• Aucun résultat trouvé

Pascal-like triangles: base 2 and beyond

N/A
N/A
Protected

Academic year: 2021

Partager "Pascal-like triangles: base 2 and beyond"

Copied!
71
0
0

Texte intégral

(1)

Pascal-like triangles: base

2 and beyond

Joint work with Julien Leroy and Michel Rigo (ULiège)

Manon Stipulanti (ULiège) FRIA grantee

University of Winnipeg (Canada) March 16, 2018

(2)

Classical Pascal triangle

m k  k 0 1 2 3 4 5 6 7 · · · 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 2 1 2 1 0 0 0 0 0 m 3 1 3 3 1 0 0 0 0 4 1 4 6 4 1 0 0 0 5 1 5 10 10 5 1 0 0 6 1 6 15 20 15 6 1 0 7 1 7 21 35 35 21 7 1 .. . . ..

Usual binomial coefficients of integers:

 

Pascal’s rule:

vide

(3)

A specific construction

• Grid: first 2n rows and columns

N2∩ [0, 2n]2 0 1 ... 2n− 1 2n 0 1 · · · 2n− 1 2n 0 0  0 1  · · · 0 2n−1  1 0  1 1  · · · 1 2n−1  ... ... . .. ... 2n−1 0  2n−1 1  · · · 2n −1 2n−1 

(4)

• Color the grid:

Color the first 2n rows and columns of the Pascal triangle  m k  mod 2  0≤m,k<2n in • white if mk≡ 0 mod 2 • black if mk≡ 1 mod 2

• Normalize by a homothety of ratio 1/2n (bring into [0, 1]× [0, 1])

(5)

• Color the grid:

Color the first 2n rows and columns of the Pascal triangle  m k  mod 2  0≤m,k<2n in • white if mk≡ 0 mod 2 • black if mk≡ 1 mod 2

• Normalize by a homothety of ratio 1/2n (bring into [0, 1]× [0, 1])

sequence belonging to [0, 1] × [0, 1]

(6)

What happens for

n

∈ {0, 1}

n = 0 fantome 0 1 1  0 0  0 1 1 1 0 1 1 n = 1 fantome 0 2 2  0 0   0 1   1 0   1 1  0 2 2 1 0 1 1 0 2 2

(7)

What happens for

n

∈ {0, 1}

n = 0 fantome 0 1 1  0 0  0 1 1 1 0 1 1 n = 1 fantome 0 2 2  0 0   0 1   1 0   1 1  0 2 2 1 0 1 1 0 2 2

(8)

What happens for

n

∈ {0, 1}

n = 0 fantome 0 1 1  0 0  0 1 1 1 0 1 1 n = 1 fantome 0 2 2  0 0   0 1   1 0   1 1  0 2 2 1 0 1 1 0 2 2

(9)

What happens for

n

∈ {0, 1}

n = 0 fantome 0 1 1  0 0  0 1 1 1 0 1 1 n = 1 fantome 0 2 2  0 0   0 1   1 0   1 1  0 2 2 1 0 1 1 0 2 2

(10)

What happens for

n

∈ {0, 1}

n = 0 fantome 0 1 1  0 0  0 1 1 1 0 1 1 n = 1 fantome 0 2 2  0 0   0 1   1 0   1 1  0 2 2 1 0 1 1 0 2 2

(11)

What happens for

n

∈ {0, 1}

n = 0 fantome 0 1 1  0 0  0 1 1 1 0 1 1 n = 1 fantome 0 2 2  0 0   0 1   1 0   1 1  0 2 2 1 0 1 1 0 2 2

(12)

What happens for

n

∈ {0, 1}

n = 0 fantome 0 1 1  0 0  0 1 1 1 0 1 1 n = 1 fantome 0 2  0 0   0 1   1 1 0 2 1 0 0 2 2

(13)

What happens for

n

∈ {0, 1}

n = 0 fantome 0 1 1  0 0  0 1 1 1 0 1 1 n = 1 fantome 0 2 2  0 0   0 1   1 0   1 1  0 2 2 1 0 1 1 0 2 2

(14)

The first six elements of the sequence

0 1 1 0 2 2 0 22 22 0 23 0 24 0 25

(15)

The tenth element of the sequence

0

29

29

(16)
(17)

The Sierpiński gasket

(18)
(19)

Folklore fact

The latter sequence converges to the Sierpiński gasket when n tends to infinity (for the Hausdorff distance).

Definitions: • -fattening of a subset S ⊂ R2 [S]= [ x∈S B(x, )

• (H(R2), dh) complete space of the non-empty compact

sub-sets of R2 equipped with the Hausdorff distance dh dh(S, S0) = min{ ∈ R≥0| S ⊂ [S0] and S0 ⊂ [S]}

(20)

Folklore fact

The latter sequence converges to the Sierpiński gasket when n tends to infinity (for the Hausdorff distance).

Definitions: • -fattening of a subset S ⊂ R2 [S]= [ x∈S B(x, )

• (H(R2), dh) complete space of the non-empty compact

sub-sets of R2 equipped with the Hausdorff distance dh dh(S, S0) = min{ ∈ R≥0| S ⊂ [S0] and S0 ⊂ [S]}

(21)

New idea

Replace usual binomial coefficients of integers by binomial coefficients offinite words

(22)

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called the alphabet.

Example: 101, 101001∈ {0, 1}

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient uv of u and v is the number of times v occurs as a subsequence of u (meaning as a “scattered” subword).

u = 101001 v = 101 ⇒  101001 101  = 6

(23)

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called the alphabet.

Example: 101, 101001∈ {0, 1}

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient uv of u and v is the number of times v occurs as a subsequence of u (meaning as a “scattered” subword).

Example: u = 101001 v = 101 ⇒  101001 101  = 6

(24)

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called the alphabet.

Example: 101, 101001∈ {0, 1}

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient uv of u and v is the number of times v occurs as a subsequence of u (meaning as a “scattered” subword).

Example: u =101001 v = 101 1 occurrence ⇒  101001 101  = 6

(25)

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called the alphabet.

Example: 101, 101001∈ {0, 1}

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient uv of u and v is the number of times v occurs as a subsequence of u (meaning as a “scattered” subword).

Example: u =101001 v = 101 2 occurrences ⇒  101001 101  = 6

(26)

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called the alphabet.

Example: 101, 101001∈ {0, 1}

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient uv of u and v is the number of times v occurs as a subsequence of u (meaning as a “scattered” subword).

Example: u =101001 v = 101 3 occurrences ⇒  101001 101  = 6

(27)

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called the alphabet.

Example: 101, 101001∈ {0, 1}

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient uv of u and v is the number of times v occurs as a subsequence of u (meaning as a “scattered” subword).

Example: u =101001 v = 101 4 occurrences ⇒  101001 101  = 6

(28)

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called the alphabet.

Example: 101, 101001∈ {0, 1}

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient uv of u and v is the number of times v occurs as a subsequence of u (meaning as a “scattered” subword).

Example: u = 101001 v = 101 5 occurrences ⇒  101001 101  = 6

(29)

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called the alphabet.

Example: 101, 101001∈ {0, 1}

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient uv of u and v is the number of times v occurs as a subsequence of u (meaning as a “scattered” subword).

Example: u = 101001 v = 101 6 occurrences ⇒  101001 101  = 6

(30)

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called the alphabet.

Example: 101, 101001∈ {0, 1}

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient uv of u and v is the number of times v occurs as a subsequence of u (meaning as a “scattered” subword).

Example: u = 101001 v = 101 ⇒  101001 101  =6

(31)

Remark:

Natural generalizationof binomial coefficients of integers With a one-letter alphabet{a}

 am ak  = m timesz }| { a· · · a a· · · a | {z } k times  =  m k  ∀ m, k ∈ N

(32)

The base

2 case

Definitions:

• rep2(n) greedy base-2 expansion of n∈ N>0 starting with 1

• rep2(0) = ε where ε is the empty word

n rep2(n) 0 ε 1 1× 20 1 2 1× 21+0× 20 10 3 1× 21+1× 20 11 4 1× 22+0× 21+0× 20 100 5 1× 22+0× 21+1× 20 101 6 1× 22+1× 21+0× 20 110 .. . ... ... {ε} ∪ 1{0, 1}∗

(33)

Generalized Pascal triangle in base 2

rep2(m) rep2(k)  rep 2 (k ) ε 1 10 11 100 101 110 111 · · · ε 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 10 1 1 1 0 0 0 0 0 rep2(m) 11 1 2 0 1 0 0 0 0 100 1 1 2 0 1 0 0 0 101 1 2 1 1 0 1 0 0 110 1 2 2 1 0 0 1 0 111 1 3 0 3 0 0 0 1 .. . . .. Binomial coefficient of finite words: u v 

Rule(not local):  ua vb  =  u vb  + δa,b  u v 

(34)

Generalized Pascal triangle in base 2

rep 2 (k ) ε 1 10 11 100 101 110 111 · · · ε 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 10 1 1 1 0 0 0 0 0 rep2(m) 11 1 2 0 1 0 0 0 0 100 1 1 2 0 1 0 0 0 101 1 2 1 1 0 1 0 0 110 1 2 2 1 0 0 1 0 111 1 3 0 3 0 0 0 1 .. . . ..

(35)

Questions:

• After coloring and normalization can we expect the conver-gence to an analogue of the Sierpiński gasket?

• Could we describe this limit object?

(36)

Same construction

• Grid: first 2n rows and columns

0 1 ... 2n− 1 2n 0 1 · · · 2n− 1 2n rep2(0) rep2(0)  rep2(0) rep2(1)  · · · rep2(0) rep2(2n−1)  rep2(1) rep2(0)  rep2(1) rep2(1)  · · · rep2(1) rep2(2n−1)  ... ... . .. ... rep2(2n−1) rep2(0)  rep2(2n−1) rep2(1)  · · · rep2(2n−1) rep2(2n−1) 

(37)

• Color the grid:

Color the first 2nrows and columns of the generalized Pascal triangle  rep2(m) rep2(k)  mod 2  0≤m,k<2n in • white if rep2(m) rep2(k)  ≡ 0 mod 2 • black if rep2(m) rep2(k)  ≡ 1 mod 2

• Normalize by a homothety of ratio 1/2n (bring into [0, 1]× [0, 1])

sequence (Un)n≥0 belonging to [0, 1]× [0, 1]

(38)

The elements

U

0

, . . . , U

5 ε 1 1 ε 10 10 ε 102 102 ε 103 0 104 0 105

(39)

The element

U

9

0 109

109

Lines of different slopes...

(40)

A key result

Theorem (Leroy, Rigo, S., 2016)

The sequence (Un)n≥0 of compact sets converges to a limit

(41)

Counting subword occurrences

Generalized Pascal triangle in base 2

ε 1 10 11 100 101 110 111 n S2(n) ε 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 2 10 1 1 1 0 0 0 0 0 2 3 11 1 2 0 1 0 0 0 0 3 3 100 1 1 2 0 1 0 0 0 4 4 101 1 2 1 1 0 1 0 0 5 5 110 1 2 2 1 0 0 1 0 6 5 111 1 3 0 3 0 0 0 1 7 4 Definition: S2(n) = #  m∈ N |  rep2(n) rep2(m)  > 0  ∀n ≥ 0

= # (scattered) subwords in{ε} ∪ 1{0, 1}∗ of rep2(n)

(42)
(43)

Regularity in the sense of Allouche and Shallit (1992)

• 2-kernel of s = (s(n))n≥0

K2(s) ={(s(n))n≥0, (s(2n))n≥0, (s(2n + 1))n≥0, (s(4n))n≥0,

(s(4n + 1))n≥0, (s(4n + 2))n≥0, . . .}

={(s(2in + j))n≥0| i ≥ 0 and 0 ≤ j < 2i}

• s = (s(n))n≥0 is 2-regular if there exist (t1(n))n≥0, . . . , (t`(n))n≥0

s.t. each (t(n))n≥0 ∈ K2(s) is aZ-linear combination of the tj’s

(44)

Regularity in the sense of Allouche and Shallit (1992)

• 2-kernel of s = (s(n))n≥0

K2(s) ={(s(n))n≥0, (s(2n))n≥0, (s(2n + 1))n≥0, (s(4n))n≥0,

(s(4n + 1))n≥0, (s(4n + 2))n≥0, . . .}

={(s(2in + j))n≥0| i ≥ 0 and 0 ≤ j < 2i}

• s = (s(n))n≥0 is 2-regular if there exist (t1(n))n≥0, . . . , (t`(n))n≥0

s.t. each (t(n))n≥0 ∈ K2(s) is aZ-linear combination of the tj’s

(45)

The case of

(S

2

(n))

n≥0

Theorem (Leroy, Rigo, S., 2017)

The sequence (S2(n))n≥0 satisfies, for all n≥ 0,

S2(2n + 1) = 3 S2(n)− S2(2n)

S2(4n) = −S2(n) + 2 S2(2n)

S2(4n + 2) = 4 S2(n)− S2(2n). Corollary (Leroy, Rigo, S., 2017)

(S2(n))n≥0 is 2-regular.

Example: Z-linear combination of (S2(n))n≥0 and (S2(2n))n≥0 S2(4n + 1) = S2(2(2n) + 1) = 3S2(2n)− S2(4n)

= 3S2(2n)− (−S2(n) + 2S2(2n)) = S2(n) + S2(2n)

(46)

Summatory function

Example: s(n) number of 1’s in rep2(n) s(2n) = s(n) s(2n+1) = s(n)+1 s is 2-regular Summatory function A: A(0) = 0 A(n) = n−1 X j=0 s(j) ∀n ≥ 1 Theorem (Delange, 1975) A(n) = 1log2(n) +G(log2(n)) (1)

(47)

Theorem (Allouche, Shallit, 2003)

Under some hypotheses, the summatory function of any k-regular sequence has a behavior analogous to (1).

Replacing s by S2: same behavior as (1) but does not satisfy

the hypotheses of the theorem

(48)

Summatory function of

(S

2

(n))

n≥0 Definition: A2(0) = 0 A2(n) = nX−1 j=0 S2(j) ∀n ≥ 1

First few values:

0,1,3, 6,9, 13, 18, 23,27, 32, 39, 47, 54, 61, 69, 76,81, 87, 96, 107, . . .

Lemma (Leroy, Rigo, S., 2017)

(49)

Summatory function of

(S

2

(n))

n≥0 Definition: A2(0) = 0 A2(n) = nX−1 j=0 S2(j) ∀n ≥ 1

First few values:

0,1,3, 6,9, 13, 18, 23,27, 32, 39, 47, 54, 61, 69, 76,81, 87, 96, 107, . . .

Lemma (Leroy, Rigo, S., 2017)

For all n≥ 0, A2(2n) = 3n.

(50)

Using several numeration systems

Lemma (Leroy, Rigo, S., 2017)

Let `≥ 1.

•If 0≤ r ≤ 2`−1, then

A2(2`+ r) = 2· 3`−1+ A2(2`−1+ r) + A2(r).

•If 2`−1< r < 2`, then

A2(2`+r) = 4·3`−2·3`−1−A2(2`−1+r0)−A2(r0) where r0 = 2`−r.

3-decomposition: particular decomposition of A2(n) based on

powers of 3

(51)

Using several numeration systems

Lemma (Leroy, Rigo, S., 2017)

Let `≥ 1.

•If 0≤ r ≤ 2`−1, then

A2(2`+ r) = 2· 3`−1+ A2(2`−1+ r) + A2(r).

•If 2`−1< r < 2`, then

A2(2`+r) = 4·3`−2·3`−1−A2(2`−1+r0)−A2(r0) where r0 = 2`−r.

3-decomposition: particular decomposition of A2(n) based on

powers of 3

two numeration systems: base 2 and base 3

(52)

Using several numeration systems

Lemma (Leroy, Rigo, S., 2017)

Let `≥ 1.

•If 0≤ r ≤ 2`−1, then

A2(2`+ r) = 2· 3`−1+ A2(2`−1+ r) + A2(r).

•If 2`−1< r < 2`, then

A2(2`+r) = 4·3`−2·3`−1−A2(2`−1+r0)−A2(r0) where r0 = 2`−r.

3-decomposition: particular decomposition of A2(n) based on

powers of 3

(53)

Theorem (Leroy, Rigo, S., 2017)

There exists a continuous and periodic function H2 of period 1 such that, for all n≥ 1,

A2(n) = 3log2(n) H2(log2(n)).

(54)

The Fibonacci case

Definitions:

• Fibonacci numbers (F (n))n≥0: F (0) = 1, F (1) = 2 and F (n + 2) = F (n + 1) + F (n)∀ n ≥ 0

• repF(n) greedy Fibonacci representation of n∈ N>0

starting with 1

• repF(0) = ε where ε is the empty word

n repF(n) 0 ε 1 1× F (0) 1 2 1× F (1) +0× F (0) 10 3 1× F (2) +0× F (1) +0× F (0) 100 4 1× F (2) +0× F (1) +1× F (0) 101 5 1× F (3) +0× F (2) +0× F (1) +0× F (0) 1000 6 1× F (3) +0× F (2) +0× F (1) +1× F (0) 1001 .. .. ..

(55)

Generalized Pascal triangle in base Fibonacci

repF(m) repF(k)  rep F (k ) ε 1 10 100 101 1000 1001 1010 . . . ε 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 10 1 1 1 0 0 0 0 0 repF(m) 100 1 1 2 1 0 0 0 0 101 1 2 1 0 1 0 0 0 1000 1 1 3 3 0 1 0 0 1001 1 2 2 1 2 0 1 0 1010 1 2 3 1 1 0 0 1 .. . . .. Binomial coefficient of finite words: u v 

Rule(not local):  ua vb  =  u vb  + δa,b  u v 

(56)

The first six elements of the sequence

(U

n0

)

n≥0 0 1 1 0 10 10 0 102 102 0 103 0 104 0 105

(57)

Similar convergence result

Theorem (S., 2018)

The sequence (Un0)n≥0 of compact sets converges to a limit

com-pact setL0 when n tends to infinity (for the Hausdorff distance).

“Simple” characterization ofL0: topological closure of a union of segments described through a “simple” combinatorial property

(58)

Counting subword occurrences

Generalized Pascal triangle in base Fibonacci

ε 1 10 100 101 1000 1001 1010 n SF(n) ε 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 2 10 1 1 1 0 0 0 0 0 2 3 100 1 1 2 1 0 0 0 0 3 4 101 1 2 1 0 1 0 0 0 4 4 1000 1 1 3 3 0 1 0 0 5 5 1001 1 2 2 1 2 0 1 0 6 6 1010 1 2 3 1 1 0 0 1 7 6 Definition: SF(n) =  m∈ N |  repF(n) rep (m)  > 0  ∀n ≥ 0

(59)

The sequence

(S

F

(n))

n≥0

in the interval

[0, 233]

(60)

F -kernel

2-kernelK2(s) of a sequence s

• Select all the nonnegative integers whose base-2 expansion (with leading zeroes) ends with w∈ {0, 1}

• Evaluate s at those integers

• Let w vary in {0, 1}∗ w = 0 n rep2(n) s(n) 0 ε s(0) 1 1 s(1) 2 10 s(2) 3 11 s(3) 4 100 s(4) 5 101 s(5) F -kernelKF(s) of a sequence s

• Select all the nonnegative integers whose Fibonacci representation (with leading zeroes) ends with w∈ {0, 1}

• Evaluate s at those integers

n repF(n) s(n)

0 ε s(0)

1 1 s(1)

2 10 s(2)

(61)

F -regularity

s = (s(n))n≥0 is F -regular if there exist (t1(n))n≥0, . . . , (t`(n))n≥0

s.t. each (t(n))n≥0 ∈ KF(s) is a Z-linear combination of the tj’s

Proposition (Leroy, Rigo, S., 2017)

(SF(n))n≥0 is F -regular.

In the literature, not so many sequences have this kind of property

(62)

F -regularity

s = (s(n))n≥0 is F -regular if there exist (t1(n))n≥0, . . . , (t`(n))n≥0

s.t. each (t(n))n≥0 ∈ KF(s) is a Z-linear combination of the tj’s Proposition (Leroy, Rigo, S., 2017)

(SF(n))n≥0 is F -regular.

(63)

F -regularity

s = (s(n))n≥0 is F -regular if there exist (t1(n))n≥0, . . . , (t`(n))n≥0

s.t. each (t(n))n≥0 ∈ KF(s) is a Z-linear combination of the tj’s Proposition (Leroy, Rigo, S., 2017)

(SF(n))n≥0 is F -regular.

In the literature, not so many sequences have this kind of property

(64)

Summatory function of

(S

F

(n))

n≥0 Definition: AF(0) = 0 AF(n) = nX−1 j=0 SF(j) ∀n ≥ 1

First few values:

(65)

Using several numeration systems

First few values (again):

0,1,3,6, 10,14, 19, 25,31, 37, 45, 54, 62,70, 77, 87, 99, 111, 123, 133, . . .

Proposition (Leroy, Rigo, S., 2017)

For all n≥ 0, AF(F (n)) = B(n).

Definition: B(0) = 1, B(1) = 3, B(2) = 6

B(n + 3) = 2B(n + 2) + B(n + 1)− B(n) ∀ n ≥ 0 First few values: 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, . . .

B-decomposition: particular decomposition of AF(n) based on

linear combination of B(n)

two numeration systems: base F(n) and base B(n)

(66)

Using several numeration systems

First few values (again):

0,1,3,6, 10,14, 19, 25,31, 37, 45, 54, 62,70, 77, 87, 99, 111, 123, 133, . . .

Proposition (Leroy, Rigo, S., 2017)

For all n≥ 0, AF(F (n)) = B(n).

Definition: B(0) = 1, B(1) = 3, B(2) = 6

B(n + 3) = 2B(n + 2) + B(n + 1)− B(n) ∀ n ≥ 0 First few values: 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, . . .

B-decomposition: particular decomposition of AF(n) based on

(67)

Using several numeration systems

First few values (again):

0,1,3,6, 10,14, 19, 25,31, 37, 45, 54, 62,70, 77, 87, 99, 111, 123, 133, . . .

Proposition (Leroy, Rigo, S., 2017)

For all n≥ 0, AF(F (n)) = B(n).

Definition: B(0) = 1, B(1) = 3, B(2) = 6

B(n + 3) = 2B(n + 2) + B(n + 1)− B(n) ∀ n ≥ 0 First few values: 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, . . .

B-decomposition: particular decomposition of AF(n) based on

linear combination of B(n)

two numeration systems: base F(n) and base B(n)

(68)

Theorem (Leroy, Rigo, S., 2017)

Let β be the dominant root of X3− 2X2− X + 1, which is the characteristic polynomial of (B(n))n≥0.

Let c be a constant such that limn→∞B(n)/cβn= 1.

There exists a continuous and periodic functionHF of period 1 such that, for all n≥ 3,

AF(n) = c· βlogF(n) HF(logF(n)) + o(βblogF(n)c).

1.00 1.02 1.04 1.06

(69)

Conclusion

In this talk: Base2:

• Generalization of the Pascal triangle in base 2 modulo 2

• 2-regularity of the sequence (S2(n))n≥0 counting subword

occurrences

• Exact behavior of the summatory function (A2(n))n≥0 of the sequence (S2(n))n≥0

BaseFibonnaci:

• Generalization of the Pascal triangle in base Fibonacci modulo 2

• F -regularity of the sequence (SF(n))n≥0 counting subword

occurrences

• Asymptotics of the summatory function (AF(n))n≥0 of the

sequence (SF(n))n≥0

(70)

Other work

Done:

• Generalization of the Pascal triangle modulo a prime number: extension to anyParry–Bertrand numeration system

• Regularity of the sequence counting subword occurrences: extension to any integer base

• Behavior of the summatory function: extension to any

integer base(exact behavior) To do:

Parry–Bertrand numeration systems,

Apply the methods for sequences not related to Pascal triangles, etc.

(71)

References

•J.-P. Allouche, K. Scheicher, R. F. Tichy, Regular maps in generalized number systems, Math. Slovaca 50 (2000) 41–58.

•J.-P. Allouche, J. Shallit, The ring ofk-regular sequences, Theoret. Comput. Sci. 98(2) (1992), 163–197.

•J.-P. Allouche, J. Shallit, Automatic sequences. Theory, applications, generalizations, Cambridge University Press, Cambridge, 2003.

•H. Delange, Sur la fonction sommatoire de la fonction “somme des chiffres”, Enseignement Math. 21 (1975), 31–47.

•J. Leroy, M. Rigo, M. Stipulanti, Generalized Pascal triangle for binomial coefficients of words, Adv. in Appl. Math. 80 (2016), 24–47.

•J. Leroy, M. Rigo, M. Stipulanti, Counting the number of non-zero coefficients in rows of generalized Pascal triangles, Discrete Math. 340 (2017) 862–881.

•J. Leroy, M. Rigo, M. Stipulanti, Behavior of digital sequences through exotic numeration systems, Electron. J. Combin. 24 (2017), no. 1, Paper 1.44, 36 pp.

•J. Leroy, M. Rigo, M. Stipulanti, Counting Subword Occurrences in Base-b Expansions, ac-cepted in December 2017.

•M. Lothaire, Combinatorics On Words, Cambridge Mathematical Library, Cambridge Uni-versity Press, Cambridge, 1997.

•J. Shallit, A generalization of automatic sequences, Theoret. Comp. Sci. 61 (1) (1988) 1–16.

•M. Stipulanti, Convergence of Pascal-Like Triangles in Pisot–Bertrand Numeration Systems, submitted in January 2018.

Références

Documents relatifs

ﻲــﺳﺪﻨﻬﻟﺍ ( ﻷ ﺔــﻨﻜﻣﻷﺍ ﻊــﻴﻤﺟ ﻥ - ﺓﺩﺍﺮــﺑ ﺪــﻤﺤﻣ ﺮــﻈﻧ ﻲــﻓ - ﻞــﻤﻌﻟﺍ ﻲــﻓ ﺔــﻳﺯﺎﺠﻣ ﺢﺒﺼــﺗ ﻊــﻣ ﻖــﻔﺘﻧ ﻻ ﺎــﻨﻧﺃ ﺔــﻘﻴﻘﺤﻟﺍﻭ

Par contre, si les longueurs des côtés du triangle A’B’C' sont proportionnelles aux longueurs des côté du triangle ABC, les triangles ne sont pas nécessairement homothétiques

Os dois grupos também diferem significativamente de acordo com a  classificação multigeracional do histórico de alcoolismo (Fig. 1).  No grupo de  alcoolistas, 7

Dont acte, pour ma France de le Belle Époque et au nom de tous les historiens du XXe siècle qui ont répété à satiété que c’est dans les années 1920, grâce à

Dans ce travail où 23 % seulement des patients traités pour hyper- tension voyaient leur pression artérielle normali- sée, il existe un fort pourcentage de sujets qui ne sont pas

The normalized eigenvalues for the family of triangles with both Neumann and Dirichlet boundary conditions have been considered and a number of degeneracies have been

The objectives of this study are: (1) to determine the prevalence of Salmonella contamination in retail raw whole chicken carcasses and to compare the incidence of

Exemple : Dans un quadrilatère EFGH, quel est le sommet opposé au sommet E. Quelles sont