those fibers forming the dorsal region of the SLI ligament.

Proximally, there is a zone of transition between the

Figure 4. Isolated fresh cadaveric scapholunate complex from a palmar perspective, with the palmar and proximal regions divided, allowing a separation of the scaphoid (S) and lunate (L). The fibers of the dorsal region of the scapholunate interosseous ligament (SLId) are seen trans- versely oriented between the dorsal rims of the two bones.

Figure 5. Photomicrograph of a cross-section of the dor- sal region of the scapholunate interosseous ligament.

Note the classic architecture of a true ligament: multiple collagen fascicles (CF) separated by loose perifascicular tissue (pf) containing numerous neurovascular structures (v) coursing parallel to the orientation of the collagen fas- cicles (hematoxylin and eosin; 4 X magnification).

(8)

Le ligament sapholunaire dorsal

Recouvert sur sa moitié postérieure par la capsule

(9)

Le ligament dorsal

intercarpien

30%

44%

26%

SS TT TT

TrTr

dRT dIC dRLT

ECRBECRL

APL

ECU

Patterson, Moritomo, Yamaguci, Mitsuyasu, Shah, et al., 2004

(10)

Le ligament sapholunaire dorsal

Intimement lié au ligament dorsal intercarpien

T *

C T Tz

* S L

R

ECRB

Ul

ECRL

(11)

Résumé

La partie postérieure est la plus épaisse, la plus résistante et la plus importante mécaniquement

La partie antérieure est aussi un ligament, moins épais La partie proximale est un fibrocartilage sans propriétés mécaniques de stabilisation, sans possibilités de

cicatrisation

John J. Walsh, MD, et al

Vol 10, No 1, January/February 2002 !!

"#"$%&'()$*)"'%+,*#-)./(0#*&1

2,() +%/3%4) '%+"5/%4) /#6%3(&$"7 8,#',)+4*9#-()"5++*4$).*4)$,()"'%+,:

*#-) %&-) /5&%$(7) #&'/5-() $,() 4%-#*:

"'%+,*'%+#$%$() /#6%3(&$) %&-) /*&6

%&-) ",*4$) 4%-#*/5&%$() /#6%3(&$";

<=#61) >?1) ) 2,() 4%-#*"'%+,*'%+#$%$(

/#6%3(&$) %$$%',3(&$) $*) $,() +%/3%4 4%-#%/)'*4$(0)*.)$,()"'%+,*#-)3%@("

#$) %&%/*6*5") $*) %) 4%-#%/) '*//%$(4%/

/#6%3(&$7) 8,#/() $,() /*&6) %&-) ",*4$

4%-#*/5&%$() /#6%3(&$") "$%A#/#B() $,(

/5&%$()#&)4*$%$#*&1))C*4"%/)'%+"5/%4 /#6%3(&$")#&'/5-()$,()-*4"%/)4%-#*:

'%4+%/) %&-) -*4"%/) #&$(4'%4+%/) /#6%:

3(&$"7) 8,#',) ",%4() #&"(4$#*&") *&

$,() $4#D5($453) <=#61) !?1) ) 2,() *4#(&:

$%$#*&) *.) $,("() .#A(4") +4*9#-(") $,(

A%"#").*4)$,()+4(.(44(-)#&'#"#*&)5"(- 8#$,) %) -*4"%/) '%+"5/*$*3E7) 8,#',

"+/#$")$,()-*4"%/)4%-#*$4#D5($4%/)/#6%:

3(&$) +4*0#3%//E) %&-) $,() -*4"%/

#&$(4'%4+%/)/#6%3(&$)-#"$%//E)<=#61)F?1

Kinematics

G&) 5&-(4"$%&-#&6) *.) $,() "%/#(&$

+*#&$")*.)'%4+%/)@#&(3%$#'")#")&('(":

"%4E) $*) ,#6,/#6,$) -#..(4(&'(") A(:

$8((&) &*43%/) %&-) #&H54(-) 84#"$"1 I(9(4%/) $,(*4#(") $*) (0+/%#&) '%4+%/

@#&(3%$#'") ,%9() A((&) +4*+*"(-1

2,("() #&'/5-(7) %3*&6) *$,(4"7) $,(

4*87)'*/53&7)%&-)*9%/)4#&6)$,(*4#("1 J&) $,() 4*8) $,(*4E7K $,() +4*0#3%/

'%4+%/) 4*8) #") #&$(4/#&@(-) AE) $,(

#&$(4*""(*5") /#6%3(&$") %&-) 3*9("

#&-(+(&-(&$/E) *.) $,() -#"$%/) '%4+%/

4*81) ) J&) ./(0#*&:(0$(&"#*&7) $,(

"'%+,*#-)%&-)/5&%$()4*$%$()$*6($,(4 A5$) $,() "'%+,*#-) 3*9(") $,4*56,) % 64(%$(4) %4'1>7! 2,() "'%+,*#-) %/"*

+4*&%$(") %&-) 5/&%4/E) -(9#%$(") -54:

#&6) 84#"$) ./(0#*&7) 8,#',) +%4$#%//E (0+/%#&") $,() *A/#D5() %"E33($4E) *.

$,() "'%+,*/5&%$() #&$(49%/) $,%$

-(9(/*+") %.$(4) #&H54E) $*) $,() ILJL1 2,#") "'%+,*/5&%$() #&$(49%/) <*4) 6%+?

%/"*)',%&6(")8#$,)4%-#%/:5/&%4)-(9#:

%$#*&) *.) $,() 84#"$1) ) 2,() "'%+,*#- ./(0(") -54#&6) 4%-#%/) -(9#%$#*&) %&- (0$(&-")8#$,)5/&%4)-(9#%$#*&7)8,#', 3%#&$%#&") $,() '*&$#&5#$E) A($8((&

$,()4*8")-54#&6)3*$#*&)#&)$,().4*&:

$%/) +/%&(1) ) M*8(9(47) 8#$,) %&) ILJL

#&H54E7) $,() "'%+,*#-) 8#//) 4(3%#&

./(0(-)8,#/()$,()/5&%$()(0$(&-"7 ("+(:

'#%//E)8#$,)4%-#%/:$*:5/&%4)-(9#%$#*&7

%&-)$,()-#%"$%"#")*4)6%+)A($8((&)$,(

"'%+,*#-) %&-) /5&%$() *.$(&) 8#//

(&/%46(1

2,()'*/53&)$,(*4EN:O +*"#$")%)/%$:

(4%/) '*/53&) <"'%+,*#-7) $4%+(B*#-7

$4%+(B#53?7) %) '(&$4%/) '*/53&) <'%+#:

$%$() %&-) /5&%$(?7) %&-) %&) 5/&%4) '*/:

53&)<,%3%$()%&-)$4#D5($453?1))J$)#"

+4*+*"(-) $,%$) (%',) '*/53&) +4*:

Dorsal Thick dorsal ligamentous

portion of SLIL

Proximal (fibrocartilage) region of SLIL

Thin palmar ligamentous portion of SLIL

Radioscapholunate ligament

Neurovascular bundle

Palmar Long

radiolunate ligament

Short

radiolunate ligament Lunate

!"#$%&'( 2,()"'%+,*/5&%$()#&$(4*""(*5")/#6%3(&$)<ILJL?)9#(8(-).4*3)$,()+4*0#3%/P4%-#%/

"#-()8#$,)$,()"'%+,*#-)4(3*9(-1))<G-%+$(-)8#$,)+(43#""#*&).4*3)Q**&(E)RS7)L#&"',(#- TL7) C*AE&") UM) V(-"WX)!"#$ %&'()*$ +',-./('($ ,.0$ 12#&,)'3#$ !&#,)4#.)7) 9*/) ;1) ) I$) L*5#"7) Y*X Y*"AE:Z(%4)[**@7);OO\1))[E)+(43#""#*&)*.)Y%E*)=*5&-%$#*&1?

!"#$%&') S%/3%4)9#(8)-(3*&"$4%$#&6)#&$(4*""(*5")84#"$)/#6%3(&$")%&-)+%/3%4)4%-#*'%4+%/

/#6%3(&$") <#&) A*/-) $E+(?1) ) 2,() @(E) /#6%3(&$") %4() $,() 4%-#*"'%+,*'%+#$%$(7) /*&6) %&-) ",*4$

4%-#*/5&%$(7) %&-) 5/&%4) '%4+%/) /#6%3(&$") <5/&*/5&%$(7) 5/&*$4#D5($4%/) %&-) 5/&*'%+#$%$() /#6%:

3(&$"?1))Q)])'%+#$%$(^)M)]),%3%$(^)J)]).#4"$)3($%'%4+%/^)L)])/5&%$(^)S)])+#"#.*43^)T)])4%-#5"^

I)])"'%+,*#-^)2-)])$4%+(B*#-^)23)])$4%+(B#53^)_)])5/&%^)`)]).#.$,)3($%'%4+%/1))<[E)+(43#":

"#*&)*.)Y%E*)=*5&-%$#*&1?

Ulnocapitate

ligament V

H C

P

L

U R

S Tm

Td I

Ulnotriquetral ligament Ulnolunate ligament

Capitotrapezoid ligament

Scaphotrapezium trapezoid

ligament

Scaphocapitate ligament

Radioscaphocapitate ligament

Long radiolunate ligament

Short radiolunate ligament

Palmar radioulnar

ligament Radioscapholunate

ligament

(12)

Les autres ligaments

La section isolée du ligament scapholunaire n’entraîne pas «d’instabilité statique» mais explique les ressauts des «instabilités dynamiques»

C

RSC L

LRL

UL UT CT FCU FCR

Il faut au moins la lésion d’un des ligaments extrinsèques (force de rupture 100-150 N)

Dorsaux (DIC et/ou Radio- triquetral postérieur)

Palmaires (RSL, RL ou STT)

(13)

Biomécanique du carpe

Schématiquement, la deuxième rangée est considérée comme un os unique

La 1ère rangée a des mouvements passifs,

réactionnels (pas d’insertions musculaire)

ligs. palmaires superficiels

ligs.

profonds ligs. dorsaux

(14)

Biomécanique du carpe

Les mouvements sont cohérents entre les os de la 1ère rangée grâce aux ligaments interosseux et extrinsèques

(15)

Biomécanique du carpe

La flexion et

l’inclinaison radiale

entraînent une flexion de la première rangée L’extension et

l’inclinaison ulnaire, une extension

(16)

Extension Flexion

La 2ème rangée a un

mouvement identique à la 1ère rangée lors de la flexion-

extension et opposé lors de

l'inclinaison frontale

(17)

C’est évidemment plus compliqué !

Parce que les rangées/colonnes ne sont pas identiques Parce qu’il n’y a pas qu’un seul mouvement des os du carpe

Parce que l’axe de flexion-extension n’est pas au centre de l’articulation scapho-lunaire

Parce que les mouvements du poignet ne se font pas dans le plan Flex-IR / Ext-IC mais dans un plan Flex-

IC / Ext- IR (dart throwing motion)

(18)

Les mouvements sont différents d’une rangée à l’autre

(19)

Le carpe à double cupule : modélisation de l'inclinaison radio-ulnaire du poignet. E. Camus GEM 2004

(20)

Mouvements

du Poignet Flexion Extension I. radiale I. ulnaire

Scaphoide

Flexion 58°

I. ulnaire 18°

Pronation 10°

Extension 50°

Supination

I. radiale 4°

I. radiale 5°

Flexion 13°

Rotation

Extension 18°

I. Ulnaire 16°

Pronation 11°

Lunatum Flexion 40°

I. ulnaire 17°

Extension 39°

Pronation 5°

I.radiale 3°

Flexion 11°

I. radiale 8,6°

Pronation 6°

Extension32°

I. ulnaire 16°

Supination 5°

(21)

Mobilité relative des os entre eux

Par rapport au lunatum, le scaphoïde a un arc de mobilité supérieur de 30° ( 80 vs 48°)

Importance des contraintes mécaniques sur le ligament scapholunaire

Autour d’un point fixe postérieur (partie postérieure du ligament scapholunaire interosseux)

Lunatum et triquetrum n’ont une mobilité entre eux que de 14° en moyenne (58 vs 71°)

(22)

Conséquences

La tension sur les fibres postérieures du lgt SL explique la fréquence des dégénérescences mucoïdes (kyste synoviaux) et leur plus grande

fréquence chez les jeunes filles (plus laxes) [Kuhlmann, 2003]

(23)

Dart throwing motion

La mobilité du poignet se fait dans un plan oblique et se tient essentiellement dans la médiocarpienne allant de l’extension-inclinaison radiale à la flexion-inclinaison ulnaire. La première rangée «verrouillée» est protégée Cet axe de mouvement associe mobilité, stabilité et force

Moritomo, JHS 2007

E + RD F + UD

(24)

Contraintes mécaniques

80% des

contraintes axiales passent dans le

radius

La majeure partie passe dans le

scaphoïde

50% 35% 15%

85%

30%

29% 27%

14%

15%

(25)

Le carpe, par le biais du capitatum, appuie sur le couple

scapholunaire

(26)

Les ligaments de la première rangée sont comparables à un couple de torsion qui contrôle les forces de flexion/

extension et maintient les os accouplés et à un système visco-élastique d’absorption

rscl

rscl S S

rll

L L

T L

F C U

Tu T

P

P

Tu

(27)

En cas de lésion scapholunaire

Le scaphoïde se place en flexion (position de moindre contrainte) et bouge avec la deuxième rangée

Le couple lunatum-triquetrum se place en extension (DISI)

(28)

Mécanisme lésionnel

Pas tout à fait compris !

Contact sur l’éminence hypothénar, poignet en extension, inclinaison

ulnaire et supination (Mayfield, 1980 et Johnson, 1980)

Le capitatum s’insère entre scaphoïde et lunatum

(29)

Evolution naturelle ?

Quelle est la fréquence des ruptures scapholunaires ?

28% des sujets anatomiques ont une rupture du lgt SL, sans signes de dégénérescence

74% des poignets controlatéraux ont une arthrographie positive (Herbert TJ, Bilateral arthrography of the wrist, JHS 1990; 15B:

233-235)

25% des fractures du radius extra-articulaires ont une fuite intra- carpienne (Fontes D. ACMMS 1992; 11: 119-125)

Viegas SF, Patterson RM, Hokanson JA, Davis J. Wrist anatomy: incidence, distribution, and correlation of anatomic variations, tears, and arthrosis. J Hand Surg 1993;18A:463– 475.

(30)

Evolution naturelle ?

Quelle est l’évolution des ruptures traumatiques ? 11 patients, Dg arthroscopique, instabilité

«dynamique» suivis 7 ans

Douleurs 3,2 (repos) à 6,6 (effort) (mieux qu’avant);

plus raides (que côté sain),...mais pas d’aggravation sur le long terme et pas de SLAC (pas de Gap, pas de DISI)

O’Meeghan CJ, Stuart W, Mamo V, Stanley JK, Trail I. The natural history of an untreated isolated scapholunate interosseous ligament injury. J Hand Surg 2003;28A:307-310.

(31)

Evolution naturelle ?

Plusieurs travaux semblent montrer

que la lésion scapholunaire s’aggrave avec le temps

Distension progressive des fibres restantes sous la contrainte ?

Facteurs favorisants osseux ?

Frederick W. Werner, Walter H. Short, Jason K. Green, Peter J. Evans, Jacquelyn A. Walker. Severity of Scapholunate Instability Is Related to Joint Anatomy and Congruency. J Hand Surg 2007;32A:55–60.

(32)

Evolution naturelle ?

Sous l’effet des contraintes, le scaphoïde a tendance à se subluxer vers l’arrière

ample would be determining the force needed to pull a car tire out of a hole. Because the CT scans of the bones did not include cartilage, the scaphoid was lowered onto the radius until contact was made.

Material properties were selected to simulate carti- lage (modulus of elasticity, 0.7 MPa; Poisson’s ratio, 0.1; coefficient of friction, 0.01). In this study, only the role of the bony architecture in preventing dislo- cation was examined. No soft-tissue constraints were included. First, for each arm, at each wrist position, the dorsally directed force needed to cause a dorsal dislocation of the scaphoid was determined by grad- ually increasing the dorsal force, while a 200 N

compressive and proximally directed force was ap- plied to simulate wrist grip (Fig. 4). Dislocation was defined as the position when the scaphoid rose up to the top of the dorsal rim of the distal radius. Second, the dorsal/volar constraint for each scaphoid was determined by applying a 50 N dorsal force and then a 50 N volar force to the scaphoid, while maintaining the 200 N axial compressive force (Fig. 5). The sum of the resultant dorsal and volar motions of the scaphoid was measured and defined as the dorsal/

volar constraint. In these models, scaphoid motion was constrained to translations in the sagittal plane and measured for each type of load.

Results

With respect to the radiographic measurements (Table 2), after ligamentous sectioning those wrists with a deeper RS fossa and a greater volar tilt have a scaphoid that is less likely to ride up the dorsal rim of the distal radius during wrist motion. The amount of ulnar tilt does not seem to be a factor that is related to scapholunate instability after ligamentous section- ing.

With respect to the bone geometry measurements made from the 3D models of the scaphoid and distal radius (Table 3), after ligamentous sectioning those wrists with a larger radius of curvature in both the sagittal and coronal planes for the RS fossa and the scaphoid seem to be less likely to become unsta- ble than those with smaller curvatures. Visually, these arms were observed to have a smaller SL gap and did not show scaphoid clunk. In all of the fore- arms, the sagittal scaphoid curvature was smaller on the proximal/volar surface (average, 3.7 mm; SD, 0.7 mm), corresponding to when the scaphoid was in flexion as compared with its proximal/dorsal surface (average, 7.6 mm; SD, 2.1 mm), corresponding to when the scaphoid was in neutral.

The force to cause the scaphoid to dislocate dor- sally out of the RS fossa was computed to be greater in those wrists that were observed to be minimally

Figure 4. Determination of the dislocation force of the scaphoid. (A) Sagittal view of the radius and scaphoid under no compressive or dorsal loading. (B) Scaphoid has dislo- cated and is sitting on the dorsal rim of the radius. A 200 N compressive force was applied to simulate wrist grip.

Figure 5. Determination of the dorsal/volar constraint of the scaphoid. After a 200 N compressive force was applied to simulate wrist grip, first a 50 N dorsal force and then a 50 N volar force was applied. The displacement of the scaphoid as a result of the 50 N dorsal force was summed with the displacement of the scaphoid as a result of the 50 N volar force to compute the dorsal/volar constraint of each scaphoid.

Table 2. Bone Geometry Measurements From Radiographs

Level of Instability Minimal

(n ! 3) Intermediate

(n ! 3) Gross (n ! 2) Depth of RS

fossa, mm (SD) 10.3 (1.2) 9.8 (1.4) 8.6 (0.1) Volar tilt,° (SD) 17.8 (2.5) 15.3 (1.8) 8.5 (0.7) Ulnar tilt,° (SD) 20.2 (1.4) 19.5 (1.7) 21.5 (3.5) 58 The Journal of Hand Surgery / Vol. 32A No. 1 January 2007

(33)

Evolution naturelle ?

Il se réduit dans la cavité radiale avec un ressaut (click, clunk, snap,...)

while the 3-dimensional (3D) motions of the scaph- oid and lunate were monitored using electromagnetic motion sensors (Fastrak; Polhemus, Colchester, VT).1– 4 Carpal kinematic data were acquired with all ligamentous structures intact and after the com- bined sectioning of the SLIL, the radioscaphocapi- tate (RSC) ligament, and the scaphotrapezium (ST) ligament. After ligamentous sectioning, 3 levels of carpal instability were defined (Table 1), minimal, intermediate, or gross, based on visual examina- tion of the gap between the scaphoid and lunate and if the scaphoid would clunk back into the RS fossa.

After the 3 ligaments were sectioned, each wrist had a computed tomography (CT) scan. By combin- ing the resultant surface models of the scaphoid and lunate with the corresponding kinematic data, anima- tions of the scaphoid and lunate were made for each of the 8 arms5 for each of the motions. Dorsal and axial views of the animations were reviewed to aid in quantifying the SL gap in each arm before and after ligament sectioning. The animations also showed whether during the motion, after ligamentous sec- tioning, the scaphoid snapped back into the ra- dioscaphoid joint, defined as scaphoid clunk (Fig. 1).

The animation models were exported into computer- aided design (CAD) software (Solidworks; Solid- works Corp., Concord, MA) to aid in making bone geometry measurements. Because of how the CT scans were thresholded, the CAD models do not include cartilage.

The bony geometry was quantified by examining posteroanterior (PA) and lateral radiographs, and from the CAD models of the bones. The radiographs were taken with the arm in 90° of elbow flexion, at neutral forearm rotation, and with the wrist in neutral flexion/extension and radioulnar deviation. The beam was centered over the wrist joint at the junction between the proximal carpal row and the distal ra- Table 1. Scapholunate Instability: 3 Qualitative

Levels

Minimal Little or no SL gap, no scaphoid clunk

Intermediate SL gap present during part of wrist motion, no scaphoid clunk Gross SL gap present and either

scaphoid clunk, or scaphoid riding up to and down from the dorsal rim of radius, or

scaphoid riding up and staying on dorsal rim of radius

Figure 1. Scaphoid clunk. (A) Lateral view of the scaphoid at 20° of wrist extension with the wrist moving from neutral to extension, with all ligaments intact. (B) Corresponding transverse plane view of the scaphoid shown in (A). (C) Lateral view of the same scaphoid with the wrist at 20° extension, but with the SLIL, RSC, and ST ligaments sectioned. The scaphoid has flexed, moved dorsally, and radially compared to the intact state, and is now on the dorsal rim of the radius. (D) Corresponding transverse view of the scaphoid shown in (C). As the wrist and scaphoid continue to extend, the scaphoid “snaps” back into the radioscaphoid fossa, approximately 0.04 seconds later in the cadaver wrist motion: (E) lateral view; (F) corresponding transverse view.

56 The Journal of Hand Surgery / Vol. 32A No. 1 January 2007

(34)

 

      

 

       

Recherche du

signe de Watson Recherche du “ballotement”

scapho-lunaire

Examen clinique

(35)

Evolution naturelle ?

La dynamique modifiée du

scaphoïde augmente les pics de

contrainte sur une faible surface ce qui génère une arthrose localisée du pôle proximal

(36)

Evolution naturelle ?

Scapho-Lunate Advanced Collapse SLAC (Watson, 1984)

(37)

Evolution naturelle ?

Le bloc lunatum-triquetrum bascule en extension (DISI) Le pôle proximal du lunatum et la fossette lunarienne

restent congruents (pas d’arthrose)

(38)

Continuum de lésions

(39)

Question: Quelles sont les lésions ligamentaires et cartilagineuses ? Quels sont les facteurs favorisants

une évolution défavorable ?

Conclusion

Références

Documents relatifs

Coude en flexion supination, Sensibilisé compression, Positif en 30 Secondes. Stabilité du nerf ?+++ = c/i

(paronychium) proximal and lateral nail wall (fold) and the cuticle.. The (germinal)

Mèche perforée jusqu’au pôle distal du scaphoïde Vissage en compression...

Cette atteinte intra-carpienne déstabilise le carpe qui s’affaisse.. L’atteinte des ligaments

FIGURE 54-1 The spectrum of radiographic presentation from grades I to V in patients with rheumatoid arthritis after Connor and Morrey [9] and

 Surtout ne pas rater les quelques lésions graves qui sont..

• 35° d’élévation (environ 1/6 de la mobilité de l’épaule en élévation). • 35° de

- Pôle distal du scaphoïde au niveau de la STT, le pôle inférieur du scaphoïde répondant au lunatum, la. face inférieure du lunatum et du