• Aucun résultat trouvé

Nanomedicine as a potent strategy in melanoma tumor microenvironment

N/A
N/A
Protected

Academic year: 2022

Partager "Nanomedicine as a potent strategy in melanoma tumor microenvironment"

Copied!
23
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Pharmacological Research

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / y p h r s

Review

Nanomedicine as a potent strategy in melanoma tumor microenvironment

Vincent Pautu

a,1

, Daniela Leonetti

b,1

, Elise Lepeltier

a

, Nicolas Clere

a

, Catherine Passirani

a,∗

aMINT,UNIVAngers,INSERM,CNRS,UniversitéBretagneLoire,IBS-CHU,4rueLarrey,F-49933Angers,France

bCRCINA,UMRINSERM1232,CNRSERL-UniversityofNantes,France

a r t i c l e i n f o

Articlehistory:

Received5January2017

Receivedinrevisedform14February2017 Accepted14February2017

Availableonlinexxx

Keywords:

Melanoma Nanoparticles

Tumormicroenvironment Drugresistance Nanotherapies Targeting Formulation Nanotheranostics Drugdelivery Metastasis

a b s t r a c t

Melanomaoriginatedfrommelanocytesisthemostaggressivetypeofskincancer.Despiteconsiderable progressesinclinicaltreatmentwiththediscoveryofBRAForMEKinhibitorsandmonoclonalantibodies, thedurabilityofresponsetotreatmentisoftenlimitedtothedevelopmentofacquiredresistanceandsys- temictoxicity.Thelimitedsuccessofconventionaltreatmenthighlightstheimportanceofunderstanding theroleofmelanomatumormicroenvironmentintumordevelopementanddrugresistance.

Nanoparticlesrepresentapromisingstrategyforthedevelopmentofnewcancertreatmentsableto improvethebioavailabilityofdrugsandincreasetheirpenetrationbytargetingspecificallytumorscells and/ortumorenvironment.Inthisreview,wewilldiscussthemaininfluenceoftumormicroenvironment inmelanomagrowthandtreatmentoutcome.Furthermore,thirdgenerationloadednanotechnologies representanexcitingtoolfordetection,treatment,andescapefrompossiblemechanismofresistance mediatedbytumormicroenvironment,andwillbehighlightedinthisreview.

©2017ElsevierLtd.Allrightsreserved.

Contents

1. Introduction...00

2. Nanocarriers:maincharacteristics...00

2.1. Surfacecharacteristics...00

2.1.1. Surfacecharge...00

2.1.2. Coating...00

2.2. Size...00

2.2.1. Escapetorenalandhepaticclearance...00

2.2.2. Cellinternalization...00

2.3. Shape...00

2.4. Encapsulationproperties...00

Abbreviations: ␣-SMA,␣-smoothmuscleactin;MCP1,monocytechemotacticprotein1;FAP,fibroblastactivationprotein;PDGF,platelet-derivedgrowthfactor;HGF, hepatocytegrowthfactor;CAPS,cancerassociateprotease;PLGA,poly(lactic-co-glycolicacid);ESMSVs,enzyme-stimulatedmultistagevectors;NF-␬B,nuclearfactor-␬

B;NHE,Na+/H+exchanger;MCTs,monocarboxylatetransporters;pHe,extracellularpH;EMT,epithelial–mesenchymaltransition;pGP,p-glycoprotein;PEO,poly(ethylene oxide);P2VP,poly(2-vinylpyridine);PICs,polyioncomplexes;HH,histidineconjugate;PH,polyethylenimine-histidineconjugate;HD-DOX,doxorubicinloadedmicelles;

ODN,decoyoligonucleotide;PEI,polyethylenimine;MDSC,myeloid-derivedsuppressorcells;Treg,regulatoryTcells;NKcells,naturalkillercells;iDC,immaturedendritic cells;TAF,activatedfibroblaststromalcells;ARF,alternative-readingframegene;PD-L,ProgrammedCellDeathLigand;CpG-ODN,CpG-oligonucleotides;DR5,deathreceptors 5;MC1R,melanocortin-1receptor;NLG,N-laurylglucosamine.

Correspondingauthorat:INSERMU1066,CNRS6021IBSCHU,4RueLarrey,49933AngersCedex9,France.

E-mailaddress:catherine.passirani@univ-angers.fr(C.Passirani).

1 Theseauthorscontributeequally.

http://dx.doi.org/10.1016/j.phrs.2017.02.014 1043-6618/©2017ElsevierLtd.Allrightsreserved.

(2)

3. Tumormicroenvironmentastargetofnanoparticles...00

3.1. Vasculature...00

3.2. NanoparticlesandEPReffect-passivetargeting...00

3.3. Fibroblastsandextracellularmatrix(ECM)...00

3.4. NanoparticlesandECMproteins...00

3.5. Acidificationoftumormicroenvironnement...00

3.6. pH-sensitivenanocarriers...00

3.6.1. Protonablegroups...00

3.6.2. Redox-responsivesystem...00

3.6.3. pH-sensitivepeptide...00

4. Immunecells...00

4.1. Nanoparticlesandmonoclonalantibodies...00

5. Nanoparticlesandtumorcell-activetargeting...00

5.1. Monoclonalantibodies...00

5.2. Peptides...00

5.3. Others...00

6. Conclusionsandperspectives...00

Conflictofinterest...00

Acknowledgements ... 00

References...00

1. Introduction

Melanomaisaheterogeneousdiseasewhichrepresentsoneof themostdeadlycancersinitsmetastaticform.Overthepastyears, theincidenceofmelanomahasrisenfasterindevelopedcountries thananyothercancertype,particularlyinthepopulationover50 yearsold.On aglobalscale,malignantmelanomawasthe16th and15thmostcommonlydiagnosedcancerinmalesandfemales respectively[1,2].

Despiteconsiderableprogressesinclinicaltreatmentswithin recentyears,overallprognosisforadvanced melanomaremains poor. Consequently, the development of targeted treatments appearstobeessentialtoimprovemelanomasurvival.Melanoma beginsinthelowestlayerof theepidermisandoriginatesfrom melanocytes,acelltypeinvolvedinmelaninapigmentproduction.

Themelanocytelineageisderivedfromtheneuralcrest.Afterdif- ferentiation,progenitorcells, calledmelanoblasts,migratefrom theneuralcrest toward theepidermiswhere theyare stopped upon contact with keratinocytes. After differentiation, human melanocytes are specifically localized to the basement mem- braneandcansurvivewithintheupperepidermallayersonlyif transformedintomelanomacells[3].Melanomaresultsfromaneo- plastic transformation of pigment-producingmelanocytes, with cutaneousneoplasms of stratifiedepithelium.Most melanomas haveacutaneousorigin(>90%),particularlysun-exposedsiteson thelimbs,trunk,andface.However,itcanalsooccurinvarious extracutaneoussiteswherepigmentcells arepresentincluding, mucousmembranesofthesinusesandoropharynx,esophagus,rec- tum,vagina,ocularmelanomasandrarecasesofmelanomainsome internalorgans[4,5].

Most patients are diagnosed with localized melanoma and can be early treated successfully by a wide local excision fol- lowedbylymphnodemanagement[6];nonetheless,theprognosis ofpatientswithadvancedstagemelanomais poorwithhalfof patientsdyingwithin8–10monthsofdiagnosis[7,8].

The complexity of the treatment of advanced or metastatic melanomaisrelated totheevolution and heterogeneityof this canceraswellasthedevelopmentoftherapy resistancetrough anumberofmolecularand cellularmechanisms,includinghigh mutationrate,alterationofmembranedrugtransporters,increased DNArepairandevasionofapoptosis[9,10].

However,since2011,thetherapeuticlandscapeofmelanoma hasbeenrevolutionized withtheapproval of two newdistinct approaches.

Ontheonehand,thedevelopmentsinwhole-genomesequenc- inghaveallowedtoidentifyanumberofsomaticgeneticalterations inB-Raf,NRASandRAC1genes,germlinemutationsassociatedwith familialmelanomasuchasCDKN2A,CDK4genes,BRCA1-associated protein 1 (BAP1) and microphthalmia-associated transcription factor (MITF) [11], with a critical role in driving tumorigene- sis.Theidentificationofthesesomaticgeneticalterations,which contributetomelanocytetransformationsby modulatingMAPK pathway,hasledtothedevelopmentofmoleculartargetedtreat- mentapproaches.Thesenewtherapies,whicharebasedontheuse ofmultiplepotentkinaseinhibitorstosuppresstheMAPKpath- waydownstreamsuchasvemurafenib(aselectiveandreversible V600BRAFkinaseinhibitor),orcobimetinib(aselectiveMEK1/2 inhibitor),havetranslatedintoasubstantialimprovementinthe outcomesofpatientswithmetastaticmelanoma[12–14].How- ever,targetedmonotherapyapproachaswellasthecombination oftargetedtherapiesasvemurafenibandcobimetinib,haveledto cutaneoustoxicities,andthedurabilityofresponsetotreatmentis oftenlimitedtothedevelopmentofacquiredresistance[15,16].On theotherhand,theadvancementsmadeintargetedtherapyhave alsoinvolveda significantevolutioninthefieldofimmunobiol- ogyandresultantimmunotherapyagainstmelanoma.Asignificant improvementofthemedianoverallsurvival(OS)hasbeenobserved aftertreatmentwithipilimumab,amonoclonalantibodyagainst cytotoxicT-lymphocyteantigen-4(CTLA-4),whichisabletoexploit thenatural ability of the immune systemto eradicateprimary cancercells[17].Despitethepositiveimpactonthelong-termsur- vival,theresponserateforipilimumabinadvancedmelanomais onlyaround15%,andlong-termdurabilityofresponseoccursin aminorityofpatients.Furthermore,thetreatmentofipilimumab isassociatedwithinflammatoryadversereactionsresultingfrom increasedorexcessiveimmuneactivitywhichcanaffectthegas- trointestinal,liver,skin,nervous,andendocrinesystems[18].On thebasisofstudiessuggestingtheabilityofkinaseinhibitorsto modulatetumor-associatedimmuneresponse[19]andgiventhe highresponseratesandthelong-termdurabilityofresponsenoted respectivelyinpatientstreatedwithacombinedtargetedtherapy andipilimumab,combinationstrategies,suchasvemurafenibplus ipilimumab,havealsobeenstudiedwithoutsuccess[20].Further- more,varioustrialsdesignedtoassessthesafetyandefficacyof newcombinationsoftherapiesarecurrentlyinprogress[21].

Thelimitedsuccessusingconventionaltherapeuticshighlights theimportanceofunderstandingtheroleofthetumormicroenvi- ronmentanditsprecisecontributiontocarcinogenesis.Inrecent

(3)

years, severalstudieshave supported theidea thatstroma can beinfluencedand promotetumorgrowthand theformationof tumormetastases[22–24].Tumormicroenvironmentdoesnotonly contributetotumorgrowth,invasion,andmetastasis,butininter- actingwithtumors,caninduceimportantmechanismsunderlying drug resistance[25,26]. The environment-mediated drug resis- tanceisinducedbysignalingeventsthatareinitiatedbysoluble factorspresentinthetumormicroenvironmentsuchascytokines, chemokinesandgrowthfactorssecretedbyfibroblast-liketumor stromaorbytumor-associatedmacrophages(TAMs).Theadhesion oftumor cellintegrins tostromalfibroblasts ortocomponents of the extracellular matrix (ECM), such as fibronectin, laminin andcollagen[27,28]canalsobepartofthesefactors.Moreover, microenvironmentcouldaffecttumorvasculature,whichservesas abarriertooptimaldrugdelivery[29].Thus,microenvironment constituentscanbekeyregulatorsofthesensitivitytocancercell targetedtherapy.

Theuseofnanomedicinesrepresentsapromisingstrategyfor thedevelopmentofnewcancertreatments.Nanotechnologyrefers toobjectssizedundermicrometerorwithonedimensionunder 100nm. Duetotheirnanoscalesize,nanocarriersbring numer- ousadvantages.Theycanprotectsensitivetherapeuticagentsfrom degradation,improvethebioavailability,enhancetheefficacyand increasethetolerabilityofdrugs.Nanocarrierscantargetspecifi- callytumorcellsandtumortissuetoenhancetheiraccumulationin tumorenvironementandincreasetheirpenetrationincells.Finally, nanocarrierscandeliverawiderangeofagents,suchaschemother- apeuticsandimagingcontrastagents[30].

In this review, after the description of nanocarrier charac- teristics and properties, the nanoparticle-based strategies for melanomatreatmentwillbedeveloped. Theinvolvmentof dif- ferent constituents of tumor microenvironment in melanoma developpementaswellastheirinfluenceintreatmentoutcome willbediscussed.Thirdgenerationnanotechnologies,bydirectly targetingtumorcellsorusingstimulusprovidedbytumormicroen- vironment,isapromisingapproachfordetection,treatment,and escape frommechanismof resistancein melanomaandwillbe highlighted.

2. Nanocarriers:maincharacteristics

In the last decades, advancement in material and nano- technology science has allowed to develop a large variety of nanomedicines.Nowadays,threegenerationsofnanomedicinecan bedescribed.

First generation of nanomedicine, mainly nanoparticles and liposomes,targetsthereticuloendothelialsystem(RES)andisused todeliverdrugslocally intosomeorganssuchastheliver.Sec- ondgenerationofnanomedicineisusuallycoatedwithastealth layer,topreventdegradationbytheRESandthusincreasethecir- culationtimeinbloodstreamleadingtoanincreasedaccumulation intumorsitesthroughEnhancedPermeablityandRetention(EPR) effect.Thirdgenerationconsistsinaddingfunctionalities,likelig- andsortriggersinordertotargetspecificallytumortissuesand/or tumorenvironment.Ligandgrafted tonanocarriers,canbindto specificsurfacemarkersexpressedontargetcells,orexpressedin tumorenvironment,leadingtoaprecisetargetingofnanocarri- ers.Allthesecharacteristicshaveanimpactonbiodistributionand canofferinterestingstrategiesfortheuseofnanomedicineinsolid tumors,particularlyinmelanoma(Table1).

SincetheclinicalapproveofDoxil® in1995,apegylatedlipo- some,drug-loadednanocarriersrepresentapromisingstrategyto overcomeside effectsand toincreasethetherapeuticresponse.

Doxil® isananosystemencapsulatingdoxorubicin,awidelyused chemotherapeutic agent in many types of cancers as bladder,

Fig.1.Numberofpublicationsofnanomedicinesinthecontextofmelanomaper year.PubMedwww.ncbi.nlm.nih.gov/pubmed.

breast, lung, stomach,and ovarian cancer. However,efficacyof doxorubicinislimitedduetoitshighcardiotoxicity[63].Doxil® reducedsignificantlythiscardiotoxicitycomparedtothefreedrug [64].

Since the last 20 years, number of studies covering nanomedicines as a potential therapy in cancer has consider- ably increased, especially in melanoma over the last 5 years (Fig.1).Organicnanomedicines,suchasmicelles,liposomesand lipidnanoparticles,havebeenlargelystudiedascarriersincancer therapy. In addition, inorganic nanomedicines, including metal nanoparticles,quantumdotsandmagneticnanoparticlesoffered promisingresultsincancertreatment(Fig.2).Theseobjectscan arbourvariousphysicalandchemicalpropertiesassurface,size, shapeandencapsulationproperties.Thesecharacteristicsarekey factorsfortheformulationofnanomedicinesduetotheirinfluence onbioavailability.

2.1. Surfacecharacteristics

Surfacecharacteristicsofnanocarriersplayanimportantroleon thebiodistributionandtimeresidenceinblood.Themainobsta- cle to a long-time circulation is theclearance of nanoparticles bytheRES. Thissystemcorrespondstothephagocytic cells,as macrophages. Itsmaingoal istoprotect thebodyfrom foreign objectslikesyntheticparticles.

Afterintravenousadministration,adsorptionofplasmaproteins named opsonins, suchas antibodiesand complement proteins, occursatthenanoparticlesurface.Thisassociationwillleadtothe eliminationofnanocarriersthroughphagocytosisbymacrophages.

Throughthismechanism,ithasbeenwidelyshowedthatnanopar- ticles are rapidly cleared few minutes after injection [65], if nanoparticles can not prevent opsonisation. Therefore, surface characteristicsmodificationofnanocarriersisawidelyusedstrat- egy to prevent opsonisation and extend theresidence time in bloodstream(Table1).

2.1.1. Surfacecharge

Thesurfacechargeofnanocarriersrepresentscriticalparameter actinginthehalflifecirculationtimeofnanocarriersandtheircell internalization.Ithasbeenshownthatplasmaticproteins(egalbu- min)canaggregatetopositivelychargedcomponentsduetotheir negativecharges.Thisphenomenonknownasproteincorona[66], leadstoformlargecomplexes,abletoberecognizedbytheimmune system,resultingin theireliminationandtherefore adecreased therapeuticeffectofthenanomedicines.Itispossibletomodify thechargeofthenano-objectbymodifyingitssurface(Table2).

For instance, gold nanoparticles,withcore diameteraround 2nm, were coated with tetraethylene glycol containing vari-

(4)

Table1

Maincharacteristicsofnanomedicines.

Characteristics Strategies Effect Ref.

Passive Size Escapedfromrenal,hepaticandRES*

clearance

Prolongedcirculation [31–33]

EPR**effect Increasedtumoraccumulation [34,35]

Coating ReducedRESclearance Prolongedcirculation [36]

Surfacecharge [37,38]

Encapsulation properties

Encapsulatedpoorlysolubledrugs Increasedtherapeutic response

[39–43]

Protecteddrugfromdegradation [44]

Active Redoxcapabilities TumorpHe***:disassemblyofnanocarriers, drugrelease

Drugreleaseintumorenvironment [45,46]

TumorpHe:removedpolymerprotection Increasedcellularuptake [47]

Protonation capabilities

TumorpHe:surfacechargeandsize modification

Increasedcellularuptake [48–51]

TumorpHe:disassemblyofnanocarriers Drugreleaseintumorenvironment [52–54]

Enzymesensitivity TumorECM****composition:disassembly ofnanocarriers;releasednanoparticles frommicroplatform

Drug/nanocarriersreleasedin tumorenvironment

[55,56]

TumorECMcomposition:removed polymerprotection

Increasedcellularuptake [57]

Activetargeting (ligand)

Targetedspecificmoleculesorligands overexpressedontumorcells

Increasedcellularuptake [58–62]

* RES:ReticuloEndothelialSystem.

** EPR:EnhancedPermeabilityandRetention.

***pHe:extracellularpH.

****ECM:ExtraCellularMatrix.

Fig.2. Varioustypesandshapesofnanoparticles:Organicnanomedicine,suchasliposome,micelleandlipidnanoparticle.Inorganicnanomedicines,includingmetal nanoparticles,quantumdots,magneticnanoparticles,silicananoparticle,calciumphosphatenanoparticleandcarbonnanotube.

ous chemical functions in order to provide different particle charges (alcohol: −1.1mV, ammonium ion: +24,4mV and car- boxylicacid: −37,9mV).In vivostudies onxenografted-ovarian bearingmiceshowedtheimpactoftheseparticlechargesoncell

uptakeandbiodistribution.Slightlynegativegoldnanoparticles(- 1.1mV)showedahighertumoruptakeandanincreasedcirculation timecomparedtohighlynegativeorpositivesurfaces(-37.9mV, +24,4mV) after intravenous or intraperitoneal injections [37].

(5)

Table2

Sizeandsurfacechargeofvariousnanoparticlesinfunctionoftheircomposition.

Nanoparticles Composition Diameter(nm) Charge(mV) Ref

Lipidnanocapsules(LNC) PTX-loadedLNC 55.4±1.5 −6.5±1.8 [40]

PTX-loadedLNC-SDS 53.1±1.5 −22.9±1.2

PTX-loadedCS-LNC 69.9±3.4 +30.8±5.9

SolidLipidNanoparticles(SLN) ASP-loadedSLN 361±78.6 −10.6±4.21 [67]

ASP-loadedCS-SLN 430±51.1 +16.0±5.78

CUR-loadedSLN 400±58.3 −13.3±3.26

CUR-loadedCS-SLN 440±65.9 +17.0±4.69

Liposomes CL-DOX 116.8±8.2 −25.75±1.6 [68]

CH-DOX 118.9±6.4 −27.12±2.8

PEG-DOX 126.6±5.4 −13.6±4.5

PEtOz-DOX 128.5±4.6 −14.9±1.3

Micelles DSPE-b-PEG2k(90%)

DSPE-b-PEG3.5k-Tatp(1%)

64±1.31 5.1±1.42 [69]

DSPE-b-PEG2k(48%) DSPE-b-PEG3.5k-Tatp(1%) PGA5.6k-b-PLA1.8k(42%)

95±1.72 −12.6±1.95

DSPE-b-PEG2k(42%) DSPE-b-PEG3.5k-Tatp(1%) PGA12k-b-PLA6k(48%)

165±1.55 −25.2±1.74

Gold nanoparticles Au–tiopronin 2.7±0.9(Aucoresize) −16.79±1.94 [70]

Au–PEG–COOH −42.33±8.39

Au–myxoma −22.10±3.55

Au–PEG–myxoma −25.56±4.10

Au–cRGD −16.58±4.57

Au–PEG–cRGD −18.40±4.64

Abbreviations:LNC:lipidnanocapsules,SDS:Sodiumdodecylsulphate,PTXPaclitaxel,CS:chitosan,ASP:aspirin,CUR:curcumin,DOX:Doxorubicin,CL:Conventional Liposomes,CH:cholesterolhemisuccinatemodifiedliposomes,PEG:Polyethyleneglycol,PEtOX:Poly(2-ethyl-2-oxazoline),DSPE-b-PEG:1,2-Distearoyl-sn-glycero-3- phosphoethanolamine-b-poly(ethyleneglycol),Tatp:transactivatorTatpeptide,PGA:poly(L-glutamicacid),PLA:poly(D,L-lacticacid).

Neutralorslightlynegativechargednanoparticlescantherefore increasetheirbiodistributionbylimitingtheirRESrecognition.Xia andco-workers[38]observedthatmicellarnanoparticleswithsim- ilarparticlesizesbutvarioussurfacecharges,showedsignificant differencesinmacrophageuptakeandinorganaccumulation.Pos- itivelycharged(+18.5mV,+29.5mVand+37mV)micellesshowed, respectively,anuptakeinRAW264.7macrophages,by1.9folds, 3.5-folds and 5.9 folds higher, respectively, compared to neu- tralmicelles(+3.6mV).Oncontrary,theyobservedadecreaseof macrophageuptake withnegatively chargedmicelles(-26.9mV,

−17.5mV,−8.5mV). Biodistribution analysis in SKOV-3 human ovariancancerxenograftbearingnudemicealsoshowedinfluence ofthesechargesonbiodistributionprofile,24hafterintravenous injection.Neutralandnegativelychargedmicellesdemonstrated atumoruptakehigherthanpositivelychargedmicelles.Further- more,slightlynegativeandneutralmicellesshowedasignificant liveruptakecomparedtohighlycharged(positiveandnegative) micelles.Thesurfacechargeofnanocarrierscanimpactnotonly tumoraccumulationandbiodistribution,butalsotheirinternaliza- tionintumorcells.Researchersshowedinvitroandinvivothat positivelychargednanoparticlessuchasmicelles[71],quantum dots[72],liposomes[73],hydroxyapatitenanoparticles[74],have highercellularuptakecomparedtoneutralornegativelycharged nanoparticles, possibly due to electrostatic attraction between thepositivechargesofnanoparticlesandnegativechargesofthe cell membrane. A study demonstrated this electrostatic attrac- tion:positivelychargedgoldnanoparticlesshowedanincreased cellularuptakecomparedtonegativelyandneutralgoldnanopar- ticles.Inaddition,depolarizationofcellmembranewithKClledto reducetheuptakeofpositivelychargednanoparticles,confirming theimpactoftheelectrostaticinteractionsontheinternalization mechanism[75].

2.1.2. Coating

In order toreduce the blood clearance, nanocarriers canbe coated with hydrophilic polymer to provide stealth effect to nanoparticles.Polyethyleneoxide,alsocalledpolyethyleneglycol

(PEG)but differingfromthemonomerused,are repeatedunits ofethyleneoxide.Botharenon-ionichydrophilicpolymerswith stealthcapabilities[76],firstlyreportedbyAbuchowskietal.in 1977.Theyshowedanextendedbloodcirculationtime(morethan 50h)forenzyme(catalase)modifiedwithaPEG-5000comparedto unmodifiedenzyme(12h)[77].Whenphysicallyaddedorcova- lentlygrafted onnanocarriers,PEGforms a flexiblehydrophilic layeratthesurface,andthereforeprevents,viasterichindrance, adsorptionofopsonins.Poly(␧-caprolactone)(PCL)nanoparticles modifiedwithPEG,werefoundtoreduceinvitrotheopsonisation anddecreasedthecomplementactivationcleavagecomparetoPCL nanoparticles[36].Furthermore,inthesamepublication,biodis- tributionstudyinmiceofPCLandPEGmodifiedPCLnanoparticles showedarapidaccumulationofPCLnanoparticlesinthemononu- clearphagocytesystemcomparetoPEG-PCLnanoparticles.

ThisPEGprotectionhasbeenshowntobedependentof the PEGconformationat thesurfaceofnanoparticles:PEGcouldbe inbrushormushroomconformations[78],dependingofitscon- centrationatthenanoparticlesurface.Recentworksshowedthe impactofPEGstateonthebindingofhumanserumalbumin(HSA).

PEGgraftedlipidbilayersinmushroomconformationshowedbind- ingofhumanserumalbumin.Onthecontrary,PEGinbrushstate supressedthebindingofHSA[79].Pegylationofnanocarriersby providingprotectionagainstRES,canincreasethetimeresidence ofnanocarriersinplasmaandthereforeincreasetheirtherapeu- ticeffects.SurfacemodificationwithPEGisnowwidelyused,and numerouspegylatednanocarriersaretestedinclinicaltrialsand havebeenapprouved(Table3).

Surfacemodificationcanbeusedtoenhanceefficacyofdrugs containedinnanomedicine,bybringingforexamplestealthprop- erties compared tonon-modified nanocarriers. PEG hasshown its capability to provide protection to nanocarriers, but other polymershavebeenstudiedtobringotherpropertiessuchasa controlleddrugrelease:chitosan[85],poly(2-methyl-2-oxazoline (PMOX), polyvinylpyrrolidone (PVP), poly[N-(2-hydroxypropyl) methacrylamide] (HPMA), poly(N-acryloyl morpholine (PAcM), poly(N,N-dimethyl acrylamide) [86], (PDMA), poloxamer 188

(6)

Table3

MarketedPegylatednanocarriersandinclinicaltrials.

Name Type Drug Statut Indication Clinicaltrials

identifier/Reference IHL-305 Pegylatedliposome Irinotecan Phase-1 solidtumors,ovarian,breast,lung

cancer,bladder,headandneck squamous...

NCT00364143 [80,81]

Plm60-s Pegylatedliposome Mitoxantrone Phase-1 melanoma,squamouscellscarcinoma,

Non-Hodgkin’slymphoma,rectum cancer,pharynxcancer...

NCT02043756.[82]

Doxil® Pegylatedliposome Doxorubicine Approved ovariancancer

HIV-associatedKaposi’ssarcoma, multiplemyeloma

Onivyde® Pegylatedliposome Irinotecan Approved metastaticadenocarcinomaofthe pancreas

Promitil® pegylatedliposome Mitomycin-C Phase-1 recurrent,ormetastaticmalignant solidtumors

NCT01705002[83]

DCR-MYC Pegylatedlipid

nanoparticule

MYC-targeting siRNA

Phase-2 Phase-1

solidtumors;multiplemyeloma;

non-hodgkinslymphoma;pancreatic neuroendocrinetumors...

NCT02314052 NCT02110563

Genexol-PM® Polyethyleneglycol andpoly(D,L-lactic acid)micelle

Paclitaxel Phase-2

Phase-4

Bladder;ureter,ovarian,breastcancer, adenocarcinomaofthepancreas,head andnecksquamouscellcarcinoma

NCT01426126[84]

NCT02739633 NCT00912639 NCT00877253 NCT01689194

[87].Fluorescentprobe, antibodies[88],peptide[89],andother molecules[90,91],canalsobegraftedatthesurfaceofnanocarri- erstoincreasetheirtherapeuticefficacy.Thesewillbediscussedin thepart6.

2.2. Size

Before reaching tumor site, nanoparticles need to circulate throughthebloodstreamandcrosstheepithelialbarriers.Sizeof nanoparticlesisthereforeakeyparameterinfluencingthebiodis- tributionof nanocarriers.These last canbe designed ina large sizescale by changing theformulation process ortheir chemi- calcomposition. For example, a studyshowed theinfluence of LNCcompositionontheirsizedistribution.Byadjusting3compo- nentsofLNC(caprylicacidtriglyceride/water/PEG),particlesizes between20and95nmwereobtainedwithoutchangingtheprocess [92].

2.2.1. Escapetorenalandhepaticclearance

Sizeisanimportantfactorineliminationanddegradationof nanoparticles(Table1).Kidneysarecapabletorapidlyeliminate moleculesinthebloodplasmathroughglomerularcapillaryfenes- tration[93].Thesefenestrationsmeasuring4.5–5nmindiameter, canconducttorapidrenaleliminationofnano-objects[94].Renal clearancestudyofquantumdotsizingfrom4.36to8.35nmlabelled withTechnetium99m, showedvarious accumulationand blood half-lifeinfunctionoftheirsize.Renalclearanceandbodyretention ofquantumdot(excludingbladderandurethra)wasobservedto besizedependent.Fourhoursafteradministration,50%of5.5nm quantumdot,≈80%for4.36nmquantumdotand≈20%for8,35nm quantumdotwereexcretedinurine.Furthermore,quantumdots witha sizeupper8nmdidnotshowrenalfiltrationbutexhib- itedhighuptakeinliver,lungandspleen[31].Theresultsofthis studysuggestedthatnanoparticleslargerthan10nmcanprevent renalelimination.Designofnanomedicinescanconsiderthisphys- iologicalconstrainttoobtainalongcirculationtimebypreventing kidneysandliverfiltration.However,sizeofnanoparticlesshould notexceed200nm,duetosplenicfiltration:interendothelialslits inspleenare sizedfrom200to500nm[95],resultinginfiltra- tionofparticleslargerthan200nm.Furthermore,nanocarrierssize

playsa critical role in complementactivation [32,33].Different studiesshowedasizedependenteffectonthisresponse[78,96].

Forexample,astudyevaluatedthecomplementactivationby20, 50and100nmLNCinaCH50test.Thistestconsistsofmeasur- ingtheamountof serumabletolyse50%ofa fixednumberof sensitizedsheeperythrocytes.TocomparetheLNC,thecomple- ment consumption wasstudied in functionof the surface area of thenanoparticles.For the same surfacearea (3000cm2/mL), 20nmnanocapsulesshowedacomplementconsumptionof10%

(traducedbyanincreaseof10%ofserumamountneededtolyse 50%oferythrocytes),50nmand100nmLNCshowedaconsump- tion of15% and 20% respectively [97].Another study,revealed thatopsonisationofliposomeswasreducedforsmallerliposomes (200nm)comparedtolargerliposome(800nm)[32].Theseresults suggestthatsmallnanoparticleswereabletoescapecomplement activationandthereforeshowedalongercirculationtime,withan increaseoftheirtherapeuticseffects.

2.2.2. Cellinternalization

Nanocarrierscanpenetrateintocellcytoplasmthroughmultiple pathwaysasclathrin,caveolinmediatedendocytosis,micropinocy- tosis and phagocytosis [98,99] Rejman et al. investigated the size-dependent endocytosis pathway in non-phagocytic mouse melanoma B16F10 cells. They observed that clathrin mediated pathway had an upper size limit internalization of fluores- cent polystyrene microspheres (Fluoresbrite®). Internalization of nanospheres smaller than 200nm was found to involve a clathrinmediatedpathway.Thecellinternalizationofnanospheres largerthan 200nm(500nm)occurredvia a caveolae mediated mechanism [100]. However, size-dependent internalization of nanoparticlesisinfluencedbycelltypesandchemicalcomposition ofthenano-objects[101].Thedesignofnanocarrierscantherefore berealizedbytakingintoconsiderationthecellulartargettobuild efficientdrugdeliverysystemsandreducetheirpotentialtoxicity.

2.3. Shape

Recognitionofnanocarriersbycomplementsystemisdepen- dentonthesizeofnanocarriers.Smallerobjectsshowingahigh radiusofcurvature,leadtopreventrecognitionbycomplement

(7)

systembypreventingopsonisation[102].Shapeofnanocarrierscan thereforeplayaroleinthedistributionandcirculationofnanocar- riers[103,104].Duetothewidediversityofmaterialsandtechnics, nanocarrierscanexhibitalargevarietyofshapes(sphere,ellipse, disk,cone,filament,cube,rod).Adhesionand internalizationby macrophagesofvariousparticleswithdifferentshapeshavebeen studied.Polystyreneparticlesasspheres,oblateellipsoids,prolate ellipsoids weredesigned through stretchingmethods described byChampionandMitragotri[105].Resultsshowedthatparticles withlongestdimensions exhibitedhigher attachmenttendency tomacrophagescompared toparticleswithshorter dimensions [106,107].Internalizationofparticlesbymacrophagesshowedto bedependentofthetangentangleatthecontactpointbetween cellmembraneandparticle.Macrophagesattachedattheellipse extremity(wherethetangentangleisthemostelevated)inter- nalizedtheparticlesinfewminutes,whilewhenmacrophagesare attachedatflatregionofellipse(wherethetangentangleisthe smallest),thenanoparticleswerenotinternalizedaftermorethan 12h.Sphericalparticles,duetotheirsymmetry,wereinternalized bymacrophagesfromanypointsofattachment[105].Gengand co-workersevaluatedtheinvitrouptakebymacrophagesoffilomi- celleshavingthesamediameter,comprisedbetween22–60nm, butwithdifferentlengths(2␮m,4␮m,8␮mand18␮m).Under flow conditions, no filomicelle with a length superior to 3␮m showedamacrophageuptake,whileshortermicellesappearedto betakenupbymacrophage.Internalizationbymacrophagesand time circulation ofthenanocarriers aretherefore dependentof theirshape.Inthesamestudies,researchersevaluatedtheimpact ofthelengthoffilomicellesonthebiodistributioninC57mice.The resultsshowedthattheshorterfilomicelles<4␮mwereslowly fragmentedcompared tolongerfilomicelles.Inaddition,filomi- cellesshowedanimprovedcirculationtimecomparedtospherical micelles.Inthesestudies,authorsshowedtheimpactofnanocarri- ersshapeontheirclearanceandtimecirculationinthebloodstream [108].Inaninvivostudy,Blacketal.evaluatedthebiodistribu- tionoffourdifferenttypesofAu198nanostructures(nanospheres, nanodisks, nanorods and cubic nanocages) in a murine EMT6 breastcancermodel.Distributionofthesenanocarrierswasper- formedbymeasuringthe␥radiation.Nanospheresshowedalonger timecirculationinthebloodstreamthannanodisks,nanorodsand cubicnanocages andexhibited a highertumoruptake thanthe othernanostructures.Inaddition,differencesoftumordistribution dependingofthenanostructureshape wereobserved.Nanorods and cubic nanocages were localized at the core of the tumor whereasnanospheresandnanodiskswereobservedattheperiph- eryofthetumor[109].Furthermore,Kolharetal.comparedthe targetingabilitiesofantibodies-coatednanospheresandnanorods againstneovascularmarkersandintercellularadhesionmolecules expressedby endothelial cells. The in vitroand invivo studies revealed higher specific endothelialaccumulation for nanorods comparedtonanospheres.Thisdifferencewasexplained bythe surface interactions of thenanocarriers [88]. Nanorods, due to theirshape,exhibitedanhighersurfacecontactthannanospheres [110],andthereforeincreasedtheinteractionbetweenantibodies andmarkersexpressedonendothelialcells.Surfaceinteractions betweennanoparticlesandcellscouldthereforebedependentof theshape.Qiuetal.showedthatlongernanorodswerelessinter- nalizedinHeLacellscomparedwithshorternanorodshavingthe samesurfacecharge[111].Haoetal.havestudiedtheimpactof mesoporoussilicananoparticleshapesonthecellularuptakemech- anism.Theyreportedthatmesoporoussilicananorodspreferredto beinternalizedthroughcaveolae-mediatedpathway,comparedto sphericalmesoporoussilicananoparticleswhichwerepreferen- tiallyinternalizedviatheclathrin-mediatedpathway[112].Such variationbetweenthesedifferentstudiesindicatedthat1)thesize

and2)thesurfaceofnano-objectsshouldbetakenintoconsidera- tionsforthedevelopmentofnanocarriers.

2.4. Encapsulationproperties

Due to their variety of physicochemical properties, nanomedicinecanbeusedtodeliveralargerangeofmoleculesin tumors,whileincreasingtheirefficacyandtolerability(Table1).

Therapeuticagents canbeencapsulated,adsorbedorcovalently attachedonnanocarriersinordertoovercomethewaterinsolubil- ityofdrugssuchaspaclitaxel,docetaxel,etoposide,curcumin... Forexample,LNC,duetotheirtriglyceridecore,canencapsulate awidevarietyoflipophilicdrugsandenhancetheireffects.Ithas beenreportedthatpaclitaxelandetoposidewhereencapsulated inLNCwithanencapsulationratevaryingfrom82%to93.4%,for etoposideandpaclitaxel,dependingonthedrugusedandtheLNC size(25nm,50nm,100nm)[39].InvitrostudiesonC6ratglioma showed inhibition of cell growth 4 folds higher for etoposide loadedLNCand40foldshigherforpaclitaxelloadedLNCcompared tofreedrugs.Nowadays,numerousstudiesshowedthepossibility touselipid nanocarriers forlipophilic drugdelivery: paclitaxel [40–43],docetaxel[113–115],curcumin[67,116,117].Lipidcar- rierslikesolidlipidnanoparticles(SLN)orLNCofferinteresting perspectiveinthedeliveryofpoorlywatersolubledrugs,through awidediversityofnanocarriers.Polymericmicellescomposedof poly (ethylene glycol) methyl ether-b-(poly lactic acid-co-poly (b-aminoesters))(MPEG-b-(PLA-co-PAE))loadedwithpaclitaxel, showedahighercytotoxiceffectonK562leukaemiacells,com- paredtofreepaclitaxel.Inaddition,pharmacokineticanalysisin ratshowedanincreasedhalftime(8folds)forpaclitaxelloaded micellescomparedtofreepaclitaxel[118].NK105,anotherpacli- taxelloadedmicellarnanoparticles,usedinphase Istudyon10 breast cancerpatients, showeda partialresponse on6patients andastabilisationofthediseaseon4patients[119].Numerous othernanocarriersencapsulatingpoorly solubledrugs areactu- allystudied,asforexample liposomes[120,121]and polymeric nanoparticles[122–124].Besidesencapsulatinglipophilicdrugs, nanocarriers canbe used todeliverhydrophilic agents suchas nucleicacid.Sincemanyyears,awidevarietyofnucleicacidloaded nano-systemshasbeendevelopedandoptimisedinthescopeof anti-cancertherapies[125].Lipidsnanocapsules,forexample,are able todeliver small interfering RNA(siRNA) in thecytoplasm of SK-Mel28 melanoma cells [44]. The polytherapy strategy in melanoma offers a new perspective for the development of nanomedicines.Drugcombinationcanbringbetterresponserates thanmonotherapy[126].Duetotheircapabilitytoencapsulate hydrophilicandhydrophobicdrugs,theuseofnanocarriersseems tobeapromisingstrategyinordertoobtainasynergisticeffect.In theirwork,Maandco-workersusedcore-matchednanoemulsions todeliverhydrophilic(fluoroucacil)andhydrophobic(paclitaxel) drugs in humanepidermal carcinoma implantedin nude mice.

They showed a significant reduction (57,7%) of tumor growth (KB-8-5cellline)inmicetreatedwithpaclitaxel-co-fluorouracil nanoemulsions compared to other groups (treated with pacli- taxel alone,paclitaxelnanoemulsion,fluorouracilnanoemulsion and untreated)[127]. Nanocarrierscanalsocombinedrugsand diagnostic agents. This strategy called nanotheranostic [128]is abletoenhancedeliveryoftherapeuticsinmonitoringthedrug distribution.Rizzitellietal.showedtheimpactofatumorultra- soundapplicationonthedrugreleasecontainedinliposome.To followthisrelease,theydevelopeddoxorubicinloadedliposome (as Doxil®) co-encapsulating gadoteridol (an MRI agent). After injection of doxorubicin gadoteridol loaded liposomes (Doxo- Gado-Lipo)intomammary adenocarcinomasbearing mice,they showedthatultrasounds(1MHzand/or3MHz),whenappliedat thetumorsurface,canincreasethedrugamountintothetumor

(8)

environment. This drug release from liposomes was followed byacontrastincrease onMR images.In addition,after11days, mice that received Doxo-Gado-Lipo and ultrasounds showed a tumor volume reduction of 55 folds compared to untreated mice.Incomparison,micetreatedwithDoxo-Gado-Lipowithout ultrasoundtreatmentshowedatumorvolumereductionofonly 2.5folds[129].

3. Tumormicroenvironmentastargetofnanoparticles

Tumormicroenvironmentincludescancercells,variousstromal cells suchasvascular endothelialcells, lymphaticcells, cancer- associated fibroblasts (CAFs), and different types of immune cells,includingTAMs(Fig.3).Thearchitecturalscaffoldoftumor microenvironmentisprovidedbyECMcomponentswhichaffect cellmorphologyandimpactonmanyimportantcellfunctionssuch asproliferationanddifferentiation[25,130].

Anadaptive,continuousdialogueexistsbetweencancercells, stromalcells and ECM, mediatedthrough direct cellcontact or through secreted signaling factors (cytokines, chemokines and growthfactors)[131,132].Besides,recentstudieshaveidentified other key players such as exosomes, miRNAs and metabolites involvedinthiscomplexinteractionandcontibutingtotumorpro- gressionandmetastasis[133–135].

Furthermore, the molecularinteraction between cancer cell metabolismandthetumormicroenvironmentleadstotheacidifi- cationoftumor-microenvironmentwhichpromotestheformation ofan acid-resistant tumorcell populationwithincreasedinva- siveand metastaticpotentialinsolid tumorssuchasmalignant melanoma[136].

Therefore,thetumorand itssurroundingmicroenvironment, togetherplayanimportantroleinthetreatmentoutcome.Conse- quently,understandingandmanagingstroma-mediatedresistance couldprofoundlyimprovetherapeuticstrategies thattargetthis compartment.

3.1. Vasculature

Theconceptthattumorgrowthwasdependentonangiogenesis (tumorangiogenesis)hasbeenproposedforthefirsttimebyFolk- mansuggestingthattumorbloodvesselsrepresentanimportant targetforcancertherapy(anti-angiogenictherapy)[137].Conse- quently,theeffectofvariousantiangiogenic therapieshasbeen andisbeinginvestigatedinpreclinicalandclinicaltrials.Themost studiesarefocusoninhibitionofvascularendothelialgrowthfactor (VEGF)signaling,howeverotherstudiesareaimedatdetermining theeffectofmultikinaseinhibitorsortheinhibitionofangiogenic integrinactivity[138].

Melanomacellshavebeenshowntoexpressand/orsecretea widevarietyofangiogenicfactorsand/orreceptors,includingVEGF, placentalgrowthfactor,basicfibroblastgrowthfactor(bFGF)/FGF- 2,acidFGF/FGF-1,transforminggrowthfactor(TGF)-b,angiopoietin (Ang)-1andAng-2,differentinterleukinssuchas(IL)-1,IL-6,IL-8 andIL-35,andMatrixMetalloProtease(MMPs)(MMP-1,MMP-2, MMP-9,MMP-13)andmembranetype1MMP[139].

Furthermore, the expression of several factors involved in melanoma-associatedangiogenesissuchasHIF-1␣,HIF-2␣,VEGF andMMP-2havebeencorrelatedwithpoorerprognosisinhuman cutaneousmelanomapatients[140–142].

Asyet,nostudyhasreportedasignificantlyprolongoverallsur- vivalinmelanomapatientstreatedwithangiogenesisinhibitors.

Indeed,itiswellrecognizedthatmanypatientsdonotrespond toVEGF-targeted therapy andlimitedefficacyand resistanceto anti-angiogenic therapy remain unsolved problems [139]. One potentialexplanation ofthelimitedefficiencyof antiangiogenic

monotherapyistheprocessknownas“vascularnormalization”due toheterogeneityofbloodvesselnetworks.Tumorscontainregions of hypervascularization as well as hypovascularization. During antiangiogenictherapy, vascular normalizationcouldcontribute to improve circulation within a tumor improving the efficacy of chemotherapy/radiationtherapy. However,during prolonged antiangiogenictherapy,thenormalizationeffectdisappearsanda vascularregressioncanbeobserved[143,144].

Vascularnetworksarederivedthroughmodificationofexist- ing vessels within tissue, or recruitment and differentiation of endothelialprecursorsfrombonemarrow(vasculogenesis),con- tributingtovascular heterogeneityoftumormicroenvironment.

Intumors,anunregulatedgrowthofneoplasticallytransformed cellsoverexpressingpro-angiogenicfactorsleadstothedevelop- mentofdisorganizedbloodvesselnetworksthatarefundamentally differentfromnormalvasculature[25].

Tumorendothelialcellsdisplayphenotypicdifferencesatthe molecularandfunctionallevelswhencomparedtonormalcellsin termsofgeneexpressionprofile,proliferationandmigrationability andresponsestogrowthfactorsandseveraldrugs[145–147].

Comparedtonormalendothelialcells,whichformanuniform andcontinuousmonolayer,tumorendothelialcellshaveanirreg- ularshapeandsizewithlongcytoplasmicprojectionsextending acrossthelumen,structuralabnormalitiesinthebasementmem- braneandabnormalpericytes[148].Furthermore,inmelanoma, theheterogeneouscharacteristicsofendothelialcellsdependalso ondifferentmalignancy statusoftumor.Indeed,a recentstudy hasreportedthathigh-metastatictumor-derivedendothelialcells (HM-TECs)showedhigherproliferativeactivityandinvasiveactiv- itythanlow-metastatictumor-derivedendothelialcells(LM-TECs).

Inaddition,themRNAexpressionlevelsofpro-angiogenicgenes suchasVEGFreceptors1and2(VEGFR-1;−2),VEGFandHIF-1␣ werehigherinHM-TECsthaninLM-TECs,suggestingthatHM-TECs haveamorepro-angiogenicphenotype[149].

Tumorbloodvesselwallofsolidtumorisoftencharacterized bythepresenceofendothelialgapsandfenestrae.Intheonehand, thisleakyvasculaturecouldbeinvolvedinamechanismoftumor cellintravasationandinitialstepofmetastasis.Intheotherhand, thisenhancedvascularpermeabilityofferstheadvantageofdrug deliverybypromotingnanomedecineaccumulationinthetumor tissue.Thisphenomenonisknownas“enhancedpermeabilityand retentioneffect(EPR)”andithasprovidedthebasisfordevelopinga passivetargetingofdrugsintotumors[150,151].Passivetargeting throughEPReffecthasbeenwidelydescribedsinceitsdiscovery.

Thiseffectenablesnanocarriersandmacromoleculestoaccumulate intotumorenvironmentthroughleakinessoftumorvasculature anddefectoflymphaticdrainage(Fig.4)[152].

Thevasculatureinfluencesthesensitivityofthetumortodrugs becauseanticancerdrugs,inordertoreachallviablecellsinthe tumor,mustbedeliveredefficientlythroughthetumorvasculature, mustcrossthevesselwall,andtraversethetumortissue.Theinad- equatefunctionofpoorlyorganizedtumorvasculaturesresultsin metabolicchangessuchashypoxiaandlimitedsupplyofnutrients whichleadtoadecreseoftumorcellproliferationandconsequently influencedrugsensitivity[153].

Furthermore,insolidtumors,suchasmelanoma,thehetero- geneityofvascularmaturityiscombinedwithalackorreduced functionallymph vesselswhich leadtoanincreasedinterstitial fluidpressure. Consequently,blood vessels arecompressedand bloodisdivertedawayfromthecenterofthetumortowardthe periphery,contributingtoformabarriertotranscapillarytransport [154].

Finally,inmelanoma,thedrugresistancemediatedbyendothe- lialcells,couldalsodependontheactivationofmolecularpathways intothetumor microenvironment.Arecent studyhasreported that,inamodel ofmelanoma,theacquiredresistanceoftumor

(9)

Fig.3.Tumormicroenvironmentinmelanoma:melanomagrowthandprogression,resultfromtheinteractionoftumorcellswithdifferentconstituentsoftumormicroen- vironment.Theinfiltrationofimmunosuppressivecells,canexertsuppressiveeffectsoneffectorCD8+andCD4+Tcellseitherthroughdirectcell-to-cellcontactorindirectly bygeneratingcytokinesorgrowthfactorsinsitu,whichhelpstumorcellstoevadetheimmunesystem.Duringtheadvancedstageoftumorprogression,CAFsbecome activatedandcontributetobothtumorgrowthandprogressioninavariouswaysincludingECMremodeling,paracrineanddirectinteractionswithcancercells,bysecreting solublefactors(cytokines,hormonesandgrowthfactors),andpathogenicangiogenesisbyliberatingproangiogenicfactors.Extracellularacidityisapathologicalfeatureof melanoma.ThealterationsofcellularmetabolismsuchasupregulationofglycolysisandoverproductionofCO2andglutaminearethemajorcauseofextracellularacidosis.

AcidicpHeisinvolvedinlocaltumorinvasionandtissueremodeling.Thetumorvasculatureischaracterizedbyadisorganizednetworksandthepresenceofendothelial gapsandfenestrae.Intheonehand,thisleakyvasculaturecouldbeinvolvedinamechanismfortumorcellintravasationandinitialstepofmetastasis;intheotherhand,this enhancedvascularpermeabilityofferstheadvantageofdrugdeliverybypromotingnanodrugaccumulationinthetumortissue(EPReffect).Theheterogeneityofvascular maturityiscombinedwithalackorareducedfunctionallymphvesselswhichladstoanincreasedinterstitialfluidpressure.

Fig.4.EnhancedPermeabilityandRetentioneffect(EPR).

endothelialcellstopaclitaxelwasmediatedbyanup-regulation ofmultidrugresistance(MDR)1viatheactivation,inthetumor microenvironment,ofVEGF-VEGFRpathway[147].

Takentogether,theseobservationshighlightthecomplexityof vascularnetworksand regulationofangiogenesisinmelanoma.

Oneof themain aspectsthat influencetherapy outcome isthe heterogeneityofvasculartumormicroenvironment.Consequently, a noveldrug delivery system to actively target heterogeneous

tumorvasculaturewouldbeapromisinganti-angiogenictherapy toimproveoverallanti-tumorefficacy.

3.2. NanoparticlesandEPReffect-passivetargeting

Multiplechemotherapiesasdacarbazine(DTX), doxorubicine (DOX),paclitaxel(PTX)andcombinationofchemotherapieshave beenevaluatedfor thetreatmentofadvanced melanoma[155].

Thesefreedrugs,circulatingthroughoutthebodyviatheblood-

(10)

stream,penetrateintotumorsthroughpassivediffusion.However, theirphysicochemicalpropertiesandtheircytotoxicityonhealthy cells often limit the dose used leading to different physiolog- ical side effects, as for example neuropathy, musculoskeletal pain, intolerance reaction and myelosuppression. Development ofchemotherapyloadednanocarriers isa strategy toovercome problemsoftoxic side effectstoward healthytissues andweak drugdeliveryefficiencyofchemotherapeuticagents.Drugsencap- sulated in nanocarriers can provide longer circulation time in bloodstream,higherstability,controlleddrugrelease,areduction ofdose,andanincreaseofdrugconcentrationintothetumorenvi- ronmentby passivelytargetingthe tumorsthrought EPReffect [34](Table1).Nanomedicine,by theirencapsulationproperties ofmanydrugagents,canprovideanincreasedaccumulationof drugsintumorenvironmentandreducethesideeffectsofcyto- toxicagents.Forexample,cytochalasinD,duetoisactivityonthe actinfilament[156],couldbeapotentialcytotoxicagent.However, thischemicalcompoundisinsolubleinwater,makingitdifficult touseintravenously. Furthermore,cytochalasin Dtargets actin microfilamentswhich arelocalizedin everycells and therefore cancausesignificantsideeffects.Huangetal.,inordertoover- cometheseproblems,developedcytochalasinDloadedliposomes.

Thisliposomalformulationshowedsignificantinvivoantitumor effects.B16melanoma,CT26colorectalcarcinomaandH22hep- atomabearingmicetreatedwithcytochalasinDloadedliposomes showedsignificantinhibitionoftumorvolumesandhighersurvival ratecomparedtomicetreatedwithcytochalasinDalone.Further- more,nosignificantside effectswere observedin micetreated withcytochalasinDloadedliposomes[157].Otherstudyshowed anincreaseantitumorefficacyofdocetaxelloadedinpolymeric micellescomparedtodoxetacelsolution(Duopafei®).Thetumor volumesofB16melanomabearingmicewerereducedby91.6%on micetreatedwithdocetaxelmicellesversus76.3%formicetreated withDuopafei® [158].EPReffectcanbealsousedforimagingof melanoma.Micellarformulationofpoly(ethyleneglycol)-block- poly(2-methyl-2-carboxyl-propylenecarbonate)covalentlylinked withindocyaninegreen,wasclinicallyutilizedformedicalimaging oftumors.Nearinfraredfluorescenceimagingshowedaselective tumoraccumulationofmicellarformulationcomparedtosolution ofindocyaninegreen.Thisselectiveaccumulationwascharacta- rizedbyanincreaseoffluorescenceoftumorinvivoandexvivo afterresection[35].TheseresultsshowedthatEPReffectenables theaccumulationofnanoparticule(NP)intotumorenvironment, butthiseffectdoesnotmeananincreaseofthecellularuptakeof nanocarriers.

3.3. Fibroblastsandextracellularmatrix(ECM)

Fibroblastsareabundantmesenchyme-derivedcelltypeswhich representthemaincellularcomponentofconnectivetissue.Fibrob- lastsmaintainthestructuralframeworkintissuesbypreserving ECMhomeostasis,regulateepithelialdifferentiationandinflamma- tion.Furthermore,theyrespondtodamage,andbecomeactivated tosupportrepairbystimulatinggrowthofnearbyepithelialcells andfacilitatingangiogenesis[159,160].

Incancertissue,fibroblastsaremajorcomponentsofstromal cellsthatsurroundcancercellsandprovide,notonlyamechanical support,butalsoinhibitcancercellapoptosis,controlcellprolif- erationandsurvival,stimulatetumorangiogenesisandmetastasis, immunogenicity,andareinvolvedintherapyresistances[161,162].

Stromalfibroblastswithintumors showmorphological,phe- notypic and functional variabilities. This heterogeneity reflects the various sources of cellularorigin, including bone marrow- derivedprogenitorcells,localinfiltratingfibroblasts,endothelial cells, smooth muscle cells, pericytes or adventitial fibroblasts of the vascular system, or cancer cells themselves undergo-

ingfibroblastic transformation [163].Furthermore, a significant cell plasticity exists within this cell population, as demon- stratedbymesenchymal-to-epithelialtransitions,andepithelial- to-mesenchymal transitions, furtherenhancing stromal hetero- geneity.

Quiescentfibroblastsundergoactivationduringtissueremodel- ingandtheactivationfactorofCAFsmightvary.Severalactivation factorshavebeenfrequentlyreportedinthestromalfibroblasts of solid tumors, such as transforming growth factor-␤ (TGF␤),

␣-smooth muscle actin (␣-SMA), chemokines including mono- cyte chemotactic protein 1 (MCP1), ECM-degrading proteases, fibroblast-specificprotein,PDGFreceptors-␤andfibroblastacti- vationprotein(FAP)[160,163].

Theactivatedphenotypeof fibroblasts isassociated withan increasedproliferativeactivityandenhancedsecretionofECMpro- teinssuchastypeIcollagenand tenascinC,fibronectin,SPARC (secretedprotein acidic and rich in cysteine)and stromal cell- derivedfactor1(SDF1),andavariousgrowthfactorsuchasVEGF, platelet-derivedgrowthfactor(PDGF)andhepatocytegrowthfac- tor(HGF)[26,161].

Withregardtotumorprogression,CAFsplayamulti-faceted rolebecausetheycaneitherinhibitorpromotemalignantgrowth.

Intheearlystagesoftumorprogression,CAFsoperateasrepressors bysecretionofTGF-␤andbyinducingacontactinhibitiononcan- cercellsthroughtheformationofgapjunctionsbetweenactivated fibroblasts[164,165].Duringtheadvancedstage,CAFsbecomeacti- vatedandcontributetobothtumorgrowthandprogressionina variouswaysincludingECMremodeling,paracrineanddirectinter- actionswithcancercells,bysecretingsolublefactors(cytokines, hormonesandgrowthfactors),pathogenicangiogenesisbyliber- atingproangiogenicfactorsand regulationofimmune response [130,162,166,167].

Themoleculardeterminantthatgovernsthetumorregulatory roleofCAFremainsunknown.However,arecentstudyreported thatinmelanoma,Notch1pathwayactivitycoulddeterminethe tumor-promotingortumor-suppressingphenotypeinCAF.Indeed, ithasbeenreportedthatCAF carryingelevatedNotch1activity significantlyinhibitedmelanomagrowthandinvasion,whileCAFs withnullNotch1promotedmelanomainvasion[168].

Duringmelanomaprogression,theECMisremodelledphysi- ologicallyandpathologicallyandCAFsretainamajorroleinthis processsincetheyaremainlyresponsiblefortheproductionofECM proteins(collagens,fibronectin),hyaluronanaswellasMMPsand otherenzymesinvolvedinthepost-transcriptionalmodificationof ECMproteinsthemselves[169,170].

Changes in the expression of ECM proteins contribute to melanomaprogressionandcanpotentiallybeusedasaparam- eter of cancer aggressiveness. The melanocyte homeostasis is strictlycontrolledbythemicroenvironmentandthemelanocyte phenotype depends to keratinocyte–melanocyte crosstalk. The melanomacellsdifferentiationresultsfromescapeofmelanocytes ofphysiologicalcontrolthroughtheE-cadherintoN-cadherinclass switchwhichallowsmelanomacellstoeludefromkeratinocyte control. Furthermore, qualitative and quantitative changes in matrixcellularproteinexpression,suchasCCN3protein,osteo- pontin,tenascinCandSPARC,bymodulatingcancercellmigration, innate immuneresponse, cancergrowthand metastasisforma- tion,contributetomelanomaprogression[23].Otherdatasupport theideathatthedevelopmentofmelanomaisassociatedtoECM remodeling.Helal-Netoandcoworkershavereportedthat,com- pared tothe ECM derived from a humanmelanocyte cell line, ECMproducedbya melanomacelllineisconsiderablydifferent inultrastructuralorganizationandcomposition.Theinteractionof thematrix,derivedfromhumanmetastaticmelanomacellswith endothelialcellstriggersintegrin-dependentsignaling,leadingto

(11)

SrcpathwayactivationthatmaypotentiateVEGFR2activationand consequentlyup-regulateangiogenesis[171].

ThemolecularnatureofECMinatumormicroenvironmentas wellasCAFscanalsoinfluencethesuccessoftherapeuticapproach foralargenumberofsolidtumors[26,172–174].

With regard to melanoma, CAFs can exertdirect effects on moleculartargetedtherapy bysecreting severalsolublefactors, suchashepatocytegrowthfactor(HGF),orbyinteractingdirectly withcancercellsinducingtheactivationoftumor-survivalsignal- ing[26,175].Furthermore,CAFscouldplayanimportantrolein primaryresistancetocancertherapy alsoindirectlyby produc- ingECMproteinsandbyformingacompactandwell-organized matrixstructuretopreventtherapeuticdrugsfromreachingcan- cercellsinthecoreofmelanomatissues[176].Thereisevidence thatcancercellsactivelyrecruitandactivateprimaryhumanskin fibroblastsandstimulatethemtodepositECMproteins.Theadhe- sionof cancercells to ECM proteinscontributes totherapeutic escape.Inuvealmelanoma,theadhesionofcelllinestolaminin, collagenIVandfibronectinisinvolvedinthereductionofcellapo- ptosisaftercisplatintreatment[177].Furthermore,incutaneous melanoma,adhesiontofibronectinprotectsmelanomacellsfrom anoikisandoverexpressionoftenascin-Ccontributestoresistance todoxorubicintreatment[178,179].

Theinvolvementofstromalfibroblastsinmelanomacellpro- liferationaswellasindrugresistancesuggeststhattheycould be promising therapeutic targets to increase the sensitivity of melanomacellstoanti-tumoragentsforcombinedmelanomather- apy.

3.4. NanoparticlesandECMproteins

Themelanomadevelopmentisassociatedwithareorganiza- tion and an altered composition of ECM. Among the different ECM proteins, cancerassociate protease (CAPS) such asMMPs, areoverexpressedintumorenvironmentandtheiroverexpression isoftenrelated tometastasisand cancerprogression[180,181].

MMP9and MMP2are gelatinaseandcollagenaseenzymes.Due totheirdegradationactivityoncollagenand gelatineand their higherconcentrationinthetumorenvironmentthaninthehealthy tissues, they could be used as a trigger to increase the bio- logical activity of nanocarriers (Table 1). Nanoparticles of poly (lactic-co-glycolicacid)(PLGA)-polyethyleneglycol(PEG)loaded with coumarin 6 as a hydrophobic model drug, were conju- gatedwithaMMP2peptidesubstrate(AGFSGPLGMWSAGSFG).The enzyme-stimulated multistagevectors (ESMSVs)were obtained by conjugating thepeptide-PLGA-PEG nanoparticles (45nm)to poroussiliconmicrodisks(2.6␮m×0.7␮m,50–60nmpores).24h after intravenous injectionof ESMSVsin A375 melanoma lung metastasismice,anincreaseofcoumarinamountinmicetreated withESMSVscomparedtomicetreatedwithnon-peptidemodi- fiedmultistagevectorwasobserved(64.6%and46.8%respectively werepositivetocoumarin)[55].Thisstudyshowedthepossibility touseMMPsasatriggertoreleasenanoparticlesfromamicroplat- form[56].ToreducethesizeofnanocarriersinremovingthePEG protectionisanotherstrategyusingMMPsinordertoformulate environmentresponsivenanocarriers.Yuandco-workersdevel- opedenzymeresponsivemicellesaccordingtothisstrategy.Long PEGchains,usedtoprotect themicellefromRESsystem,were abletobecleavedfromthePCLcoreintothetumorenvironment, duetotheMMP-2/-9cleavableproteinlinkerbetweenthepoly- merchains.Inthisstudy,theresultshowed1)a sizereduction ofthenanocarriers,2)ahighertumorconcentrationofMMP-2/-9 cleavablemicellesand3)anantitumoreffectincrease(causedby camptothecinloadedinthemicelles)comparedtocontrolgroups.

Unfortunately,inthisstudy,thePEGsuppressionbyMMP2and9in tumorenvironmentcausedaswellaggregationofthenanocarriers,

butledtoincreasetheconcentrationofcamptothecininthetumor [57].

3.5. Acidificationoftumormicroenvironnement

Extracellular acidityis a pathological featureof solid tumor tissue including melanoma. Among the main causes of extra- cellularacidosis, ithasbeenreportedthat alterationof cellular metabolismcanbeanimportantcause.OttoWarburgwasthefirst toobserveabnormalcancercellmetabolism.DescribedastheWar- burgeffect,melanomacells utilize aerobicglycolysisinsteadof oxidativephosphorylationevenundernormoxicconditionsleading toanenhancedlactic acidproduction [182].Highlactate secre- tionfromtumorcellscontributestotheirimmuneescape,affects inflammation,enhancesthemotilityof tumorcellsand inhibits monocytemigrationandcytokinerelease[183–186].Furthermore, lactateproductioncontributestoangiogenesisthroughinduction ofVEGF,viaanactivationofhypoxia-inducibletranscriptionfactor (HIF)-1,andanupregulationofIL-8transcriptionthroughnuclear factor-␬B(NF-␬B)[187,188].Inadditiontothisupregulationof glycolysis,metabolicalterationsleadingtoanextensiveproduc- tionofacidicmetabolites,includethepentosephosphatepathway, themajorproductivepathwayofcarbondioxide(CO2),andglu- taminolysiswhich,byproducingglutaminemetabolite,contribute tomelanoma cell growthand proliferation [136,189]. Accumu- latingevidenceshowsthatseveraltransportersandpumps,such asNa+/H+exchanger(NHE),H+-lactateco-transporter,monocar- boxylatetransporters(MCTs),orH+-ATPasepumps,contributeto secretionofintracellularlyproducedprotons(H+)causingfurther acidificationoftheextracellularspace[190].Theincreaseofacid production following metabolic reprogramming of cancer cells resultsinacidificationofextracellularpH(pHe)andalkalinization ofintracellular/cytosolicpH(pHi).AcidicpHeisinvolvedinlocal tumorinvasionand tissueremodeling.Protonsdiffusefromthe proximaltumormicroenvironmentintoadjacentnormaltissues causingtissueremodelingthatpermitslocalinvasion[191].The resultingacidicenvironmentpromotestheexpressionofdegrad- ingenzymessuchasMMPsandlysosomalenzymeswhich,through thedegradationofECM,providethepotentialtodevelopmetas- tases[192,193].AcidicpHeistoxictomanycells,includingtumors.

However,tumorcellsdevelopresistancetoacid-inducedtoxicity duringcarcinogenesis, allowingthem tosurviveand proliferate inlowpHmicroenvironments[194].In melanoma,extracellular acidosis leadstothedevelopmentofa moreaggressivepheno- typeofcells.AcidicpHepromotesmetastasisinhumanmelanoma cellsbyup-regulationoftheproteolyticenzymesMMP-2,MMP- 9,cathepsinB,andcathepsinL,contributingtothedegradationof theECM,and up-regulationofthepro-angiogenicfactorsVEGF- AandIL-8promotingtumorinvasionbystimulatingangiogenesis [187].Insolid tumors,acidityis closelyrelated tohypoxia.The fastproliferationofcancercellsandthechaoticandincomplete vasculatureoftumorarefrequentlyresponsibleforatransientor persistentoxygendeficiency.Thehypoxia-induciblefactor-1(HIF- 1)expressionandactivityareincreasedinmelanomamalignant cellsand contributetotheformationofglycolyticphenotypein cancercellsleadingtoacidificationvialacticacidproduction[195].

HIF promotesthetranscription ofgenesinvolved in cancerini- tiation,progression andmetastases includinggenesinvolved in adaptationtoanunfavourabletumormicroenvironment.Notably, the two subunits HIF-1␣ and HIF-2␣drive melanomainvasion andinvadopodiaformationthroughPDGFR␣andfocal adhesion kinase-mediated (FAK-mediated)activation of SRCand byECM remodeling[196].TheincreaseofextracellularH+ionsmodulates several molecules of theECM, including channels, transporters and the plasma membrane. Nishisho and co-workers reported that vacuolar-type H+-ATPase (V-ATPase) isoform a3 promotes

Références

Documents relatifs

Hence, sustained Snail expression in tumor cells is at least partly mediated by Gr1 + cell infiltration (see Figures 4 G and 4H); in turn, Snail expression in cancer cells gen-

Nous représentons en abscisses les débits et en ordonnées les pressions de Torricelli Ht et non pas les racines carrées des pressions Ht .Comme on ne connaît pas les

experimentally using XRD and FTIR to identify the aluminum-water reaction products created at varying temperatures and pressures. A new Ga In eutectic-limited surface coating

162.. genome transduction with replication-defective adenovirus vectors. Klingmuller U, S.H., Hepadnavirus infection requires interaction between the viral pre-S domain and

Les premières tentatives de rénovation urbaine en France font suite à la création du Ministère de la Ville en 1990 pour répondre à une problématique croissante :

Indeed, the antigens identified within these islands correspond to proteins from several different protein categories, mostly assigned to the cell wall and cellular processes and

Sie wertet die Kontingenzeffekte auf, indem sie in den behandelten Episoden des Iwein (es handelt sich um Ginovers Entführung, das Dilemma der Laudine, die Harpin-Episode und

This result indicate that CAF-secreted factors but also stromal content of the tumor remarkably activate genes characterized by a high level of methylated CpGs on their