• Aucun résultat trouvé

prescribed centroaffine curvature problem A priori estimates and existence of solutions to the Journal of Functional Analysis

N/A
N/A
Protected

Academic year: 2022

Partager "prescribed centroaffine curvature problem A priori estimates and existence of solutions to the Journal of Functional Analysis"

Copied!
37
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

A priori estimates and existence of solutions to the prescribed centroaffine curvature problem

Huaiyu Jiana,b, Jian Lub,c,∗, Xu-Jia Wangb

a DepartmentofMathematics,TsinghuaUniversity,Beijing100084,China

b CentreforMathematicsandItsApplications,AustralianNationalUniversity, Canberra, ACT0200,Australia

cDepartmentofMathematics,ZhejiangUniversityofTechnology,Hangzhou 310023,China

a r t i c l e i n f o a bs t r a c t

Article history:

Received1April2017 Accepted30August2017 Availableonline5September2017 CommunicatedbyCédricVillani

Keywords:

Monge–Ampèreequation Centroaffinecurvature Minkowskiproblem

Inthispaper westudytheprescribedcentroaffinecurvature problem in the Euclidean space Rn+1. This problem is equivalentto solvingaMonge–Ampèreequationontheunit sphere. It correspondsto the critical case of the Blaschke–

Santaló inequality. By approximation from the subcritical case, and using an obstruction condition and a blow-up analysis, we obtain sufficient conditions for the a priori estimates, andthe existence of solutions up to a Lagrange multiplier.

©2017ElsevierInc.Allrightsreserved.

1. Introduction

Given ahypersurfaceM intheEuclideanspaceRn+1,thecentroaffinecurvatureκof M atpointpisbydefinitionequaltoK/dn+2,whereK istheGausscurvatureanddis

ThefirstandthesecondauthorsweresupportedbytheNaturalScienceFoundationofChina(11771237, 11401527),thesecondandthirdauthorsweresupportedbytheAustralianResearchCouncil.

* Correspondingauthor.

E-mailaddresses:hjian@math.tsinghua.edu.cn(H. Jian),lj-tshu04@163.com(J. Lu), Xu-Jia.Wang@anu.edu.au(X.-J. Wang).

http://dx.doi.org/10.1016/j.jfa.2017.08.024 0022-1236/©2017ElsevierInc.Allrightsreserved.

(2)

thedistancefrom theorigintothetangentplaneofM atp.Thecentroaffinecurvature κwasfirstdiscoveredbyTzitzéica[31] in1908. Itisinvariantundertransformationsin SL(n+ 1) and is anelementary quantity inthe affine differentialgeometry and inthe theoryofconvex bodies[8,13,14,21–23,25,27].It appearsnaturallyingeometric objects suchas affine normaland affine spheres, and plays afundamental role inthe study of manygeometricproblems[1–3,9,15,16,19].

In this paper, we consider the following prescribed centroaffine curvature problem.

Givenapositivefunctionf inRn+1,findproperconditionsonf suchthatthereexistsa closedconvexhypersurfaceM inRn+1 surroundingtheorigin,ofwhichthecentroaffine curvatureκatapoint p∈M isequalto f(p).

ThecorrespondingprescribedmeancurvatureandGausscurvatureproblems,namely the problems with the centroaffine curvature replaced by the mean curvature or the Gauss curvature, wereraised byYau [34]. Inthecase ofGauss curvature, the problem wasstudiedin[10,26,30,33].

LetH be the supportfunction of the polarbody of M. We show in Section2that theproblemisequivalentto solvingthefollowingMonge–Ampèreequation,

det(2H+HI)(x) =f(x/H)

Hn+2 x∈Sn, (1.1)

where2H = (ijH) is thecovariantderivativesof H with respectto anorthonormal frameontheunitsphereSn,and Iistheunitmatrix.

Problem(1.1)iscloselyrelatedtotheLp-Minkowskiproblem[22],

det(2H+HI)(x) =f(x)Hp1 x∈Sn, (1.2) wheref isapositivefunctiononSn.TheLp-Minkowskiproblemis anextension ofthe famous Minkowski problem (the case when p = 1), and has been extensively studied recently[5,9,11,18,24,32]. In particular asolutionto the Lp-Minkowskiproblem is also aself-similarsolutiontoananisotrophicGausscurvatureflow, ofwhichtheasymptotic behaviourof solutionshasattractedmuchattentions[4,12].

Equation (1.1), or equation (1.2) inthe case p=−n−1,is referred to as the cen- troaffineMinkowskiproblem[9]. ThecentroaffineMinkowskiproblemis alsoofinterest intheimage processing. Inimageprocessing, onehopes thatthedeformationofimage is invariant when one looks at the picture from different angles. In other words, the imageprocessingshouldbeinvariantunderprojectivetransformations.Forthispurpose an evolution equation was introduced in [2], which becomes a centroaffine Minkowski problemifonedealswithself-similarsolutions.

Inthispaperweestablishtheaprioriestimatesandexistenceofsolutionstoequation (1.1).AsthecentroaffinecurvatureisinvariantunderprojectivetransformationsonSn, allellipsoidsofvolume|B1(0)|haveconstantcentroaffinecurvature1,namelytheyareall solutionsto(1.1)withf 1.Thereforeconditionsareneededfortheuniform estimate

(3)

ofH.Infactanobstructionwasfoundin[9]fortheexistenceofsolutions,whichmeans thatforsomef there isnosolutiontoequation(1.1).

On the other hand, equation (1.1) corresponds to the critical exponent case of the Blaschke–Santaló inequality[9].Therefore onemayemploythevariationalapproachto study theproblem.As iswell known,thecritical exponentcaseisusually verycompli- cated.Sowewillfirstproveanexistenceresultinthesubcriticalcase,andthenestablish theaprioriestimatesandprovetheexistenceofsolutionsbyapproximation.

ForasupportfunctionH,denotethevolumeoftheassociatedconvexbodybyvol(H), namely

vol(H) = 1 n+ 1

Sn

Hdet(2H+HI). (1.3)

Then wehave

Theorem 1.1. Let f be abounded and positive functionin Rn+1. For any positive con- stants v >0and q∈[n+ 1,n+ 2), there exista number λ>0 anda positive support function H C1,γ(Sn) for some γ (0,1) with volume vol(H) = v, which solve the equation

det(2H+HI)(x) =λf(x/H)

Hq x∈Sn. (1.4)

The above theorem dealswith the subcritical case q < n+ 2. Byapproximation to the critical exponent caseq = n+ 2, and using a blow-up analysis and the necessary conditionin[9],wefindsufficientconditionsfortheaprioriestimatesofsolutions.

Theorem 1.2.Letf ∈C1(Rn+1)be apositivefunction.Assume that f(x) =f() +β+o(1)

|x|α as|x| → ∞, (1.5) forconstantsα >0,f(∞)>0,andβ= 0,and

either f(x)> f() or f(x)< f() ∀x∈Rn+1. (1.6) LetH be asolution to(1.1).Then wehavetheapriori estimates

C−1≤H ≤C, (1.7)

where C isapositiveconstant depending onlyon nandf.

ByTheorems 1.1 and1.2,andusingapproximation,weobtainthefollowingexistence resultforequation (1.1).

(4)

Theorem1.3. Letf ∈C1(Rn+1)beapositivefunction.Assumethatf satisfies(1.5)with β >0and

f(x)> f()∀x∈Rn+1. (1.8) Then for any positive constant v > 0, there exists a number λ and a support function H ∈C2,γ ( γ∈(0,1))with vol(H)=v whichsolve theequation

det(2H+HI)(x) = λf(x/H)

Hn+2 x∈Sn. (1.9)

Remark.InTheorem 1.1,itsufficestoassumethatf isapositiveandboundedfunction.

Inthiscase,thesolutionisC1,γ forsomeγ∈(0,1)[7].InTheorems 1.2 and1.3,weuse condition(2.7)and so f ∈C1(Rn+1) isneeded. Theassumption f ∈C1(Rn+1) implies thatH ∈C2,γ(Sn) forallγ∈(0,1).

Theprescribedcentroaffinecurvatureproblem isrelatedto theBlaschke–Santalóin- equality

sup

H

ξinfKvol(H)

Sn

1

(H−ξ·x)n+1Sn ωn2

n+ 1, (1.10)

justas theprescribed scalarcurvature problem related to theSobolevinequality.Here Sn denotes the volume element of Sn, and ωn =

SnSn. The prescribed scalar curvatureequationonthesphere

ΔSnu+1

2n(n−2)u=R(x)up onSn (1.11) hasbeen studiedby numerousauthors (see, e.g.[28]), where p= n+2n−2.To prove thea priori estimates and the existence of solutions to (1.1), we use the blow-up approach.

Thefirststepis toprovetheexistenceofasolutionHqto (1.4)inthesub-criticalcase q [n+ 1,n+ 2). Even in the sub-criticalcase, the Monge–Ampère equation (1.2) is morecomplicatedthan(1.11).Itiswellknownthatthesolutionsto(1.11)areuniformly bounded inthe sub-critical case1< p < n+2n−2. Butthis isnot true for equation (1.2).

There mayexistinfinitely manysolutionsto (1.2)whichare notuniformly boundedin thesubcriticalcase[17].

The second step is to find conditions on f such that Hq is uniformly bounded for all q∈ [n+ 1,n+ 2). Suppose thatsupx∈SnHq(x)→ ∞ as q n+ 2. Wenormalize the associated convex body to get anew support functionH˜q, of which the limit H˜ satisfiesequation(1.1)foradifferentfunctionf.Inorderthatthis blow-upargument works,itiscrucialtohaveaclassificationofthelimitshapeH˜.

However, unlike the prescribed scalarcurvature equation (1.11), where the limit of theblow-upsequenceisunique(byaLiouvilletypetheorem),theproblem(1.1)ismore

(5)

difficult,becausethelimitf isafunction,notaconstantingeneral.Toovercomethis difficulty, weassumethat

|p|→+∞lim f(p) =const, (1.12) so thatfis aconstantandhenceH˜ mustbeasphere.

Condition(1.12)aloneisnotsufficient,asthereisnouniform estimateeveniff 1.

To establish the a priori estimates (1.7), we use the necessary condition (2.7) and a blow-up analysis,bywhichwearriveat thecondition(1.5),whichisastrengtheningof (1.12).Theblow-upargument wasalsoused in[20] fortherotationallysymmetric case oftheLp-Minkowskiproblem.Inthispaperweconsiderthenon-symmetriccaseandthe analysis ismoredelicate,astherearemanydifferentcasestodealwith.SeeLemma 4.1.

This paper is organized as follows. In Section 2, we show that the prescribed cen- troaffine curvature problem is equivalent to equation (1.1). In Section 3, we prove the existence ofsolutions inthesubcriticalcase, namelyTheorem 1.1. InSection4,we es- tablish theaprioriestimatesinTheorem 1.2byadelicateblow-upanalysis.Finallywe proveTheorem 1.3inSection5.

2. TheMonge–Ampère equation

Given abounded, positivefunctionf inRn+1,the prescribedcentroaffinecurvature problem istofindaconvexhypersurfaceM suchthat

κ(p) =f(p) ∀p∈M, (2.1)

where κ(p) is the centroaffine curvature of M at p. When M is smooth and strictly convex, κ(p) canbe expressedasin[9]

κ(p) = 1

Hn+2(x) det(2H+HI)(x),

where x∈Sn isthe unitouternormal ofM atpand H isthesupportfunction ofM, given by

H(x) = sup{x, p |p∈M} x∈Sn.

Extend H to Rn+1 such thatit ishomogeneous of degree1.Denote the gradientof H inRn+1 by.Itiswellknownthat

p=∇H(x) =∇H(x) +H(x)x.

Thus (2.1)canbewrittenas

Hn+2(x) det(2H+HI)(x) = f

∇H(x)−1

x∈Sn. (2.2)

(6)

LetMbetheboundaryofthepolarsetoftheconvexbodyenclosedbyM [27].Let ρbe theradialfunctionofM,suchthat

M={xρ(x)|x∈Sn}. DenotebyH thesupportfunctionofM.Thenbydefinition,

ρ(x) = 1/H(x), whichimpliesthat

∇H =−∇ρ)2. Henceintermsofρ, equation(2.2)canbe rewrittenas

det

−ρ2ρ+ 2(∇ρ)T∇ρ+ (ρ)2I

)4n+2 =

f −∇ρ)2

−1

. (2.3)

Ontheotherhand,letx betheunitouternormalofM atpointρ(x)x.Wehave x= ∇ρ

∇ρ(x), whichimpliesthat

x

H(x) =−∇ρ

)2(x). (2.4)

ItisknownthattheGausscurvature ofM atthispoint isgivenby

K= 1

det (2H+HI) (x) =det

−ρ2ρ+ 2(∇ρ)T∇ρ+ (ρ)2I)2n−2|∇ρ|n+2 (x).

Henceequation (2.3)canalsobe writtenas det

2H+HI

(x) =f

−∇ρ/(ρ)2 |∇ρ|)2

n+2

(x)

= f(x/H) (H)n+2 (x),

wherethesecondequalityisdueto(2.4).ThusifH isasolutiontoequation(2.2),then thesupportfunctionofitspolarbody,H,satisfies thefollowing equation

det

2H+HI

(x) =f(x/H)

(H)n+2 x ∈Sn, whichisexactlytheequation (1.1).

(7)

An important property of equation (1.1) is its invarianceunder projective transfor- mationsonSn [9].ThatisifH isasolutionto(1.1),thenHA withA∈SL(n+ 1) given by

HA(x) =|Ax| ·H Ax

|Ax|

x∈Sn, (2.5)

satisfies thefollowingequation

det(2HA+HAI) =f(Ax/HA)

HAn+2 x∈Sn. (2.6)

Inthepaper[9]theauthorsalsofoundanecessaryconditionfortheexistenceofsolutions to (1.1).Thatis, ifH isasolutionto (1.1),then

Sn

ξ[f(x/H)](x)

Hn+1 Sn = 0 (2.7)

foranyprojectivevectorfieldξgeneratedbyanysquarematrixBofordern+ 1,namely ξ(x) =Bx−(xTBx)x, x∈Sn. (2.8) In the following we may drop Sn, when the integral over Sn is under the standard metric.

3. Existenceofsolutionsinthesubcriticalcase

InthissectionwesketchtheproofofTheorem 1.1.Theproof issimilar tothatin[9, Section5],wheretheexistenceofsolutionsforthecasef =f(x) wasobtained.Werefer thereaderto [9]formoredetails.

Forq∈[n+ 1,n+ 2),we denote

F(x, t) =

+

t

f(x/s)

sq ds, (3.1)

where x∈Sn andt>0,and

J[H] =

Sn

F(x, H(x)). (3.2)

Considerthemaximizingproblem Mv=: sup

H∈Sv

y∈KinfH

J[H(x)−y·x], (3.3)

(8)

wherevisapositiveconstant,andSvisthesetofsupportfunctionssuchthatthevolume oftheassociatedconvexbodyisequaltov.

Observethat

finf

q−1· 1

tq1 ≤F(x, t) fsup

q−1· 1

tq1 ∀x∈Sn. (3.4) Given H ∈ Sv, since q [n+ 1,n+ 2), one easily sees that J[H(x)−y ·x] → ∞ whenever y KH and y converges to aboundarypoint of∂KH. Hence there exists a pointy=y(H)∈KH suchthattheinfimuminfy∈KHJ[H(x)−y·x] isattainedat y.

Weclaimthatthereexisttwo positiveconstantsC1,C2,dependingonlyonnandf, suchthat

C1

q−1vq−1n+1 ≤Mv C2

q−1vn+1q−1. (3.5) Infact,bytheHölderinequality,wehave

J[H(x)−y·x]≤ fsup

q−1

Sn

1

(H(x)−y·x)q1

Cnfsup

q−1

Sn

1

(H(x)−y·x)n+1

q1 n+1

.

BytheBlaschke–Santalóinequality(1.10),we obtain

y∈KinfH

J[H(x)−y·x]≤Cnfsup

q−1 ·vol(KH)q−1n+1 = C2

q−1vq−1n+1,

whichimpliesthesecond inequalityof(3.5).LettingH [(n+ 1)v/ωn]1/(n+1),wehave Mv inf

y∈KH

J[H(x)−y·x]

finf q−1

Sn

1 Hq−1

≥Cnfinf

q−1vn+1q−1, whichisthefirstinequalityof(3.5).

Lemma3.1. Foragivenpositiveconstant v >0,thereexistsasupportfunctionH ∈ Sv

suchthat Mv= infyKHJ[H(x)−y·x].

(9)

Proof. Let {Hj} ⊂ Sv be a maximizing sequence. We show that {Hj} is uniformly bounded. SupposetothecontrarythatmaxxSnHj(x)+as j→+.Denote the minimum ellipsoidofKHj byEj.Letzj bethecentreof Ej.Wehave

yinfKHjJ[Hj(x)−y·x]≤J[Hj−zj·x]

fsup

q−1

Sn

1

(Hj(x)−zj·x)q−1.

By a translation of coordinates, we assume that zj is the origin. Then the support function of Ej canbe expressed as |Bjx|for somepositive definite matrixBj of order n+ 1.As Ej istheminimumellipsoidof KHj, wehave

1

n+ 1|Bjx| ≤Hj(x)≤ |Bjx| ∀x∈Sn. (3.6) It followsthat

yinfKHjJ[Hj(x)−y·x]≤Cnfsup

Sn

1

|Bjx|q1. (3.7) From (3.6), we seethatCn−1v detBj ≤Cnv. Byassumption,maxx∈Sn|Bjx| + as j→+.Hencewhenq < n+ 2,oneinfersthat[9]

jlim+

Sn

1

|Bjx|q−1 = 0,

whichtogetherwith(3.7)impliesthatMv= 0,contradictingwith(3.5).Therefore{Hj} is uniformlybounded.

By Blaschke’s selection theorem, there is a subsequence of {Hj} which converges uniformly toamaximizerH oftheproblem (3.3)and H isuniformly bounded. 2 ProofofTheorem 1.1. Foranygivenpositiveconstantv >0,byLemma 3.1,thereexists asupportfunctionH ∈ Sv suchthatMv= infyKHJ[H(x)−y·x]. Fromtheproofsof Corollary5.4andLemmas5.5–5.6in[9],oneseesthatthemaximizerH isageneralized solutionto

det(2H+HI)(x) =λf(x/H)

Hq ∀x∈Sn, where λistheLagrangemultiplier.

Whenq∈[n+ 1,n+ 2),oneeasily verifiesthatH ispositive.ForifinfH = 0,then J[H]=, whichisincontradiction with (3.5).Henceby [7], H is strictly convexand C1,γ smooth,forsomeγ∈(0,1).ThiscompletestheproofofTheorem 1.1. 2

(10)

Weremarkthatiffurthermoref ∈C1(Rn+1),thenby[6,29], wehaveH ∈C2,γ(Sn) foranyγ∈(0,1).

4. Aprioriestimates inthe criticalcase

Inthis sectionwe usethe necessary condition(2.7)and ablow-up analysis toprove theaprioriestimates(1.7)inTheorem 1.2.

LetAk∈SL(n+ 1) beasequenceofdiagonalmatrices,

Ak = diag (s1,k,· · ·, sn+1,k), (4.1) where s1,k ≥ · · · ≥ sn+1,k > 0 and s1,k + and sn+1,k 0 as k +. We successivelydefine integersl1,l2,· · · asfollows:

l1:= max

j

j : lim

k sj,k= +

, li:= max

j

j: lim

k

sj,k sli−1,k

= +

fori= 2,3,· · ·.

(4.2)

By choosing a subsequence we may assume all the limits exist or equal infinity. The procedurein(4.2)mustendinfinitesteps,say,atstepm.Thenwe have

1≤lm<· · ·<· · ·< l1≤n < n+ 1.

Lemma 4.1. Assume that ϕk, ψk are twosequences of uniformly bounded functions on Sn,converging uniformly tofunctions ϕ,ψ ask→+∞.Assume that ϕ∈C1(Sn) and ψ isapositiveconstant.Consider thefollowingintegral

Λk :=

Sn

ϕk(x)ζ(ψk(x)Akx) 1

|Akx|α, (4.3)

whereα >0isaconstant,andζ∈C(Rn+1)isa boundedfunctionsatisfying (a) ζ(y)=O(|y|α) asy 0,

(b) ζ(y)=ζ+o(1) asy→ ∞.

Thenask→+∞,we havethefollowingestimates.

(i) Whenα > l1,

Λk= 1

s1,k· · ·sl1,k

⎝ψαl1

Sn−l1

ϕ(0, v)dσSn−l1

u∈Rl1

ζ(u, ψN v)

|(u, ψN v)|αdu+o(1)

,

(4.4) whereN = limk→∞diag (sl1+1,k,· · ·, sn,k,0) (weallow allthelimits tobe zero).

(11)

(ii) When α=l1,

Λk= Clogsl1,k

s1,k· · ·sl1,k

⎝ζ

Sn−l1

ϕ(0, v)dσSn−l1 +o(1)

. (4.5)

(iii) When li< α < li1 fori= 2,· · ·,m,

Λk= C

s1,k· · ·sli,k·sα−ll i

i−1,k

⎝ζ

Sn−li

ϕ(0, v)

|N v|α−liSn−li+o(1)

, (4.6)

where N = limk→∞diag ssli+1,k

li−1,k,ssli+2,k

li−1,k,· · ·,sli−1−1,ks

li−1,k ,ssli−1,k

li−1,k,0,· · ·,0

isa matrix of ordern+ 1−li.

(iv) When α=li fori= 2,· · ·,m,

Λk =Clog(sli,k/sli−1,k) s1,k· · ·sli,k

⎝ζ

Sn−li

ϕ(0, v)dσSn−li +o(1)

. (4.7)

(v) When α < lm,

Λk= 1 sαl

m,k

⎝ζ

Sn

ϕ(x)

|Ax˜ |αSn+o(1)

, (4.8)

where A˜ = limk→∞diag ss1,k

lm,k,ss2,k

lm,k,· · ·,slm−1,ks

lm,k ,sslm,k

lm,k,0,· · ·,0

is a matrix of order n+ 1.

In theabove,C isa positiveconstant.

Proof. Weprovethislemma casebycase.

Case(i):α > l1.Forconvenience, wedenotel:=l1,x= (u,v) and Ak =

Mk 0 0 Nk

, (4.9)

where

u= (x1,· · ·, xl), v= (xl+1,· · ·, xn+1), (4.10) and Mk andNk arediagonalmatricesoforder land n+ 1−l,respectively.Denote

(12)

Sn ={x= (u, v)∈Sn |1/2≤ |u| ≤1}. (4.11) Bythecoareaformula,

Sn

1

|Mku|α =

1/2≤|u|≤1

du ρ(u)

|v|=ρ(u)

1

|Mku|α

=ωnl

1/2≤|u|≤1

1

|Mku|αρ(u)n−l−1du,

(4.12)

whereρ(u)=

1− |u|2.Wehave

1/2≤|u|≤1

1

|Mku|αρ(u)n−l−1du= 1

1 2

ρ(r)n−l−1dr

|u|=r

1

|Mku|α

= 1

1 2

rl−α−1ρ(r)n−l−1dr

|u|=1

1

|Mku|α

=Cl,α

Sl−1

1

|Mku|αdσ,

whereCl,α isapositiveconstantdepending onlyonn, landα.By[18,Lemma3.1],

Sl−1

1

|Mku|α = 1 detMk

Sl−1

Mk1uαldσ.

Hencefrom (4.12)weobtain

Sn

1

|Mku|α =ωnlCl,α

detMk

Sl−1

Mk−1uα−ldσ. (4.13)

Whenα−l >0,thereexist positiveconstantC˜ dependingonlyonlandα,suchthat

C˜−1Mk−1uαl u1

s1,k

α−l+· · ·+ ul

sl,k

α−l≤C˜Mk−1uαl. Henceby(4.13),

(13)

Sn

1

|Mku|α = Ck detMk

1

sα1,kl +· · ·+ 1 sαl,kl

= Ck

detMk

trMk−1α−l

,

(4.14)

where Ck isapositiveconstantindependentofMk,andC˜1 ωnClkCl,α ≤C.˜ Now wecomputeΛk.Bythecoareaformula,wehave

Ik:=

Sn\Sn

ϕk(x)ζ(ψk(x)Akx) 1

|Akx|α

=

|u|<1/2

du ρ(u)

|v|=ρ(u)

ϕk(x)ζ(ψk(x)Akx) 1

|Akx|αdσ.

Letv=ρ(u)˜v.Wehave

Ik =

|u|<1/2

ρn−l−1(u)du

|v˜|=1

ϕk(x)ζ(ψk(x)Akx) 1

|Akx|α

=

v|=1

|u|<1/2

ϕk(x)ζ(ψk(x)Akx) 1

|Akx|αρn−l−1(u)du

=:

v|=1

Φkv)dσ.

(4.15)

Letu=Mk1u.˜ Then

Φkv) = 1 detMk

|Mk1u˜|<1/2

ϕk(x)ζ(ψk(x)(˜u, Nkv)) 1

|u, N˜ kv|αρn−l−1(u)d˜u,

(4.16)

where |u, N˜ kv|isanabbreviationof|u, Nkv)|.Therefore

|detMk·Φkv)| ≤C

|Mk−1u˜|<1/2

k(x)(˜u, Nkv))| 1

|u, N˜ kv|αd˜u

≤C

u∈R˜ l

k(x)(˜u, Nkv))| 1

|u, N˜ kv|αd˜u,

which is integrable by our assumptions (a), (b) and α > l. Applying the dominated convergence theoremto(4.16), weobtain,ask→+,

(14)

Φkv) = 1 detMk

u∈R˜ l

ϕ(0,v)ζ˜ (ψ·u, Nv))˜ 1

|u, N˜ v˜|αd˜u+o(1)

,

whereN := limkNk.Inserting theaboveformulainto(4.15),weobtain

Ik = 1 detMk

⎜⎝

v|=1

ϕ(0,v)dσ(˜˜ v)

˜ u∈Rl

ζ·u, Nv))˜ 1

|u, N˜ v˜|αd˜u+o(1)

⎟⎠. (4.17)

Notethat

|Λk−Ik| ≤C

Sn

1

|Mku|α

C

detMk

trMk1αl

= o(1) detMk

. Hencefrom (4.17),

Λk = 1 detMk

⎜⎝

|˜v|=1

ϕ(0,v)dσ(˜˜ v)

u∈R˜ l

ζ·u, Nv))˜

|u, N˜ v˜|α d˜u+o(1)

⎟⎠

= 1

detMk

⎜⎝ψα−l

|v˜|=1

ϕ(0,˜v)dσ(˜v)

˜ u∈Rl

ζu, ψNv)˜

|u, ψN˜ ˜v|αd˜u+o(1)

⎟⎠.

Weobtain(4.4).

Case(ii):α=l1.Forconvenience,wedenoteagainl:=l1,andusethesamenotations in(4.10) and(4.9).

BeforecomputingΛk,weestimateanintegralfirst. Denote

Tk :={x= (u, v)∈Sn | |u|<1/2,|Mku| ≥sl,k/2}. (4.18) Bythecoareaformula,similarly to(4.12),wehave

Tk

1

|Mku|α =ωnl

|u|<1/2,|Mku|≥sl,k/2

1

|Mku|αρ(u)n−l−1du

=n−l

|u|<1/2,|Mku|≥sl,k/2

1

|Mku|αdu

(4.19)

foraconstantC∈(1/2n,2).Let

u:=sl,kMk1u.˜ (4.20)

(15)

Then

Tk

1

|Mku|α = nl

detMk·sα−ll,k

|sl,kMk−1˜u|<1/2,|u˜|≥1/2

1

|u˜|αd˜u. (4.21)

Observing that sl,kMk−1 is a diagonal matrix whose diagonal entries are in ascending order andthelastoneisequalto 1,wehave

|sl,kMk−1u|<1/2,˜ u|≥1/2

1

|u˜|αd˜u≤

u∈R˜ l−1×(−1/2,1/2),u|≥1/2

1

|u˜|αd˜u

<+∞,

where thelast inequalityholdswhenα≥l.(Althoughinthiscaseα=l,wededucethe following (4.22)and (4.27)forα≥l,whichwillbe usedincase(iii).) Thus thereexists apositiveconstantC dependingonlyonnandl,suchthat

Tk

1

|Mku|α C

detMk·sα−ll,k . (4.22) To estimateΛk, withoutloss ofgenerality,weassumethat

sl,k>2, sl+1,k 1, ∀k≥1.

Denote

Fk :={x= (u, v)∈Sn | |Mku| ≥1}, (4.23) Gk:={x= (u, v)∈Sn | |Mku|< sl,k/2}. (4.24) Then Fk∪Gk =Sn,and

|u|<1/2 ∀x= (u, v)∈Gk, (4.25)

Sn\Gk=Sn∪Tk. (4.26)

By(4.14)and (4.22)andsinceα≥l,there existsapositiveconstantCdependingonly onn,l andα,suchthat

Sn\Gk

1

|Mku|α C

detMk·sα−ll,k . (4.27) Observethat

|Akx| ≤√

2|Mku|, ∀x= (u, v)∈Fk. (4.28)

(16)

Similarlyto(4.19),we have

|Sn\Fk|=ωnl

|Mku|<1

ρn−l−1(u)du

=n−l

|Mku|<1

du (4.29)

= C

detMk. SinceFk∪Gk =Sn,wecanwriteΛk as

Λk=

⎜⎝

Sn\Fk

+

FkGk

+

Sn\Gk

⎟⎠ϕk(x)ζ(ψk(x)Akx) 1

|Akx|α

=:Ik+IIk+IIIk.

(4.30)

Notingthattheintegrandisboundedbyourassumptions(a)and(b),weseefrom(4.29) that

|Ik| ≤C

Sn\Fk

Sn C detMk

.

By(4.27) wealsohave

|IIIk| ≤C

Sn\Gk

1

|Mku|α C detMk

.

Therefore(4.30)canbewrittenas

Λk =IIk+ O(1)

detMk ask→+∞. (4.31)

ToestimateIIk,firstcomputingas in(4.19),(4.20)and(4.21),wehave

Fk∩Gk

1

|Mku|α

Fk∩Gk

1

|Mku|l

= nl

detMk

1/sl,k≤|u˜|<1/2

1

|u˜|ld˜u

(17)

= n−lωl−1 detMk

1/2 1/sl,k

1

rdr (4.32)

= nlωl1

detMk

log sl,k

2

= (C+o(1))logsl,k

detMk, as k→+,where C isapositiveconstantindependentofk.

Weclaimthatforanyboundedfunctionη∈C(Rn+1) satisfying

ylim→∞η(y) = 0, (4.33)

and anypositiveconstantλk1,

Fk∩Gk

ηk(x)λkAkx) 1

|Akx|α =o(1)logsl,k

detMk, as k→+∞. (4.34) Infact,denote

q(r) := sup

|y|≥r|η(y)| r∈[0,+).

Thenqisboundedandmonotonicallydecreasing.By(4.33)itsatisfieslimr+q(r)= 0.

Observing that

Fk∩Gk

k(x)λkAkx)| 1

|Akx|α

Fk∩Gk

q(k(x)λkAkx|) 1

|Akx|α

Fk∩Gk

q ψ

2|Akx| 1

|Akx|α

Fk∩Gk

q(|Mku|) 1

|Mku|α,

(4.35)

where withoutloss of generality, we haveassumed thatψ 2.Again computing as in (4.19),(4.20)and (4.21),wehave

Fk∩Gk

q(|Mku|) 1

|Mku|α

Fk∩Gk

q(|Mku|) 1

|Mku|l

= nl

detMk

1/sl,k≤|u˜|<1/2

q(|sl,ku˜|)

|u˜|l d˜u (4.36)

(18)

= n−lωl−1 detMk

1/2 1/sl,k

q(sl,kt) t dt

= n−lωl−1 detMk

sl,k/2 1

q(r) r dr.

Sinceq(t)→0 ast→ ∞,itis easytoseethat

sl,k/2 1

q(r)

r dr=o(1) logsl,k ask→ ∞.Hence(4.36)becomes

FkGk

q(|Mku|) 1

|Mku|α =o(1)logsl,k detMk

,

whichtogetherwith(4.35)implies(4.34).

WecannowcomputeIIk.Write

ζ(y) =ζ+η(y).

Thenη satisfies(4.33).Byourassumptions,

IIk =

Fk∩Gk

(ϕ(x) +o(1)) (ζ+ηk(x)Akx)) 1

|Akx|α

=ζ

Fk∩Gk

ϕ(x)

|Akx|α +

Fk∩Gk

ϕ(x)ηk(x)Akx)

|Akx|α +o(1)

Fk∩Gk

1

|Akx|α

=ζ

Fk∩Gk

ϕ(x)

|Akx|α +o(1)logsl,k

detMk,

(4.37)

where(4.32)and(4.34)areusedinthelastequality.Furthermore,bythecoareaformula wehave

FkGk

ϕ(x)

|Akx|α =

1≤|Mku|<sl,k/2

du ρ(u)

|v|=ρ(u)

ϕ(x)

|Akx|α

=

1≤|Mku|<sl,k/2

ρ(u)n−l−1du

|˜v|=1

ϕ(u, ρ(u)˜v)

|Akx|α dσ.

(4.38)

Références

Documents relatifs

In turn, the decomposition of the solution into a regular and a singular part, together with interpolation estimates (Theorem 3.1), leads to establishing a priori error estimates

To study the well definiteness of the Fr´echet mean on a manifold, two facts must be taken into account: non uniqueness of geodesics from one point to another (existence of a cut

Existence, blow-up and exponential decay estimates for a nonlinear wave equation with boundary conditions of two-point type... Existence, blow-up and exponential decay estimates for

[4] Caffarelli L.A., Nirenberg L., Spruck J., The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math. J.,

In this paper we derive several a priori estimates for classical solutions of certain problems in two-dimensional compressible nonlinear elasticity.. We consider a

- We prove the existence of a minimizer for a multidimen- sional variational problem related to the Mumford-Shah approach to computer vision.. Key words :

We show that if a positive Radon measure is suitably dominated by the Monge-Amp`ere capacity, then it belongs to the range of the Monge-Amp`ere op- erator on some class E χ ( X,

Indeed, Aleksandrov and Aeppli have shown uniqueness theorems for the higher mean curvatures and various other curvature realization problems.. In Section 1 we