• Aucun résultat trouvé

Extraction of oil from jatropha seeds using a twin-screw extruder: Feasibility study

N/A
N/A
Protected

Academic year: 2021

Partager "Extraction of oil from jatropha seeds using a twin-screw extruder: Feasibility study"

Copied!
11
0
0

Texte intégral

(1)

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID: 8609

To link to this article: DOI:

10.1016/j.indcrop.2013.02.034

URL:

http://dx.doi.org/10.1016/j.indcrop.2013.02.034

To cite this version:

Evon, Philippe and Kartika, Ika Amalia and Cerny,

Muriel and Rigal, Luc Extraction of oil from jatropha seeds using a

twin-screw extruder: Feasibility study. (2013) Industrial Crops and Products,

vol. 47 . pp. 33-42. ISSN 0926-6690

O

pen

A

rchive

T

oulouse

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Extraction

of

oil

from

jatropha

seeds

using

a

twin-screw

extruder:

Feasibility

study

Ph.

Evon

a,b,∗

,

I.

Amalia

Kartika

c

,

M.

Cerny

a,b

,

L.

Rigal

a,b

aUniversitédeToulouse,INP,LaboratoiredeChimieAgro-industrielle,ENSIACET,4AlléeEmileMonso,BP44362,31030ToulouseCedex4,France bINRA,LaboratoiredeChimieAgro-industrielle,31030ToulouseCedex4,France

cDepartmentofAgroindustrialTechnology,FATETA-IPB,DarmagaCampus,P.O.Box220,Bogor16002,Indonesia

Keywords: Twin-screwextruder Jatropha Oilextraction Oilquality

a

b

s

t

r

a

c

t

Theobjectiveofthisstudywastoevaluatethefeasibilityofmechanicalpressingtoextractoilfrom jat-rophaseedsusingatwin-screwextruder.Experimentswereconductedusingaco-rotating(ClextralBC 21,France)twin-screwextruder.Theinfluenceofoperatingconditionsonoilyield,specific mechani-calenergyandoilqualitywasexamined.Operatingconditionsincludedscrewconfiguration,pressing temperatureandscrewrotationspeed.

Generally,itwasthescrewconfiguration,orprofile,thatmostaffectedoilextractionefficiency.The bestoilyields,aminimum57.5%,wereobtainedwithatriturationzonecomposedof10monolobeand 10bilobepaddles,andapressingzonecomposedof50mmlong,reversepitchscrewswitha−33mm pitch.Inaddition,oilextractionyieldincreasedwithdecreasingtemperatureandscrewrotationspeed. Highestoilextractionyield(70.6%)withgoodpresscakequality(residualoilcontentlowerthan8%)was obtainedunderoperatingconditionsof153rpmscrewrotationspeed,5.16kg/hinletflowrateofjatropha seeds,and80◦Cpressingtemperature.Thecorrespondingexpressedoilwasinexpensivetoproduce

(71Wh/kgseedprocessedor314Wh/kgexpressedoilforspecificmechanicalenergy)comparedwith anothercontinuoustechnique,i.e.thesingleexpellerpress,commonlyusedformechanicalextraction ofjatrophaoil.Itsqualitywasalsosatisfactoryforbiodieselproduction.Theacidvalue,thedensityand thekinematicviscositywere5.4mgofKOH/gofoil,915kg/m3and36.7×10−6m2/s,respectively.

1. Introduction

Jatrophacurcasisadrought-resistantshrubortreebelongingto thefamilyEuphorbiaceae,whichiscultivatedinCentralandSouth America,South-EastAsia,IndiaandAfrica(Gubizetal.,1999).It isa plantwithmanyattributes,multipleusesandconsiderable potential(Openshaw,2000;Achtenetal.,2008;KumarandSharma, 2008).In Indonesia, theland areaunder jatropha is increasing becausethisplantcanbeusedtoreclaimland,preventand/or con-trolerosion,plusitprovidesanewagriculturaldevelopmentmode withnocompetitionbetweenfoodandnon-fooduses.Theseedis thepartofthejatrophaplantwiththehighestpotentialfor uti-lization.Itcontainsbetween40and60%oil,andbetween20and 30%proteins.Thejatrophaseedisgenerallytoxictohumansand animals,withphorbolesterandcurcinidentifiedasthemaintoxic agents(Gubizetal.,1999;HaasandMittelbach,2000).

∗ Correspondingauthorat:UniversitédeToulouse,INP,LaboratoiredeChimie Agro-industrielle,ENSIACET,4AlléeEmileMonso,BP44362,31030ToulouseCedex 4,France.Tel.:+33562446080;fax:+33562446082.

E-mailaddress:Philippe.Evon@ensiacet.fr(Ph.Evon).

J. curcas oil is regarded as a potential alternative to diesel fuel,andvegetableoilshavenumerousadvantagesinthisrespect becausetheyarenontoxic,andsafetostoreandhandlebecause oftheirhighflashpoints.Thefactthatjatrophaoilcannotbeused fornutritionalpurposeswithoutdetoxification,makesitsuseas anenergysourceforfuelproductionvery attractive.Theuseof biodieselfromjatrophaoilisapromisingalternativetofossilfuel becauseitisrenewable,andenvironmentallyfriendly,andcanalso beproducedlocally.

Conventionalindustrialtechnologyforthesynthesisofbiodiesel fromvegetable oils,involvesisolation of theoil fromtheseed, refining,andthentransesterification.Industrialoilextractionfrom oilseeds, is usually carried out by mechanical pressing with a hydraulicorsingleexpellerpress,followedbysolventextraction withn-hexane.Thehydraulicpressishighlyeffectiveforindustrial extractionofoilfromoilseedsbymechanicalpressing,butitisa dis-continuousprocess.However,thelasttwentyyearshasseenmuch, focusedresearchconcerningcontinuousoilextractionusing extru-siontechnology(Isobeetal.,1992;Croweetal.,2001;Wangand Johnson,2001;Singhetal.,2002;Zhengetal.,2003).Thisprocess inasingle-screwpress,iswidelyusedforoilseeds,witha single-screwofvariablepitchandchanneldepth,slowlyrotatinginacage

(3)

typebarrel(Isobeetal.,1992).However,transportofmaterialin thistypeofpress,dependsmainlyonfrictionbetweenthematerial andthebarrel’sinnersurfaceandscrewsurfaceduringscrew rota-tion.Thusasolid,corecomponentisoftennecessarytoproduce thisfriction,causingoverheating,highenergyconsumption,and oildeterioration.Furthermore,single-screwpressesprovide insuf-ficientcrushingandmixingiftheyarenotequippedwithbreaker bars,orotherspecialequipment.

Atwin-screw oilpress canbeexpectedtosolvethese prob-lemsbecauseofthehighertransportationforce,similartoagear pump,andbettermixingandcrushingatthetwin-screw inter-face,improvingmechanicallysisofthecells.Inaddition,energy consumption of the twin-screw press is more efficient (Isobe et al., 1992; Bouvier and Guyomard, 1997). Thus increasingly, twin-screw extrusion technologyhasbeen usedsuccessfully to undertakemechanical pressingof various oilseeds(Isobeet al., 1992; Guyomard, 1994; Bouvier and Guyomard, 1997; Lacaze-Dufaureetal.,1999;AmaliaKartikaetal.,2005,2006;Evonetal., 2007,2009;Faye,2010;Sritietal.,2012).

Theadvantagesoftwin-screwextrudersstemfromtheir capac-ity to carry out various functions and processes. According to

Dziezak(1989),theseinclude(i)anabilitytoprovidebetterprocess controlandversatility,especiallyinpumpingefficiency,controlof residencetimedistribution,anduniformityofprocessing,(ii)an abilitytoprocessspecialtyformulations,whichthesingle-screw extrudercannothandleand(iii)machinesetupflexibility,allowing self-cleaningmechanismsandrapidchangeoverofscrew configu-rationswithoutdisassemblingtheextruder.

Co-penetratingand co-rotatingtwin-screwextrudersarethe mostcommon(Dziezak,1989),andaverywidechoiceofscrew elementsisavailable.Thelatteraffectdifferentfunctionssuchas conveying,heating,cooling,shearing,crushing,mixing,chemical reactions,liquid/solidextraction,liquid/solidseparation,and dry-ing(Rigal, 1996).The screwprofiledefines thearrangement of screwelementswithdifferentcharacteristics(pitch,staggerangle, andlength)indifferentpositionsandwithdifferentspacing.Itis themainfactorinfluencingperformance(producttransformation, residencetimedistribution,andmechanicalenergyinput)during extrusionprocessing(Gogoietal.,1996;Choudhuryetal.,1998; GautamandChoudhury,1999a,b).

Theforwardpitchscrewsmainlyensureconveyingaction.The monolobepaddles exertradialcompressionand shearingaction onthematter buthave limited mixingability. The bilobe pad-dles,incombinationwithforwardpitchscrews,exertsignificant mixing,shearing,conveying,andaxialcompressionactionsonthe matter.Thebilobepaddlesfavortheintimatemixingrequiredfor theliquid/solidextractionofsolublecomponentsinthecell struc-ture.Finally,thereversepitchscrewsproduceintensiveshearing andconsiderablemixingofthematter,andexertastrongaxial compressionincombinationwiththeforwardpitchscrews(Rigal, 1996).Thereversepitchscrewsarefrequentlyusedtoputpressure onthematter,whichisessentialforthesubsequentseparationof liquidandsolidphasesbyfiltration.

When oleic sunflower oil is expressed using a twin-screw extruder,alongerreversepitchscrewimprovesoilyield,whichcan attain80%underoptimizedoperatingconditions(Lacaze-Dufaure etal.,1999).Whentworeverse pitchscrewsareused,oil yield increasesasthedistancebetweenthemincreases,andalsowith adecreaseinthescrewpitch(AmaliaKartikaetal.,2005).The opti-mumoilyieldobtainedwithsuchascrewconfigurationiscloseto 70%buttheintroductionofasecondfiltrationzoneimprovesthisto 85%(AmaliaKartikaetal.,2005).Thecorrespondingpresscake con-tainslessthan13%residualoilandthequalityoftheoilproduced issimilartothatobtainedusingtraditionalindustrialextraction.

For jatropha seeds, no previous study has dealt with the use of twin-screw extrusion technology for oil extraction by

mechanical pressing. However, the use of such a technology appearspromising,eveniftheequipmentandmaintenancecosts must be carefully considered. For the moment, mechanical oil extraction from jatropha seedsis generally carried out using a hydraulicpress(Tambunanetal.,2012)orasingleexpellerpress (KarajandMüller,2011;Pradhanetal.,2011;Ofori-Boatengetal., 2012).Similarly,oilextractionefficiencyisquitepromisingusing a KometD85-1G (Germany)mechanical screwpress(Karajand Müller,2011).Yieldinthiscaseattains89.3%(m/m)underoptimum operatingconditions(16mmforsinglescrewpitch,1.5mmmesh sizefor presscylinder,8mm fornozzle restrictorsize,220rpm forscrewrotationspeed,and4.0kg/hforthroughputofjatropha seeds), leading to a specific energy input of 462Wh/kg seed processed,orabout1.6kWh/kgexpressedoil.Residualoilcontent inthecorrespondingpresscakeisonly5.6%.

Thisstudyaimstoshowthataco-rotatingtwin-screwextruder can be used for the extraction of oil from jatropha seeds by mechanicalpressing.Itproposestoevaluatetheeffectsofscrew configuration,pressingtemperatureandscrewrotationspeedon oilextractionefficiency.Theextractionperformance characteriza-tionisassessedbydeterminingextractionyield,mechanicalenergy inputandoilquality.

2. Materialsandmethods 2.1. Materials

Alltrialswerecarriedoutusingasinglebatchofjatrophaseeds (IP2Lampungvariety)suppliedbytheIndonesianSpicesand Indus-trialCropsResearchInstitute(Sukabumi,Indonesia).Theharvested fruitswerefirstdriedatambienttemperature.Thecapsuleswere thenremovedmanuallytoobtaintheseeds,whichwere17–18mm long(x-axis),10–11mmwide(y-axis)and8–9mmthick(z-axis). Andinordertofacilitatetheirintroductionintothetwin-screw extruder,theywerecrushedbeforethestudyusingauniversal cut-tingmill(FritschPulverisette19,Germany)withnosieveinsert fitted.Aftermilling,mostofthekernelswereseparatedfromthe shellsinthegroundmaterial.Thesolidparticlesfromthekernels were10–13mmlong(x-axis),6–8mmwide(y-axis)and3–4mm thick (z-axis). The moisture content was 5.49±0.10% (French standardNFV03-903).Allsolventsandchemicalswereanalytical gradeandwereobtainedfromMerck(Germany),Macherey-Nagel (Germany),Sigma–Aldrich(USA)andProlabo(France).

2.2. Twin-screwextruder

Experiments wereconductedwith a ClextralBC21 (France) co-rotatingandco-penetratingtwin-screwextruder.Thisconsists oftwo identical,co-rotating andintermeshingscrews. The two shaftsturninthesame directionand thevariouspaired(twin) screwsetups,oppositeeachotherinthedifferentmodules,thus co-rotateandintermesh(co-penetrate).Ithadseven,100mmlong modularbarrels,anddifferenttwin-screwsmadeupof segmen-talscrewelements,25and50mminlength(Fig.1).Modules2,3, 4,5and7weretemperaturecontrolled(electricallyheated,and watercooled).Crushedjatrophaseedswerefedintotheextruder inletportusingavolumetricscrewfeeder(K-TronSoderKCL-KT20, Switzerland).Theyenteredasequenceofthreeoperations: convey-ing(forwardpitchscrews)inmodule1,trituration(asuccessionof 10monolobepaddlesandoneortwoseriesof10bilobepaddles)in modules2–4or5andpressing(reversepitchscrews)inmodule7. Afiltersectionconsistingoffourhemisphericaldisheswith500mm diameterperforationswaspositionedonmodule6toenablethe fil-trate(oilcontainingthe‘foot’,i.e.thesolidparticlesforcedthrough thefilter)tobecollected separatelyfromthepresscake.Screw

(4)

Fig.1.SchematicmodularbarreloftheClextralBC21twin-screwextruderusedforextractionofoilfromjatrophaseeds. rotationspeed(SS),seedfeedrate(QS),andbarreltemperature(c)

weremonitoredfromacontrolpanel.

Thefourscrewprofiles(1–4)testedinthisstudywerebasedon thoseusedinAmaliaKartikaetal.(2005,2006)forsunfloweroil extraction.Thedifferencesbetweenthemconcernedtheir tritura-tionzones,situatedinmodules2–4or5,andtheirpressingzones, situatedinmodule7.Thetriturationzonewascomposedofa suc-cessionof10monolobepaddlesandtwoseriesof10bilobepaddles forprofiles1and2.But,itwasshorterforprofiles3and4with10 monolobepaddlesandonlyoneseriesof10bilobepaddles.Forthe pressingzone,thereversepitchscrewsusedinprofiles1–3were 25mmlong,withapitchof−16mm.Theywerepositioned imme-diatelyafterthefiltrationmoduleforprofiles1and3,and25mm fromtheendofmodule6forprofile2.Thereversepitchscrewsused inprofile4werelonger(50mminsteadof25mm),theirpitchwas greater(−33mminsteadof−16mm),andtheywerepositioned immediatelyafterthefiltrationmodule.

2.3. Experimental

Thirteenexperimentswereconductedfortheexpressionofoil fromjatrophaseedsinthetwin-screwextruder(Table1). Differ-entoperatingconditionsweretestedincludingscrewprofile,screw rotationspeedandtemperatureinthepressingzone.Thefeedflow ofjatrophaseedswasaround5kg/hforalltheexperiments, mean-ingthatthedevice’sfillingcoefficientdependeddirectlyonthe screwrotationspeed.Foreachscrewprofiletested,thisspeedhad toremainabovea limitvaluetoavoid thetwin-screw extruder becomingclogged:55–60rpmforprofiles1and2,around65rpm forprofile3,andaround140rpmforprofile4,respectively.

Foreachexperiment,theextruderwaslefttofunctionfor30min beforeanysampling,toensurestabilizationoftheoperating con-ditions(seedfeedflow,temperature,andmotortorque).Afterthis, thefiltrateandthepresscakewereimmediatelycollected fora periodlongenough(30min),tominimizeanyvariationintheoutlet flowrates.Samplecollection,timedusingastopwatch,wascarried outonceforeachtrial,meaningthatthethirteenexperimentswere notreplicated.Thefiltrateandthepresscakewereweighed,andthe filtratewasthencentrifuged(8000×g,15min,20◦C)toeliminate thefoot.

Theoilyieldswerecalculatedfromthefollowingformulae: RL=QQF×TL

S×LS×100, (1)

whereRListheoilyieldrelativetothetotaloilthattheseedcontains

(%),QStheinletflowrateofjatrophaseeds(kg/h),QFtheflowrate

ofthefiltrate(kg/h),TLthemasscontentoftheexpressedoilinthe

filtrate(%),andLSthetotaloilcontentinthejatrophaseeds(%).

RC= (QS×LS)−(QC×LC)

QS×LS ×100, (2)

whereRCistheoilyieldbasedontheresidualoilcontentofthe

presscake(%),QCtheflowrateofthepresscake(kg/h),andLCthe

oilcontentinthepresscake(%).

AlthoughRLandRCareexpressedintermsoftheoilintheseed,

RC isalwayshigherthanRL becauseitincludesalltheoil inthe

filtrate(expressedoilplusoilinthefoot).

Theenergyconsumedbythemotorwasdeterminedfromthe followingformulae:

P=PM× SS

Smax×

T

Tmax×cos ϕ, (3)

wherePistheelectricalpowersuppliedbythemotor(W),PMthe

motor’spowerrating (PM=8300W), Tand Tmaxthetest torque

andmaximumtorque(100%)oftheextrudermotor(%),cosϕits theoreticalyield(cosϕ=0.90),andSSandSmaxthetestspeedand

maximumspeed(682rpm)oftherotatingscrews(rpm), respec-tively.

SME= P

QS, (4)

where SMEis thespecific mechanical energyconsumed bythe motorperunitweightofjatrophaseeds(Wh/kg).

SME′= P

QF×TL, (5)

where SME′ isthespecificmechanical energyconsumedbythe

motorperunitweightofexpressedoil(Wh/kg).

Fortrial13,theextruderwasstoppedimmediatelyafter sam-plecollection,andopenedinordertoobservethematterinside. Thiswascollectedintensuccessivezonesalongtheprofile(profile 4).Eachsamplecollectedwasweighed,anddriedovernightina ventilatedoven(105◦C)todetermineitsmoisturecontent.Then,

thesamplescollectedinzones1,4,6,and10wereobservedwitha NachetFranceZ45P(France)×15binocularmagnifier,andfive dif-ferentphotographsweretakenofeachsample,andanalyzedusing theArchimed4.0(France)software.Particlesizedistributionwas determinedbymanuallymeasuringthediameterofalltheparticles onthefivephotographs,usingtheImageJ(USA)software. 2.4. Analyticalmethods

Thevariousconstituentsweredeterminedaccordingtothe fol-lowingFrenchstandards:moisturecontentNFV03-903;mineral

(5)

Table 1 Results of the expression experiments conducted with the Clextral BC 21 twin-screw extruder. Trial number 1 2 3 4 5 6 7 8 9 10 11 12 13 Operating conditions Screw profile 1 2 2 2 3 3 3 4 4 4 4 4 4 SS (rpm) 65 66 79 93 76 73 73 153 170 191 212 150 150 QS (kg/h) 5.05 5.03 5.03 5.03 5.18 4.97 4.98 5.16 4.96 5.10 4.94 5.06 4.91 CF (g/h rpm) 77.7 76.5 63.7 54.1 68.4 68.0 68.3 33.8 29.2 26.7 23.3 33.7 32.8 c7 ( ◦C) 80 80 80 80 80 100 120 80 80 80 80 100 120 Filtrate Q F (kg/h) 1.96 1.36 1.21 0.84 1.90 1.52 1.62 1.72 1.61 1.64 1.57 1.59 1.55 TL (%) 43.9 34.9 0.0 0.0 48.9 43.2 45.5 67.7 68.6 64.7 57.6 64.2 61.2 TF (%) 56.1 65.1 100.0 100.0 51.1 56.8 54.5 32.3 31.4 35.3 42.4 35.8 38.8 HF (%) 4.13 ± 0.03 d 4.57 ± 0.04 a n.d. A n.d. A 4.15 ± 0.10 d 3.98 ± 0.03 e 4.15 ± 0.05 d 4.32 ± 0.08 bc 4.21 ± 0.06 cd 4.20 ± 0.10 cd 4.36 ± 0.04 b 4.38 ± 0.03 b 4.10 ± 0.02 de MF (% of dry matter) 5.25 ± 0.12 c 5.27 ± 0.08 c n.d. A n.d. A 5.56 ± 0.03 a 4.94 ± 0.02 d 5.42 ± 0.02 abc 5.04 ± 0.17 d 5.51 ± 0.03 a 5.54 ± 0.10 a 5.32 ± 0.06 bc 5.44 ± 0.03 ab 5.32 ± 0.02 bc Press cake QC (kg/h) 3.02 3.61 3.77 4.14 3.19 3.31 3.22 3.32 3.24 3.34 3.26 3.26 3.13 HC (%) 5.34 ± 0.07 a 4.80 ± 0.02 c 4.11 ± 0.00 e 4.11 ± 0.05 e 4.94 ± 0.14 b 3.15 ± 0.07 f 2.83 ± 0.08 g 4.16 ± 0.05 e 4.41 ± 0.00 d 4.15 ± 0.01 e 4.13 ± 0.08 e 1.59 ± 0.04 h 0.59 ± 0.00 i LC (% of dry matter) 5.88 ± 0.01 m 19.10 ± 0.05 c 25.54 ± 0.11 b 28.03 ± 0.01 a 6.76 ± 0.01 l 13.90 ± 0.00 d 13.28 ± 0.02 e 7.74 ± 0.01 k 7.98 ± 0.03 j 8.62 ± 0.08 g 8.96 ± 0.06 f 8.12 ± 0.02 i 8.28 ± 0.01 h MC (% of dry matter) 5.67 ± 0.14 bc 4.90 ± 0.03 f 4.42 ± 0.02 g 4.52 ± 0.14 g 5.58 ± 0.01 cd 5.35 ± 0.01 e 5.47 ± 0.01 d 5.92 ± 0.02 a 5.74 ± 0.00 b 5.75 ± 0.01 b 5.57 ± 0.02 cd 5.68 ± 0.00 bc 5.64 ± 0.01 bc PC (% of dry matter) 21.27 ± 0.02 fg 18.89 ± 0.19 i 17.73 ± 0.05 j 17.67 ± 0.07 j 21.46 ± 0.11 f 20.76 ± 0.12 h 21.12 ± 0.22 g 23.82 ± 0.14 a 23.11 ± 0.06 b 22.65 ± 0.03 c 21.94 ± 0.03 e 22.36 ± 0.16 d 22.32 ± 0.19 d Oil yields (%) RL 53.6 29.6 0.0 0.0 56.1 41.5 46.3 70.6 70.0 65.3 57.5 63.5 60.7 RC 89.6 59.1 42.4 30.6 87.6 71.8 73.8 85.0 84.4 83.0 82.2 83.8 83.5 Energy consumed T (%) 23.8 37.1 10.7 6.8 21.1 11.0 3.7 21.8 19.8 15.8 13.0 15.0 13.9 P (W) 169.1 267.6 92.3 68.8 175.2 88.0 29.3 365.0 368.7 331.2 301.9 246.4 229.1 SME (W h/kg seed processed) 33.5 53.2 18.3 13.7 33.8 17.7 5.9 70.8 74.3 64.9 61.1 48.7 46.6 SME ′ (W h/kg expressed oil) 196.1 563.2 – – 189.2 133.9 39.9 314.4 332.9 312.0 333.4 240.9 241.1 CF is the device’s filling coefficient (g/h rpm); it is defined as the ratio of the inlet flow rate of jatropha seeds (QS ) to the screw rotation speed (SS ). c7 is the barrel temperature at the level of module 7 ( ◦C). Modules 2–5 were heated to 80 ◦C for all trials. TF is the mass content of the foot in the filtrate (%). HF is the moisture content in the foot of the filtrate (%). MF is the mineral content in the foot of the filtrate (%). HC is the moisture content in the press cake (%). MC is the mineral content in the press cake (%). PC is the protein content in the press cake (%). Means in the same line with the same letter (a–m) are not significantly different at P < 0.05. A Non determined.

(6)

contentsNFV03-322;oilcontentsNFV03-908;proteincontents NFV18-100.Fortheoilcontentdetermination,jatrophaoilwas extracted fromtheinitialmaterial (seedsor press cakes)using theSoxhletextractionapparatusandn-hexaneasextracting sol-vent.Oilextractionwascarriedoutintwosuccessivestepseach of 5hduration, in orderto avoid underestimating theoil con-tent.Betweenthesetwosteps,thematerialwasregroundusing aFossCyclotec1093(Denmark)millfittedwitha300mmscreen. Alldeterminationswerecarriedoutinduplicate.

2.5. Oilqualityanalysis

The following quality parameters were calculated for the expressedoils;(i)theacidvalueandtheacidity(basedonoleic acid),expressedinmgofKOH/gofoilandin%,respectively(French standard NFT60-204),whichareanindicationoftheoil’sfree fattyacidcontent,(ii)theiodinevalue,expressedasthenumber ofcentigramsofiodineabsorbedpergramofoil(Frenchstandard NFT60-203),whichis ameasureofthedegreeofunsaturation oftheoil(thehighertheiodinevalue,thegreaterthedegreeof unsaturation),and(iii)thephosphoruscontent,expressedinmg ofphosphorusperkgofoil(FrenchstandardNFT60-227),which determinesphosphorusortheequivalentphosphatidecontentby ashingtheoilinthepresenceofmagnesiumoxide,followedby thespectrophotometricmeasurementofphosphorusasayellow phosphovanadomolybdiccomplex.Totalphospholipidcontentwas determinedbymultiplyingthephosphoruscontentby26,as sug-gestedintheFrenchstandardNFT60-227concerningvegetable oilsingeneral.Alldeterminationswerecarriedoutinduplicate.

Inaddition,thedensityofexpressedoils,inkg/m3,was

deter-minedat 25◦C usinga methoddescribed bytheAssociation of

OfficialAnalyticalChemists(AOAC,2006).Thedynamicviscosityof expressedoils,inmPas,wasmeasuredat40◦CusingaCarri-med

CSL100(USA)controlledstressrheometerequippedwitha cone-plategeometry(40mmdiameter,3◦59angle),andtheshearstress

appliedwas30N/m2.Thekinematicviscosityat40C,expressed

in10−6m2/s,wascalculatedastheratioofthedynamicviscosity

tothedensityof theoil. Alldeterminationswerecarriedoutin duplicate.

2.6. FattyacidcompositionofSoxhletextractedoil,andexpressed oilsfromjatrophaseeds

ThefattyacidcompositionofSoxhletextractedoil(i.e.theoil extractedfromjatrophaseedsusingtheSoxhletextraction appa-ratusandn-hexaneasextractingsolvent),andexpressedoils,was determinedbygaschromatography(GC).Thesampleanalyzedwas dilutedintert-butylmethylether(TBME)withaconcentrationof around20mg/mL.A100mLaliquotofthepreparedsamplewas thenconvertedtomethylestersaccordingtotheFrenchstandard NFISO5508using50mLof0.5mol/Ltrimethylsulfoniumhydroxide (TMSH)inmethanol.

ThefattyacidmethylesterswerethenanalyzedbyGCusing aVarian3800(USA)gaschromatograph,equippedwithaflame ionizationdetector.Thecarriergaswasheliumwithaflowrateof 1.2mL/min.MethylesterswereseparatedinaCPSelectCB (Var-ian,USA)fusedsilicacapillarycolumn(50m,0.25mmi.d.,0.25mm filmthickness).Theinitialoventemperaturewasheldat185◦Cfor

40min,increasedatarateof15◦C/minto250Candthenheldthere

for10min.Theinjectoranddetectortemperatureswere250◦C.All

determinationswerecarriedoutinduplicate. 2.7. Statisticalanalyses

Alldeterminationswereconductedinduplicateanddataare expressedasmeans±SD.Themeanswerecomparedbyusingthe

single-factoranalysisofvariance(ANOVA)followedbyDuncan’s multiplerange tests.Thedifferences betweenindividual means werefixedtobesignificantatP<0.05.Allanalyseswereperformed byusingtheSASdataanalysissoftware.

3. Resultsanddiscussion

3.1. Chemicalcompositionofthejatrophaseeds

The oil content of the jatropha seeds used in this study was 33.73±0.34% of the dry matter, and this agrees with the 22–48% results reported by some researchers (Achten et al., 2008; Becker and Makkar, 2008). Mineral and protein contents were4.81±0.08%of thedrymatterand 15.64±0.19% of the dry matter, respectively. The fatty acid composi-tion of the oil extracted from the jatropha seeds using the Soxhletextractionapparatusandn-hexaneasextractingsolvent wasmyristic(0.12±0.01%),palmitic (14.12±0.17%),palmitoleic (0.81±0.02%),stearic(7.14±0.29%),oleic(43.49±0.79%),linoleic (32.90±0.80%),linolenic (0.17±0.01%),arachidic (0.22±0.01%), gadoleic(0.33±0.02%),andbehenic(0.71±0.02%).Thus, theoil expressedinthisstudywasrichinoleicandlinoleicfattyacids,like otherjatrophaoilsdescribedintheliterature(Foidletal.,1996; Gubizetal.,1999;HaasandMittelbach,2000;Openshaw,2000; Achtenetal.,2008;BeckerandMakkar,2008;KumarandSharma, 2008),andcontained1.8±0.0%offreefattyacids.

3.2. Influenceoftheoperatingconditionsonoilextraction efficiency

Asobservedinpreviousstudiesdealingwiththeextractionof sunfloweroil (Lacaze-Dufaureetal.,1999;AmaliaKartikaetal., 2005,2006;Evonetal.,2007,2009), theextruderwaseffective becauseofitscapacitytocrushthejatrophaseedswhilst press-ing.Thetriturationzone(monolobeandbilobepaddles)reduced thesize ofthesolid particles significantly,and this mechanical actionledtothereleaseofpartoftheoil, andthecompressing actionbythereversepitchscrewswasessentialforliquid/solid separation. Positioned at the beginning of module 7, the CF2C reversepitchscrewspushedpartofthemixtureupstreamagainst thegeneralmovementintheextruder,andthiscounterpressure ensuredtheefficiencyoftheliquid/solidseparationabovethemetal filter.

Foralltheexperiments,filtratesamplesandpresscakesamples werealwayscollectedseparately.Theoilcontentinthepresscake waslowerthaninthejatrophaseedsanditvariedfrom28.0to5.9% ofthedrymatter(Table1)dependingontheoperatingconditions used.Thisledtoanoilyield(RC),basedontheresidualoilcontent

ofthepresscake,ofbetween30.6and89.6%(Table1).Logically, thehighertheoilyield(RC)thelowertheoilcontentinthepress

cake,andthisrelationwasindeedlinear.Theproteincontentinthe presscakewashigherthanintheactualjatrophaseedsduetothe oilexpression,anditvariedfrom17.7to23.8%ofthedrymatter (Table1).Inaddition,forallthescrewprofilestested,thelowerthe oilcontentinthepresscake,thehigheritsproteincontent.Theoil yield(RL),definedastheratiooftheexpressedoiltothetotaloil

thattheseedcontained,variedfrom0.0to70.6%(Table1).Itwas alwayslowerthantheoilyield(RC)duetotheoilcontainedinthe

filtratefoot(Fig.2),andthedifferencebetweenthesetwooilyields tendedtoincreasewithincreasingfiltratefootcontent.

Moreover,themasscontentofthefootinthefiltratewasat least31%,whichseemshighcomparedtovaluesgenerallyobtained withsingle-screwpresses(usuallylessthan5%).Theuseofafilter section with smallerperforations (less than 500mm in diame-ter),wouldprobablyreducetheamountofsolidparticlesforced

(7)

Fig.2.Variationinoilextractionyieldsfortrials1–13.

through,withoutpreventingtheoilfromdraining.However,sucha filtrationmodulecouldnotbetestedinthisstudy.Becausethefoot iscommonlyrecycledintothepressduringcommercialoperations, loweringthefiltratefootcontentwouldalsoreducetheamountof materialforrecycling,thusminimizingtheimpactonthroughput. Inthefirstscrewprofiletested(profile1),thetriturationzone wascomposedofasuccessionof10monolobepaddlesandtwo seriesof10bilobepaddles.Theobjectofsuchaconfigurationwas toobtainefficientmechanicallysisofthecellsandthereforegood releaseofoil.Thisgavethelowestpresscakeoilcontent,andthe highestoilyield(RC)ofthestudy(trial1):5.9%ofthedrymatter

and89.6%,respectively(Table1).However,thereductioninthesize ofthesolidparticleswassogreatthatthequantitydriventhrough thefilterwasveryhigh(56.1%forthemasscontentofthefootin thefiltrate).Consequently,theoilyield(RL)wasonly53.6%witha

ratherlowspecificmechanicalenergy(33.5Wh/kgseedprocessed or196.1Wh/kgexpressedoil).

Inthesecondscrewprofiletested(profile2),thereversescrew elementswereplaced25mmfromtheendofthefiltrationmodule inanattempttolowerthefootcontentinthefiltrate.However,the oppositewasobserved.Infact,thisexperiment(trial2),conducted atthesamescrewrotationspeedasthepreviousone(66rpm),gave ahighervalueforthefootmasscontentinthefiltrate:65.1%against 56.1%(Table1).Inaddition,theoilcontentinthepresscakewas muchhigher(19.1%ofthedrymatter),leadingtoadecreaseinboth oilyields(RCandRL):59.1and29.6%,respectively.Anincreasein

thefootcontentinthefiltrateleadingtohigherresidualoilcontent inthepresscake,isalsoobservedwithsingle-screwpressing.

Increasingthescrewrotationspeedfrom66to93rpm(trials 3and4)didnotimprovetheoilextraction.Indeed,itresultedin adecreaseinthemeanresidencetimeofthematterinthe twin-screwextruderandinadecreaseinthedevice’sfillingcoefficient from76.5to54.1g/hrpm(Table1),plusthecompressionofthe mixtureinthereversescrewelementswaslessefficient.Because theliquid/solidseparation wasmoredifficult,theoilcontentin thepress cakeincreasedfrom 19.1 to28.0% ofthedry matter, andtheoilyield(RC)decreased from59.1to30.6%.Inaddition,

thecentrifugationappliedtothefiltratesfromtrials3and4did notmanagetoseparateanyexpressedoilfromthefoot,andthus theoilyield(RL)was0%forboth.Whenthescrewrotationspeed

wasatleast79rpm,themechanicalactioninthetriturationzone wasprobablytoointenseandthesolidparticlessosmall,thatthey weredriventhroughthefilterveryeasily.Theuseofafiltersection

withsmallerperforationscouldreducethisphenomenon.But,as mentionedabove,suchasolutioncouldnotbeconsideredforthis study.

Profile3consistedofreducingthelengthofthetriturationzone (10monolobepaddlesandonlyoneseriesof10bilobepaddles), withthesamepressingzoneasforprofile1.Afirstattempt(trial5) wasconductedwithascrewrotationspeedof76rpmtoavoid clog-gingthemachine,andwiththesamepressingtemperatureasfor theprevioustrials(80◦C).Thereductionofthemechanicalaction

inthetriturationzoneledtoaslightdecreaseinthefootmass con-tentinthefiltrate:51.1%insteadof56.1%fortrial1(Table1).But, suchadifferencehadnosignificanteffectontheoilcontentinthe presscake,ontheoilyields(RCandRL),oronthespecific

mechani-calenergy:6.8%ofthedrymatterinsteadof5.9%ofthedrymatter fortrial1,87.6%insteadof89.6%fortrial1,56.1%insteadof53.6% fortrial1,and189.2Wh/kgexpressedoilinsteadof196.1Wh/kg expressedoilfortrial1,respectively.

Twoother experiments were conducted withprofile 3. The screwrotationspeedwasverysimilar(73rpm),buttwodifferent pressingtemperatureswereused:100◦Cfortrial6and120Cfor

trial7.Theflowofmaterialacrossthereversepitchscrewsbecame lessviscouswiththeincreaseinpressingtemperature,andthisled toalessefficientliquid/solidseparation.Consequently,theoil con-tentinthepresscakewasatleast13.3%ofthedrymatter(trial 7)insteadof6.8%ofthedrymatterat80◦C,andtheoilyield(RC)

decreasedfrom87.6to71.8%and73.8%(trials5,6and7), respec-tively(Table1).Moreover,bothfiltrateshadaslightlyhigherfoot contentthanfor trial5:56.8 and54.5%, respectively.However, thesetwovalueswerestilltoohigh,and theoil yield(RL)

logi-callydecreasedfrom56.1%at80◦Cto41.5%at100Cand46.3%at

120◦C.

Afourthscrewprofilewasalsotested(profile4).Itconsisted ofusing anothertypeof reversescrewelementin thepressing zone,withlongerCF2Cscrews(50mminsteadof25mm),andwith ahigher i.e.lessrestrictive pitch(−33mm insteadof −16mm). However,thetriturationzoneremainedthesameasforprofile3, i.e.10monolobepaddlesand10bilobepaddles.Sixexperiments wereconductedwiththisprofile(trials8–13).BecausetheCF2C screwswerelonger,thedevice’s fillingcoefficientneededtobe lowerwiththisprofile(4)thanwiththethreeothers,toavoid clog-gingthetwin-screwextruder:nohigherthan33.8g/hrpminstead of54.1–77.7g/hrpmfortrials1–7(Table1).Trials8–11evaluated theinfluenceofscrewrotationspeed(from153to212rpm)on

(8)

oilextractionefficiency,usingapressingtemperatureof80◦C.The

effectofthelatterwasmeasuredintrials8,12and13whereitwas 80–120◦Cwithascrewrotationspeedofbetween150and153rpm.

Themasscontentofthefootinthefiltratewasnevermorethan 42.4%fortrials8–13,comparedtoatleast51.1%foralltheother trials,meaningthatthereversescrewelementsusedinprofile4, loweredthefiltrate’sfootcontentsignificantly.

For trials 8–11, the decrease in screw rotation speed from 212rpm(trial11)to153(trial8)directlyaffectedthedevice’s fill-ingcoefficient,increasingitfrom23.3to33.8g/hrpm(Table1). Thus,thedegreeoffilloftheCF2Cscrewsincreasedasscrew rota-tionspeeddecreased,andthisledtoabetterpressingactiononthe matterandsotoamoreefficientliquid/solidseparation.Thiswas demonstratedbytheincreasein themotor’storquefrom13.0% (trial11)to21.8%(trial8)andbythecorrespondingdecreasein thepresscakeoilcontentfrom9.0to7.7%ofthedrymatter. Conse-quently,theoilyield(RC)increasedslightlywithdecreasingscrew

rotationspeed:from82.2%(trial11)to85.0%(trial8).Becausethe masscontentofthefootinthefiltratedecreasedatthesametime (from42.4to32.3%),theoilyield(RL)alsoincreased,butmore

sig-nificantly:from57.5%(trial11)to70.6%(trial8).Thesametendency hasbeenpreviouslyobservedforsunfloweroilexpression(Amalia Kartikaetal.,2005,2006).However,theoilextractionefficiency wasnotreallydifferentforthetwolowestvaluesofscrewrotation speed:70.0%fortheoilyield(RL)at170rpm(trial9)and70.6%

at153rpm(trial 8),respectively.Moreover,evenifthemotor’s torqueincreasedwithadecreaseinscrewrotationspeed,the spe-cificmechanicalenergyperunitweightofexpressedoilwaslargely independentofthedevice’sfilling:between312and333Wh/kg.

Fortheoptimalscrewrotationspeed(around150rpm), increas-ingthepressingtemperaturefrom80to120◦C(trials8,12and

13)didnotimproveoilextractionefficiency(Table1),asalready mentionedintheliterature,forsunflowerseeds(AmaliaKartika etal.,2005,2006).Indeed,theinfluenceofpressingtemperature ontheresidencetimeandenergyinputissignificantlycorrelated withmaterialviscosityanddegreeoffill(GautamandChoudhury,

1999a).The highest degreeof fill wasobtained whenthe flow of materialacrosstheCF2C screws wasmore viscous,thusthe residencetime and theenergyinput decreasedwithincreasing pressingtemperature.Thisledtoadecreaseinthemotor’storque (from21.8to13.9%),toanincreaseinthepresscakeoilcontent (from7.7to8.3%ofthedrymatter),toanincreaseinthefiltrate’s footcontent(from32.3to38.8%),toaslightdecreaseintheoilyield (RC)(from85.0to83.5%),andaboveall,toasignificantdecreasein

theoilyield(RL)(from70.6to60.7%).

Inconclusion,thehighestoilyield(RL)forthisstudywas70.6%,

obtainedunderthefollowingoperatingconditions:profile4screw configuration,153rpmscrewrotationspeed,5.16kg/hinletflow rateofjatropha seeds,and80◦C pressingtemperature.In

addi-tion,thecorrespondingpresscakequalitywassatisfactory(only 7.7%residualoilcontentofthedrymatter).Moreover,thespecific mechanicalenergywas71Wh/kgseedprocessedor314Wh/kg expressedoil,whichismuchlowerthantheenergyinputneeded withamechanicalscrewpressofasimilarscale(462Wh/kgseed processedorabout1.6kWh/kgexpressedoil)(KarajandMüller, 2011).However,thesevaluesneedtobeconfirmedwhenthe jat-rophaoilisextractedwithtwin-screwextrudersofhighercapacity. Theamountoffootinthefiltratewasstillhighundertheseoptimal conditions(32.3%).Thecorrespondingthroughputwas0.55kg/h, and itrepresented 11%oftheinlet flow rateofjatropha seeds. Andonceagain,reducingthediameterofperforationsinthefilter sectionshoulddiminishthefiltratefootcontent.

Theshutdownandopeningofthetwin-screwextruderatthe endoftrial13madeitpossibletoobservethelocationofthematter inside,alongtheoptimizedscrewprofile(profile4).Themonolobe paddles(DM)andespecially thebilobe paddles(BB)werefilled morethantheconveyingelementssituatedinmodules1–3(Fig.3). Theircrushingabilitywasconfirmedbythereductioninthesize ofthesolidparticlesobservedaftereachofthesetworestrictions (Fig.4):553mmand377mmfortheaverageparticlesize, respec-tively,compared to1094mmattheinlet.Because oftheirhigh pressingactiononthematter,leadingtotheliquid/solid

separa-Fig.3.Drysolidmassresultsforthecontentsofthetwin-screwextruder:drysolidmass( )andmoisturecontent()ofthematterinside,collectedintenzonesalong profile4followingshutdownandopeningofthetwin-screwextruderattheendoftrial13.Foreachzone,thedrysolidmassindicatedcorrespondstothemasscollected overa50mmzonelength.T2F,trapezoidaldouble-threadscrew;C2F,conveyingdouble-threadscrew;DM,monolobepaddle-screw;BB,bilobepaddle-screw;CF2C,reverse screw.ThenumbersfollowingthetypeofscrewindicatethepitchofT2F,C2F,andCF2CscrewsandthelengthoftheDMandBBscrews.

(9)

Fig.4. Cumulativenumberofparticlesasafunctionofparticlesizeforthematterinside,collectedattheendoftrial13,inzones1,4,6,and10alongprofile4.

tion,theCF2Cscrews(zone9)werelogicallytheelementsofthe screwprofilewhichweremostfilled(Fig.3).Theintensiveshearing appliedtothematteralsocontributedtoanadditionalreductionin thesizeofsolidparticles(Fig.4):only274mmfortheaveragesize inthepresscake.

3.3. Influenceofoperatingconditionsonoilquality

Theaverageacidvaluesofexpressedoils(Table2)compared favorablywiththoseobtainedfromtheliterature(Akintayo,2004; Meheretal.,2009;Pradhan etal.,2011).Theacidvaluewasat least5.6mgofKOH/g ofoil fortheexpressedoilsfromprofiles 1–3,andthetwohighestacidvalueswereobtainedfortrials1and 2:9.2mgofKOH/gofoiland6.6mgofKOH/gofoil,respectively. And thesetwo trials wereassociated with thehighest motor’s torquevalues:23.8and37.1%,respectively(Table1).Consequently, greatermechanicalactiononthemattercouldperhapscontribute toanincreaseinthehydrolysisofthetriglycerides.Thelowestacid valueswereobtainedfortheexpressedoilsproducedusingthe optimalscrewprofile(profile4):from5.0to5.4mgofKOH/gof oil,orfrom2.5to2.7%fortheacidity(Table2).Thesevaluesare quiteacceptableforsubsequentsynthesisofbiodiesel.Indeed,the acidvaluehassignificanteffectsonthetransesterificationof trigly-cerideswithalcohol,usingacatalyst(Goodrum,2002).Inalkaline transesterification,thefreefattyacidsquicklyreactwiththe cata-lysttoproducesoapsthatareexceedinglydifficulttoseparate,and thismayreducethequantityofcatalystavailablefor transesterifi-cation,loweringtheyieldofbiodieselproduct.Thesoapsproduced, cancauseanincreaseinviscosityandtheappearanceofgels,and alsomaketheseparationofglyceroldifficult(Qianetal.,2008).Low, freefattyacidcontentintheoil(lessthan3%),isthereforerequired foralkali-catalyzedtransesterification(CanakciandGerpen,2001). Theiodinevalueisameasureofthelevelofunsaturatedfatsand oils.Ahigheriodinevalueindicatesahigherlevelofunsaturated fatsandoils(KyriakidisandKatsiloulis,2000;Knothe,2002).For thisstudy,theaverageiodinevaluesforexpressedoilswerequite stable(from73.0to79.6gofiodine/100gofoil)evenifmostofthe lowestiodinevalueswereobtainedfortheexpressedoilsproduced usingtheoptimalscrewprofile(profile4):from73.1to75.5gof iodine/100gofoil.Thiswasconfirmedbythefattyacid composi-tionofexpressedoilsthatwaslargelyindependentoftheoperating conditionsusedwiththetwin-screwextruder.Asfortheoil con-tainedinthejatrophaseeds,alltheexpressedoilswererichinoleic andlinoleicfattyacids:42.9–44.0%and33.0–34.9%,respectively. Andatthesametime,thecontentsofpalmitic,palmitoleic and stearicfattyacidswere:14.1–14.9%,0.7–0.8%and6.9–7.3%, respec-tively.However,theiodinevalueswerelowerthansomereported

in theliterature (92.5–107.0gof iodine/100gof oil) (Akintayo, 2004;Meheretal.,2009;Pradhanetal.,2011),indicatingthatthe expressedoilsproducedinthisstudywerecomposedofglycerides withlessunsaturatedfattyacids.

Thephosphoruscontentofoilextractedfromjatrophaseeds usingtheSoxhletextractionapparatusandn-hexaneas extract-ing solvent, was 178.1±12.7mg/kg of oil, corresponding to 4631±330mg of phospholipids/kg of oil. This appeared to be higherthansomeliteraturevalues:110–150mgofphosphorus/kg ofoilinthecaseofjatrophaoilsextractedunderthesame condi-tions(Nareshetal.,2012).Generally,thephosphoruscontentin theexpressedoilswaslowerthanintheSoxhletextractedoilfrom jatrophaseeds(Table2),givingreadingsfortrials2–9thatwere withintheliteraturevalues.Theexpressedoilrichestin phospho-lipids,wasproducedwithprofile1(178.3mgofphosphorus/kgof oilor 4635mg ofphospholipids/kgofoil), andwaspairedwith thepresscakepoorestinlipids(only5.9%ofthedrymatterfor itsoilcontent)(Table1).Thisindicatesthathere,jatrophaseeds weresubjecttointensecrushing,leadingtomoreefficient rup-turingofcellwallsandsotoahigherco-extractionofmembrane phospholipids.Conversely,theexpressedoilfromprofile2was thepoorestinphospholipids(104.1mgofphosphorus/kgofoilor 2708mgofphospholipids/kgofoil),andthecorrespondingpress cake had a highoil content(19.1% of the dry matter). For the expressedoilsfromtheoptimalscrewprofile(profile4),ahigh screwspeedfavoredco-extractionofthephospholipidsduetothe increaseinshearingaction.Indeed,thephosphoruscontentwas around130mg/kgofoilwithascrewspeedbelow170rpm (tri-als8and9),anditreached170mg/kgofoilwithascrewspeed ofatleast191rpm(trials10and11).Similarly,itincreasedfrom 130.1to174.2mg/kgofoil whenthepressingtemperaturewas increasedfrom80to120◦C(trials8,12and13).Thisfacilitated

moreeffectivedryingoftheseeds,thusmoreefficientcrushing, duetotheirreducedelasticity,attheleveloftheCF2Cscrews.And thisintensecrushing,rupturedthecellwallsandledtoamore effi-cientco-extractionofthemembranephospholipids,aspreviously reportedbyLacaze-Dufaureetal.(1999)andAmaliaKartikaetal. (2005,2006)forsunfloweroilextractioninatwin-screwextruder. Thesamephenomenonwasalsoobservedfortheexpressedoils fromprofile3,wherethehighestphosphoruscontent(144.9mg/kg ofoil)correspondedtothe120◦Cpressingtemperature(trial7).

However,ifnecessary, phospholipidscan beremovedfromthe expressedoilsusingadegummingprocess.Arecentstudyshowed that the phosphoruscontent of an oil extracted from jatropha seeds by mechanical pressing, decreased from 46 to approxi-mately2.3mg/kg of oil aftercombining water degumming and

(10)

Table 2 Quality of expressed oils. Trial number 1 2 5 6 7 8 9 10 11 12 13 Acid value (mg of KOH/g of oil) 9.16 ± 0.00 a 6.57 ± 0.03 b 6.26 ± 0.02 c 6.19 ± 0.04 d 5.55 ± 0.01 e 5.39 ± 0.00 f 5.14 ± 0.00 g 5.00 ± 0.01 i 5.01 ± 0.00 i 5.00 ± 0.01 i 5.03 ± 0.02 h Acidity (%) 4.54 ± 0.00 a 3.25 ± 0.01 b 3.10 ± 0.01 c 3.07 ± 0.02 d 2.75 ± 0.01 e 2.67 ± 0.00 f 2.55 ± 0.00 g 2.48 ± 0.00 h 2.48 ± 0.00 h 2.48 ± 0.00 h 2.49 ± 0.01 h Phosphorus content (mg/kg of oil) 178.3 ± 12.3 a 104.1 ± 6.7 d 128.1 ± 4.9 bc 115.2 ± 6.1 cd 144.9 ± 8.9 b 130.1 ± 7.8 bc 127.6 ± 6.8 bc 172.5 ± 9.2 a 169.2 ± 4.9 a 168.4 ± 5.4 a 174.2 ± 9.3 a Phospholipids content (mg/kg of oil) 4635 ± 321 a 2708 ± 175 d 3330 ± 128 bc 2996 ± 159 cd 3768 ± 232 b 3382 ± 202 bc 3317 ± 177 bc 4486 ± 239 a 4399 ± 128 a 4378 ± 141 a 4528 ± 241 a Means in the same line with the same letter (a–i) are not significantly different at P < 0.05.

aciddegumming steps,andit waslessthan1mg/kgofoilafter membranefiltration(Liuetal.,2012).

The density of the expressed oils was between 915.0 and 917.8kg/m3, meaningthat it wasrelatively independentofthe

twin-screw extrusionconditions,aspreviouslyobservedforthe iodinevalue.Atthesametime,thedynamicviscositywasbetween 30.2and34.5mPasandthekinematicviscositybetween32.9and 37.7×10−6m2/s,whichareclosetotheacceptablevaluesquoted

intheliteratureforjatrophaoil(Akintayo,2004;Meheretal.,2009; Pradhanetal.,2011).

3.4. Potentialusesofthepresscakes

In this study, theoil content in thepress cakewas atleast 5.9%ofthedrymatter(Table1).Althoughthiscouldbea disad-vantage fordirect utilizationof thecake,it couldbeconverted intousableenergybycombustion,gasificationorpyrolysis(Yorgun etal.,2001;Gerc¸el,2002).Asamixtureofproteinsand lignocellu-losicfiberscomingmainlyfromtheshellsbutalsofromthekernel breakdownprocess,thepresscakecanalsobeconsideredasa nat-uralcomposite.Thus,itcouldbetransformedintobiodegradable and value-addedagromaterialsbythermo-pressing(Evon etal., 2010a,b,2012),byinjection molding(Rouillyetal.,2006)orby usingacastingtechnique(Gueguenetal.,1998).Finally,thepress cakecouldactasreinforcingfillerforabiodegradablepolymer,i.e. polycaprolactone(PCL),andhavepotentialusesinbiocomposite applications(Diebeletal.,2012).

4. Conclusion

Theextractionofoilfromjatrophaseedsbymechanical press-ingwascarriedoutusingthetwin-screwextrusiontechnology.The operatingconditions(screw configuration,screwrotationspeed and pressing temperature) had an important influence on the oil yield, thespecificmechanical energy and thequality ofthe expressedoil.Thelowestfootcontentsforthefiltrate(31–42%), wereobtainedwith10monolobepaddlesand10bilobepaddles in thetrituration zone,and with−33mmreversepitch screws, 50mminlength,inthepressingzone.Theoilyieldwasatleast57% withsuchascrewprofile,anditsystematicallyincreasedasthe screwrotationspeed andpressingtemperatureweredecreased. Thehighestoil yieldof71%wasobtainedunderoperating con-ditionsof153rpmand80◦C(5.16kg/hfortheinletflowrateof

jatrophaseeds).But,themasscontentofthefootinthefiltratewas high(32%)undertheseconditions.Thequalityofthe correspond-ingpresscakewasreasonable,witharesidualoilcontentofless than8%ofthedrymatter.Moreover,theextrusionprocessusing theoptimaloperatingconditions,producedanoilofgoodquality forbiodieselproduction,andatamoderatecost.

References

Achten,W.M.J.,Verchot,L.,Franken,Y.J.,Mathijs,E.,Singh,V.P.,Aerts,R.,Muys,B., 2008.Jatrophabio-dieselproductionanduse.BiomassBioenergy32,1063–1084. Akintayo,E.T.,2004.CharacteristicsandcompositionofParkiabiglobbossaand

Jat-rophacurcasoilsandcakes.Bioresour.Technol.92,307–310.

AmaliaKartika,I.,Pontalier,P.Y.,Rigal,L.,2005.Oilextractionofoleicsunflower seedsbytwinscrewextruder:influenceofscrewconfigurationandoperating conditions.Ind.CropsProd.22,207–222.

AmaliaKartika,I.,Pontalier,P.Y.,Rigal,L.,2006.Extractionofsunfloweroilbytwin screwextruder:screwconfigurationandoperatingconditioneffects.Bioresour. Technol.97,2302–2310.

AOAC,2006.OfficialMethodsofAnalysisofAOACInternational,18thed.Association ofOfficialAnalyticalChemists,Washington,DC.

Becker,K.,Makkar,H.P.S.,2008.Jatrophacurcas:abiodieselsourcefortomorrow’s oilandbiodiesel.LipidTechnol.20,104–107.

Bouvier,J.M.,Guyomard,P.,1997.Methodandinstallationforcontinuousextraction ofaliquidcontainedinarawmaterial.PCT/FR97/00696.

Canakci,M.,Gerpen,J.V.,2001.Biodieselfromoilsandfatswithhighfreefattyacids. Trans.Am.Soc.Agric.Eng.44,1429–1436.

(11)

Choudhury,G.S.,Gogoi,B.K.,Oswalt,A.J.,1998.Twinscrewextrusionofpinksalmon muscleandriceflourblends:effectsofkneadingelements.J.Aquat.FoodProd. Technol.7,69–91.

Crowe,T.W.,Johnson,L.A.,Wang,T.,2001.Characterizationofextruded-expelled soybeanflours.J.Am.OilChem.Soc.78,775–779.

Diebel,W.,Reddy,M.M.,Misra,M.,Mohanty,A.,2012.Materialproperty charac-terizationofco-productsfrombiofuelindustries:potentialusesinvalue-added biocomposites.BiomassBioenergy37,88–96.

Dziezak,J.D.,1989.Singleandtwin-screwextrudersinfoodprocessing.Food Tech-nol.,164–174.

Evon,Ph.,Vandenbossche,V.,Pontalier,P.Y.,Rigal,L.,2007.Directextractionofoil fromsunflowerseedsbytwin-screwextruderaccordingtoanaqueous extrac-tionprocess:feasibilitystudyandinfluenceofoperatingconditions.Ind.Crops Prod.26,351–359.

Evon,Ph.,Vandenbossche,V.,Pontalier,P.Y.,Rigal,L.,2009.Aqueousextractionof residualoilfromsunflowerpresscakeusingatwin-screwextruder:feasibility study.Ind.CropsProd.29,455–465.

Evon,Ph.,Vandenbossche,V.,Pontalier,P.Y.,Rigal,L.,2010a.Thermo-mechanical behaviouroftheraffinateresultingfromtheaqueousextractionofsunflower wholeplantintwin-screwextruder:manufacturingofbiodegradable agroma-terialsbythermo-pressing.Adv.Mater.Res.112,63–72.

Evon,Ph., Vandenbossche,V.,Pontalier, P.Y.,Rigal,L.,2010b.The twin-screw extrusiontechnology,anoriginalandpowerfulsolutionforthebiorefineryof sunflowerwholeplant.Ol.CorpsGrasLi.17,404–417.

Evon,Ph.,Vandenbossche,V., Rigal,L.,2012.Manufacturingofrenewableand biodegradablefiberboardsfromcakegeneratedduringbiorefineryofsunflower wholeplantintwin-screwextruder:influenceofthermo-pressingconditions. Polym.Degrad.Stab.97,1940–1947.

Faye, M., 2010. Nouveau procédé de fractionnement de la graine de Neem (AzadirachtaindicaA.Jussi)sénégalais:productiond’unbio-pesticide,d’huile etdetourteau.PhDThesis.INP,Toulouse,France.

Foidl,N.,Foidl,G.G.,Sanchez,M.,Mittelbach,M.,Hackel,S.,1996.JatrophacurcasL. asasourcefortheproductionofbiofuelinNicaragua.Bioresour.Technol.58, 77–82.

Gautam,A.,Choudhury,G.S.,1999a.Screwconfigurationeffectonresidencetime distributionandmixingintwin-screwextruderduringextrusionofriceflour.J. FoodProcessEng.22,263–285.

Gautam,A.,Choudhury,G.S.,1999b.Screwconfigurationeffectonstarch break-downduringtwinscrewextrusionofriceflour.J.FoodProcess.Preserv.23, 355–375.

Gerc¸el,H.F.,2002.Theproductionandevaluationofbio-oilsfromthepyrolysisof sunflower-oilcake.BiomassBioenergy23,307–314.

Gogoi,B.K.,Choudhury,G.S.,Oswalt,A.J.,1996.Effectsoflocationandspacingof reversedscrewandkneadingelementcombinationduringtwin-screwextrusion ofstarchyandproteinaceousblends.FoodRes.Int.29,505–512.

Goodrum,J.W.,2002.Volatilityandboilingpointsofbiodieselfromvegetableoils andtallow.BiomassBioenergy22,205–211.

Gubiz,G.M.,Mittelbach,M.,Trabi,M.,1999.Exploitationofthetropicaloilseedplant JatrophacurcasL.Bioresour.Technol.67,73–82.

Gueguen,J.,Viroben,G.,Noireaux,P.,Subirade,M.,1998.Influenceofplasticizer andtreatmentonthepropertiesoffilmfrompeaproteins.Ind.CropsProd.7, 149–157.

Guyomard,P.,1994.Studyoftheuseofatwin-screwextruderinpressing-extrusion ofoleagineousseeds.PhDThesis.UniversitéTechnologiquedeCompiègne, France.

Haas,W.,Mittelbach,M.,2000.Detoxificationexperimentswiththeseedoilfrom JatrophacurcasL.Ind.CropsProd.12,111–118.

Isobe,S.,Zuber,F.,Uemura,K.,Noguchi,A.,1992.Anewtwin-screwpressdesignfor oilextractionofdehulledsunflowerseeds.J.Am.OilChem.Soc.69,884–889. Karaj,S.,Müller,J.,2011.OptimizingmechanicaloilextractionofJatrophacurcas

L.seedswithrespecttopresscapacity,oilrecoveryandenergyefficiency.Ind. CropsProd.34,1010–1016.

Knothe,G.,2002.StructureindicesinFAchemistry.Howrelevantistheiodinevalue? J.Am.OilChem.Soc.9,847–853.

Kumar,A.,Sharma,S.,2008.Anevaluationofmultipurposeoilseedcropfor indus-trialuses(JatrophacurcasL.):areview.Ind.CropsProd.28,1–10.

Kyriakidis,N.B.,Katsiloulis,T.,2000.Calculationofiodinevaluefrommeasurements offattyacidmethylestersofsomeoils:comparisonwiththerelevantAmerican OilChemists’Societymethod.J.Am.OilChem.Soc.77,1235–1238.

Lacaze-Dufaure,C.,Leyris,J.,Rigal,L.,Mouloungui,Z.,1999.Atwin-screwextruder foroilextraction:I.Directexpressionofoleicsunflowerseeds.J.Am.OilChem. Soc.76,1073–1079.

Liu,K.T.,Gao,S.,Chung,T.W.,Huang,C.M.,Lin,Y.S.,2012.Effectofprocessconditions ontheremovalofphospholipidsfromJatrophacurcasoilduringthedegumming process.Chem.Eng.Res.Des.90,1381–1386.

Meher,L.C.,Naik,S.N.,Naik,M.K.,Dalai,A.K.,2009.Biodieselproductionusing Karanja(Pongamiapinnata)andJatropha(Jatrophacurcas)seedoil.In:Pandey, A.(Ed.),HandbookofPlant-basedBiofuels.CRCPress,NewYork,p.257. Naresh,B.,SrikanthReddy,M.,Vijayalakshmi,P.,Reddy,V.,Devi,P.,2012.

Physico-chemicalscreeningofaccessionsofJatrophacurcasforbiodieselproduction. BiomassBioenergy40,155–161.

Ofori-Boateng,C.,Teong,L.K.,JitKang,L.,2012.Comparativeexergyanalysesof Jatrophacurcasoilextractionmethods:solventandmechanicalextraction pro-cesses.EnergyConvers.Manage.55,164–171.

Openshaw,K.,2000.AreviewofJatrophacurcas:anoilplantofunfulfilledpromise. BiomassBioenergy19,1–15.

Pradhan,R.C.,Mishra,S.,Naik,S.N.,Bhatnagar,N.,Vijay,V.K.,2011.Oilexpression fromJatrophaseedsusingascrewpressexpeller.Biosyst.Eng.109,158–166. Qian,J.,Wang,F.,Liu,S.,Yun,Z.,2008.Insitualkalinetransesterificationof

cotton-seedoilforproductionofbiodieselandnontoxiccottonseedmeal.Bioresour. Technol.99,9009–9012.

Rigal,L.,1996.Twin-screwExtrusionTechnologyandFractionationofVegetable Matter.ENSC,Toulouse,France.

Rouilly,A.,Orliac,O.,Silvestre,F.,Rigal,L.,2006.Newnaturalinjection-moldable compositematerialfromsunfloweroilcake.Bioresour.Technol.97,553–561. Singh,K.K.,Wiesenborn,D.P.,Tostenson,K.,Kangas,N.,2002.Influenceofmoisture

contentandcookingonscrewpressingofcrambeseed.J.Am.OilChem.Soc.79, 165–170.

Sriti,J.,Msaada,K.,Talou,T.,Faye,M.,AmaliaKartika,I.,Marzouk,B.,2012. Extrac-tionofcorianderoilbytwin-screwextruder:screwconfigurationandoperating conditionseffect.Ind.CropsProd.40,355–360.

Tambunan,A.H.,Situmorang,J.P.,Silip,J.J.,Joelianingsih,A.,Araki,T.,2012.Yieldand physicochemicalpropertiesofmechanicallyextractedcrudeJatrophacurcasL. oil.BiomassBioenergy43,12–17.

Wang,T.,Johnson,L.A.,2001.Refiningnormalandgeneticallyenhancedsoybean oilsobtainedbyvariousextractionmethods.J.Am.OilChem.Soc.78,809–815. Yorgun,S.,S¸ensöz,S.,Koc¸kar,Ö.M.,2001.Flashpyrolysisofsunfloweroilcakefor

productionofliquidfuels.J.Anal.Appl.Pyrolysis60,1–12.

Zheng,Y.,Wiesenborn,D.P.,Tostenson,K.,Kangas,N.,2003.Screwpressingofwhole anddehulledflaxseedfororganicoil.J.Am.OilChem.Soc.80,1039–1045.

Figure

Fig. 1. Schematic modular barrel of the Clextral BC 21 twin-screw extruder used for extraction of oil from jatropha seeds.
Fig. 2. Variation in oil extraction yields for trials 1–13.
Fig. 3. Dry solid mass results for the contents of the twin-screw extruder: dry solid mass ( ) and moisture content () of the matter inside, collected in ten zones along profile 4 following shutdown and opening of the twin-screw extruder at the end of tri
Fig. 4. Cumulative number of particles as a function of particle size for the matter inside, collected at the end of trial 13, in zones 1, 4, 6, and 10 along profile 4.

Références

Documents relatifs

Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over

We study semi-Lagrangian discontinuous Galerkin (SLDG) and Runge- Kutta discontinuous Galerkin (RKDG) schemes for some front propagation prob- lems in the presence of an obstacle

nis pour la résolution de l'équation aux dérivées partielles régissant les écoulements hydrodynamiques en milieu poreux nécessite la construc- tion d'un maillage

Sarah Rugheimer, University of Oxford Jacob Lustig-Yaeger, University of Washington Renyu Hu, Jet Propulsion Laboratory Eliza Kempton, University of Maryland Giada Arney,

In this study, we investigated the effects of acute and subacute administration of the methanolic fruit extract of Citrullus colocynthis (CCT) in male Albino Wistar rats.. The

Des études menées auprès de mères adultes et adolescentes suggèrent que la mesure des différentes sources de soutien et des différents types de soutien offre

A total of 3,696 SLE problems are solved, covering 57 binary blends, 3 pure vegetable oils and 171 ternary blends problems, before and after chemical interesterification