• Aucun résultat trouvé

Port-Hamiltonian formulation and symplectic discretization of plate models. Part II : Kirchhoff model for thin plates

N/A
N/A
Protected

Academic year: 2021

Partager "Port-Hamiltonian formulation and symplectic discretization of plate models. Part II : Kirchhoff model for thin plates"

Copied!
22
0
0

Texte intégral

(1)



$Q\FRUUHVSRQGHQFHFRQFHUQLQJWKLVVHUYLFHVKRXOGEHVHQWWRWKHUHSRVLWRU\DGPLQLVWUDWRU

WHFKRDWDR#OLVWHVGLIILQSWRXORXVHIU

2

SHQ

$

UFKLYH

7

RXORXVH

$

UFKLYH

2

XYHUWH

2$7$2



2$7$2 LV DQ RSHQ DFFHVV UHSRVLWRU\ WKDW FROOHFWV WKH ZRUN RI VRPH 7RXORXVH

UHVHDUFKHUVDQGPDNHVLWIUHHO\DYDLODEOHRYHUWKHZHEZKHUHSRVVLEOH

7KLVLVYHUVLRQSXEOLVKHGLQ

7RFLWHWKLVYHUVLRQ 











2IILFLDO85/ 

an author's

https://oatao.univ-toulouse.fr/23901

https://doi.org/10.1016/j.apm.2019.04.036

Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis Port-Hamiltonian

formulation and symplectic discretization of plate models. Part II : Kirchhoff model for thin plates. (2019) Applied

Mathematical Modelling, 75. 961-981. ISSN 0307-904X

(2)

Port-Hamiltonian

formulation

and

symplectic

discretization

of

plate

models

Part

II:

Kirchhoff model

for

thin

plates

Andrea

Brugnoli

,

Daniel

Alazard

,

Valérie

Pommier-Budinger

,

Denis

Matignon

ISAE-SUPAERO, Université de Toulouse, 10 Avenue Edouard Belin, BP-54032, Cedex 4, Toulouse 31055, France

a

r

t

i

c

l

e

i

n

f

o

Keywords:

Port-Hamiltonian systems Kirchhoff plate

Partitioned Finite Element Method Geometric spatial discretization Boundary control

a

b

s

t

r

a

c

t

Themechanicalmodelofathinplatewithboundarycontrolandobservationispresented asaport-Hamiltoniansystem(PHs1),bothinvectorialandtensorialforms:the Kirchhoff-Lovemodel ofaplateisdescribedbyusingaStokes-Diracstructure andthisrepresents anovelty withrespecttotheexisting literature.Thisformulation iscarriedoutbothin vectorialand tensorialforms.Thankstotensorialcalculus,thismodelisfoundtomimic theinterconnectionstructure ofitsone-dimensionalcounterpart, i.e.theEuler-Bernoulli beam.

ThePartitionedFiniteElementMethod(PFEM2)isthenextendedtoobtainasuitable,i.e. structure-preserving,weak form.The discretization procedure, performedon the vecto-rialformulation,leadstoafinite-dimensionalport-Hamiltoniansystem.ThispartIIofthe companionpaperextendspartI,dedicatedtotheMindlinmodelforthickplates.Thethin platemodelcomesalongwithadditional difficulties,becauseofthehigher orderofthe differentialoperatorunderconsideration.

Introduction

AspresentedinpartIofthiscompanionpaper,theport-Hamiltonian(PH)formalism[1–3]allowsthestructured model-inganddiscretizationofmulti-physicsapplicationsinvolvinginterconnectedfinite-andinfinite-dimensionalsystems[4,5]. Preservingthe port-Hamiltonianstructure inthe discretizationprocess is akeypoint to take benefitof thispowerful for-malism.Thisissuewasfirst addressedin [6],witha mixedfinite elementspatialdiscretization method,andin[7],with pseudo-spectralmethodsrelying onhigher-orderglobalpolynomialapproximations. Allthosemethodsare difficultto im-plement,especially forthosesystemthe spatialdimensionof whichisbiggerthan one. Veryrecentlyweak formulations whichleadtoGalerkinnumericalapproximationsbegantobeexplored:in[8],astructurepreservingfiniteelementmethod wasintroducedforthewaveequationinatwo-dimensionaldomain;thismethodexhibitsgoodresults,bothinthespectral analysisandsimulationpart,thoughrequiringofaprimal anda dualmeshonthegeometryoftheproblem. Another ap-proachisthePartitionedFiniteElementMethod(PFEM)proposedin[9],alreadylargelyexploredinpartIofthiscompanion paper.Theadvantagesofthislattermethodology areits simplicityofimplementationandits potential tocarry overto a

Corresponding author.

E-mail addresses: Andrea.Brugnoli@isae.fr (A. Brugnoli), Daniel.Alazard@isae.fr (D. Alazard), Valerie.Budinger@isae.fr (V. Pommier-Budinger),

Denis.Matignon@isae.fr (D. Matignon).

1 PHs stands for port-Hamiltonian systems. 2 PFEM stands for partitioned finite element method.

(3)

widesetofexamples,nomatterthespatialdimensionoftheproblem.ThepossibleuseofopensourcesoftwarelikeFEniCS

[10]orFiredrake[11]isalsoanappealingfeatureofthislattermethod.

InpartIIofthiscompanionpaper,themodelinganddiscretizationofthinplatesdescribedby theKirchhoff-Loveplate modeliscarriedoutwithinthePHframework,allowingforboundarycontrolandobservation.Theexistingliterature deal-ingwiththesymplecticHamiltonianformulationoftheKirchhoff plate[12,13]focusedmainlyonanalyticalsolutionforthe free vibrationproblem. Thisapproach ispowerfulwhenevereasy solutionare sought forbutdoesnot extendtosystems

interconnectedincomplexmanners.Furthermore,platemodelswereinvestigatedwithingtheport-Hamiltonianframework

using jet theory [14,15],butthe numerical implementationof such models remains cumbersome.The main contribution

ofthispaperconcernstherepresentationoftheKirchhoff plateusingtheconceptofStokes-Diracstructure,sototake ad-vantagefromthemodularityofthisgeometricstructure.Thisformalism ispresentedbothinvectorialandtensorialforms. Moreover, thetensorial formalism [16, Chapter16] highlights that this model mimicsthe interconnection structureof its one-dimensional counterpart,i.e.theEuler-Bernoulli beam.Comparedto partIdedicatedto thickplateMindlinmodelin whichfirst-orderdifferential operatorsare exploredin dimensiontwo,andcompared to[17]in whichsecond-or higher-order differential operators were explored indimension one only, the contributionof thispaper is the PHformalism of systemsofdimensiontwodescribedwithsecond-orderdifferentialoperators,suchastheKirchhoff-Lovemodel.Themodel, oncewritteninatensorialform,highlightsnewinsightsonsecond-orderdifferentialoperators:especiallythedouble diver-genceandtheHessianareprovedtobeadjointoperatorsoneofanother,whichrepresentsanotherimportantcontribution ofthispaper.Finally,theextensionofthePFEMmethodtothestructure-preservingdiscretizationoftheKirchhoff modelis alsoanoveltyofthepaper.Itallows simpleimplementationofnumericalschemescomparedtothejet theoryformalism, whilepreservingthestructureofPHSatthediscretelevel.Thelastsectionisdedicatedtonumericalstudiesofthismodel usingFiredrake[11].

1. Second-orderdistributedPHsystems:Euler-Bernoullibeam

TheEuler-Bernoullibeamistheone-dimensionalequivalentoftheKirchhoff-Loveplate.ThismodelconsistsofonePDE, describingtheverticaldisplacementalongthebeamlength:

ρ

(

x

)

2w

t2

(

x,t

)

+

2

x2



EI

(

x

)

2w

x2



=0, x

(

0,L

)

,t≥ 0, (1)

wherew(x,t)isthetransversedisplacementofthebeam. Thecoefficients

ρ

(x),E(x)andI(x)arethemassperunit length,

Young’s modulus of elasticity and the moment of inertia of a cross section. The energy variables are then chosen as

follows:

α

w=

ρ

(

x

)

w

t

(

x,t

)

, LinearMomentum,

α

κ =

2w

x2

(

x,t

)

, Curvature. (2)

Those variablesarecollected inthevector

α

=

(

α

w,

α

κ

)

T,sothatthe Hamiltoniancan bewrittenasaquadratic

func-tionalintheenergyvariables:

H=1 2 L 0

α

TQ

α

dx, where Q=



1 ρ(x) 0 0 EI

(

x

)



. (3)

Theco-energyvariablesarefoundbycomputingthevariationalderivativeoftheHamiltonian:

ew:=

H

α

w =

w

t

(

x,t

)

, Verticalvelocity, eκ :=

H

α

κ =EI

(

x

)

2w

x2

(

x,t

)

, Flexuralmomentum. (4)

Those variablesareagaincollected invectore=

(

ew,eκ

)

T, sothatthe underlyinginterconnectionstructure isthenfound

tobe:

α

t =Je, where J=



0 −2 ∂x2 2 ∂x2 0



. (5)

Foraninfinite-dimensionalsystem,boundaryvariableshavetobedefinedaswell.Thosecanbefoundbyevaluatingthe energyrateflow acrosstheboundary. Onepossible choiceamongothers(see [18]foramore exhaustiveexplanation)for

(4)

Fig. 1. Kinematic assumption for the Kirchhoff plate.

thismodelisthefollowing:

f=

ew

(

0

)

ew

x

(

0

)

x

(

L

)

eκ

(

L

)

, e=

eκ

x

(

0

)

−eκ

(

0

)

−ew

(

L

)

ew

x

(

L

)

. (6)

Thepowerflowistheneasilyevaluatedas:

d dtH

(

t

)

=  L 0

α

t · edx=



e∂,f



IR4. (7)

Theflowvariablescannowbedefinedasf=αt,sothattheflowspaceisgivenbythetuples

(

f,f

)

F.Equivalently theeffortspaceisgivenby

(

e,e

)

E.ThebondspaceisthereforetheCartesianproductofthesetwospaces:

B:=

{

(

f,f,e,e

)

F× E

}

. (8)

ThedualitypairingbetweenelementsofB isthendefinedasfollows: 

((

fa,fa

)

,

(

ea,ea

))

,

((

fb,fb∂

)

,

(

eb,eb∂

))

:= L 0

(

fa

)

Teb+

(

fb

)

Tea



dx+

(

fa

)

Teb∂+

(

fb∂

)

Tfa∂. (9)

TheStokes-DiracstructurefortheEuler-Bernoullibeamistherefore:

Theorem1 (From [17], Stokes-Diracstructure for the Bernoulli beam). Considerthe space of powervariables B definedin

(8)andthebilinearform(+pairingoperator)  ,  givenby(9).DefinethefollowinglinearsubspaceD⊂ F× E:

D=

{

(

f,f,e,e

)

F× E

|

f =−Je

}

, (10)

wheref ande weredefinedin(6).Then,itholdsD=D,whereDisunderstoodin thesenseoforthogonalitywithrespect tothebilinearproduct  ,  ,i.eD isaStokes-Diracstructure.

Remark1. Forwhatconcernstheuseofthismodelforcontrolandsimulationpurposes,thereadercanreferto[19]fora stabilityandstabilizationproofoftheEuler-Bernoullibeamorto[20]foranillustrationofarotatingspacecraftwithflexible

appendagesmodelasPHBernoullibeams.

2. Kirchhoff-Lovetheoryforthinplates

Inthissectiontheclassicalvariationalapproach(Hamilton’sprinciple)toderivetheequationofmotionsisfirstdetailed. Thephysicalquantitiesinvolvedandthedifferentenergies,ofutmostimportanceforthePHformalism,arereminded.

2.1. Modelandassociatedvariationalformulation

TheKirchhoff-Love plateformulationrestsonthe hypothesis ofsmallthicknesscomparedto theinplane dimensions.

The notationsandsymbolsare borrowedform Cook etal.[21,22].The displacement field andthe strainsare defined by

assumingthatfibersorthogonaltothemiddleplaneremainorthogonal(seeFig.1).Thisleadstothefollowingrelationsfor thedisplacementfield

(5)

u

(

x,y,z

)

=−z

w

x,

v

(

x,y,z

)

=−z

w

y, w

(

x,y,z

)

=w

(

x,y

)

(11)

andforthestrains



=





xx



yy

γ

xy



=

∂x 0 0 y ∂y ∂∂x



−z∂∂wx −z∂w ∂y



=−z

2w ∂x2 2w ∂y2 22w ∂x∂y

. (12)

Thecurvaturevectorisdefinedas:

κ

=



κ

xx

κ

yy

κ

xy



=

2w ∂x2 2w ∂y2 22w ∂x∂y

. (13)

Hooke’sconstitutivelawforisotropicmaterialisconsideredfortheconstitutiverelation:

σ

=E



, E:= E 1−

ν

2



1

ν

0

ν

1 0 0 0 1−ν 2



. (14)

where

ν

isPoisson’sratioandEYoung’smodulus.Thesephysicalparametersmaybeinhomogeneous,i.e.

ν

=

ν

(

x,y,z

)

,E=

E

(

x,y,z

)

.Thegeneralizedmomentaarefoundbyintegratingthestressesalongthefiber:

M=



M xx Myy Mxy



=



 h 2 −h 2 Ez2dz



κ

,

wherehistheplatethickness.Therelationbetweenmomentaandcurvaturesisexpressedbythebendingrigiditymatrix D: M=D

κ

D:=  h 2 −h 2 Ez2dz. (15)

NowtheclassicalKirchhoff-Lovemodelforthinplatescanberecalled[23]:

μ∂

2tw2 +

2M xx

x2 +2

2M xy

x

y +

2M yy

y2 =0, (16)

where

μ

=

ρ

histhesurfacedensityand

ρ

themassdensity.IftheE and

ν

coefficientsareconstant,thentherulingPDE becomes:

μ∂

2tw2 +D

2w=p, (17) where

2= 4 ∂x4 +2 4 ∂x4y4+ 4

∂y4 isthebiLaplacianandD=

Eh3

12(1−ν2) isthebendingrigiditymodulus.Thekineticand poten-tialenergydensitiesperunitareaK andU,arerespectivelygivenby:

K= 1 2

μ



w

t



2 , U=1 2M·

κ

.

Thetotalenergydensityissplitintokineticandpotentialenergy

H=K+U, (18)

andthecorrespondingtotalenergiesgivenbythefollowingrelations:

H=  Hd

,

K=  Kd

,

U=  U d

.

(19)

3. PHformulationoftheKirchhoff plate

In this section the port-Hamiltonian formulation of the Kirchhoff plate is presented first in vectorial form in

(6)

3.1. PHvectorialformulationoftheKirchhoff plate

Toobtainaport-Hamiltoniansystem(PHs)theenergyvariablesaswellastheunderlyingStokes-Diracstructure, associ-atedwiththeskew-adjointoperatorJ,havetobeproperlydefined.ConsidertheHamiltonianenergy:

H=  1 2



μ



w

t



2 +M·

κ



d

=  1 2



μ



wt



2 +

κ

TD

κ



d

.

(20)

Theenergyvariablesarethenselectedtobethelinearmomentum

μ

∂w

∂t andthecurvatures

κ

,inananalogousfashionwith

respecttothe one-dimensionalcounterpartofthismodel,the Euler-Bernoullibeam. Theenergyvariables arecollected in vector

α

:=

(

μ

wt,

κ

xx,

κ

yy,

κ

xy

)

T, (21)

wherewt= wt.TheHamiltoniandensityisgivenbythefollowingexpression:

H=1 2

α

T



1 μ 0 0 D



α

, H=  Hd

.

(22)

Soitsvariationalderivativeprovidesasco-energyvariables:

e:=

H

α

=

(

wt, Mxx, Myy, Mxy

)

T, (23)

Theport-Hamiltoniansystemandskew-symmetricoperatorrelatingenergyandco-energyvariablesarefoundtobe:

α

t =Je and J:=

0 −2 ∂x2 − 2 ∂y2 −



2 ∂x∂y+ 2 ∂y∂x



2 ∂x2 0 0 0 2 ∂y2 0 0 0 2 ∂x∂y+ 2 ∂y∂x 0 0 0

. (24)

Thefirstlineoftheskew-symmetricoperatorin(24)isfoundbyconsideringEq.(16).TheremaininglinesexpressClairaut’s theoremfortheverticaldisplacement.Thistheoremstatesthat,forsmoothfunctions,higherorderpartialderivative com-mute.

Remark 2. From theSchwarz theorem forC2 functionsthe mixedderivative could be be expressed as2 2

∂x∂y,instead of

2

∂y∂x+

2

∂x∂y.However, inthiswaythesymmetryintrinsicallypresentin

κ

xy=

2w

∂y∂x+

2w

∂x∂y wouldbelost.Themixed

deriva-tiveisheresplittoreestablishthesymmetricnatureofcurvaturesandmomenta(thatareoftensorialnatureasexplained laterinSection3.2).

TheboundaryvariablesareobtainedbyevaluatingthetimederivativeoftheHamiltonian: ˙ H= 

H

α

·

α

t d

= 



wt



2Mxx

x2 −

2M xx

y2 − 2

2M xy

x

y



+Mxx

2w t

x2 +Myy

2w t

y2 +2Mxy

2w t

x

y



d

= 



e1



2e2

x2 −

2e 3

y2 − 2

2e 4

x

y



+e2

2e 1

x2 +e3

2e 1

y2 +2e4

2e 1

x

y



d

InFig.2thenotationsforthedifferentreferenceframesareintroduced.ByapplyingGreentheorem,consideringthesplit mixedderivative(2x2y=∂x∂2y+ 2 ∂y∂x): ˙ H= 



nx



e2

e1

x +e4

e1

y − e1

e2

x − e1

e4

y



+ny



e3

e1

y +e4

e1

x − e1

e3

y − e1

e4

x



ds. (25)

wherenx,nyarethecomponentsalongthex− andthey−axisofthenormaltotheboundary.Thevariableofintegrations

(7)

Fig. 2. Reference frames and notations.

Fig. 3. Cauchy law for momenta and forces at the boundary.

Ifthephysicalvariablesareintroduced,then ˙ H= 



nx



Mxx

wt

x +Mxy

wt

y − wt

Mxx

x − wt

Mxy

y



+ny



Myy

wt

y +Mxy

wt

x − wt

Myy

y − wt

Mxy

x



ds. (26)

Nowthefollowingquantities,representedinFig.3,aredefined: ShearForce qn:=nxqx+nyqy, Flexuralmomentum Mnn:=nT



Mxxnx+Mxyny Mxynx+Myyny



, Torsionalmomentum Mns:=sT



Mxxnx+Mxyny Mxynx+Myyny



, n=



nx ny



, s=



−ny nx



, (27)

whereqx=−∂Mxxx∂Myxy and qy=−Myyy∂Mxxy. Thegradient ofthe verticalvelocity can beprojected upon thenormal

andtangentialdirectionstotheboundary:

wt=

(

wt· n

)

n+

(

wt· s

)

s=

wt

n n+

wt

s s. (28)

SothetimederivativeoftheHamiltoniancanbefinallywrittenas: ˙ H= 



wtqn+

wt

s Mns+

wt

n Mnn



ds. (29)

Variableswtandwst arenotindependentastheyaredifferentiallyrelatedwithrespecttoderivationalongs,thecurvilinear

abscissaoftheboundarydomain(seeforinstance[23]).Anotherintegrationbypartisneededtohighlightappropriate in-dependentpowerconjugatedvariables.Letussupposethattheboundaryisaclosedandregularcurve.Thentheintegration bypartsalongaclosedboundaryleadsto:



wt

s Mnsds=− 

Mns

s wt ds. (30)

Theenergybalancecanbefinallywrittenas: ˙ H= 



wtqn+

wt

n Mnn



ds, (31)

whereqn:=qn∂Msns istheeffectiveshearforce.Eq.(31)isofutmostimportance,sinceitcontainstheboundaryvariables

(8)

3.1.1. UnderlyingStokes-Diracstructure

LetF denote the flow spaceand let E denote theeffort space.Forsimplicity we take F≡ E=C

(

,R4

)

, thespace

of smooth vector-valued functionsin R4. Eq.(31) allows identifying the boundary terms of the underlying Stokes-Dirac

structures.Thespaceofboundaryvariablesisavectoroffourcomponentsgivenby:

Z=

{

z

|

z=B

(

e

)

,

eE

}

, z=



 qn,wt,Mnn,

wt

n



T .

InthecasewherethedifferentialJoperatoroforderone,theB operatorisalinearoperatoroverthetraceoftheeffort variables..Here,sincethedifferentialJisofordertwo,B containsthenormalandtangentialderivativesattheboundary andsomoreregularityisrequiredfortheboundaryvariables.

Remark3. Thisfactwasalreadystatedfor1-Dsystemsin[17];hereitistheextensionto2-Dsystemwithasecond-order differentialoperatorJ.

Thisoperatorreads:

B

(

e

)

=

0 0 0 0 1 0 0 0 0 n2 x n2y 2nxny 0 0 0 0

e

0 nx 0 ny 0 0 0 0 0 0 0 0 0 0 0 0

ex

0 0 ny nx 0 0 0 0 0 0 0 0 0 0 0 0

ey +

n

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

e

s

0 −nxny nxny n2x− n2y 0 0 0 0 0 0 0 0 0 0 0 0

e

. (32) Theorem2(Stokes-DiracstructurefrtheKirchhoff Plate). Theset

D:=



(

f,e,z

)

F× E× Z

|

f =−

α

t =−Je, z=B∂

(

e

)



(33)

isaStokes-Diracstructurewithrespecttothepairing



(

f1,e1,z1

)

,

(

f2,e2,z2

)

 =  e T 1f2+eT2f1

!

d

+  ∂BJ

(

z1,z2

)

ds, (34)

whereBJisasymmetricoperator,arisingfromadoubleapplicationoftheGreentheorem.Itreads

BJ

(

z1,z2

)

=qn,2 wt,1+Mnn,2

wt,1

n +qn,1 wt,2+Mnn,1

wt,2

n =zT 1BJz2 , BJ=

0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0

. (35)

Proof.Aregularboundarywillbeassumedfortheproof. StepI.ThefirstimplicationisD⊆ DT.Thisistrueif

ω

α=

(

fα,eα,zα

)

and

ω

β=

(

fβ,eβ,zβ

)

∈Dthen

ω

α,

ω

β=0. Theintegraloverthedomainreads:

 e T αfβ+efα

!

d

= 



1



2eβ 2

x2 +

2eβ 3

y2 +

2eβ 4

x

y



− eα2

2eβ 1

x2 − eα3

2eβ 1

y2 − 24

2eβ 1

x

y+e β 1



2eα 2

x2 +

2eα 3

y2 +

2eα 4

x

y



− eβ2

21

x2 − e β 3

2eα 1

y2 − 2e β 4

2eα 1

x

y



d

.

OncetheGreentheoremhasbeenapplied,therelevantquantitiesexpressedbyEq.(27)popupasfollows:  e T αfβ+efα

!

d

= 



1



2

x nx+

3

yny+

4

ynx+

4

x ny



+1



2

x nx+

3

yny+

4

ynx+

4

x ny



− eα2

1

x nx− e β 2

1

xnx −eα3

1

yny− e β 3

1

yny− eα4



1

ynx+

1

x ny



− eβ4



1

ynx+

1

xny



ds. (36)

(9)

− 



tqβn+wβtqαn+

t

n M β nn+

wtβ

n Mnnα



ds=−  ∂BJ

(

zα,zβ

)

ds. (37)

Thisconcludesthefirstpartoftheproof.

StepIIForthesecond implication,i.e.D⊆ D.Letustake

ω

αD,

ω

βD. Thenthe bilinearform, oncetheGreen theoremhasbeenapplied,providesthefollowing





1



f1α

22

x2 −

2eα 3

y2 − 2

2eα 4

x

y



+2



f2α+

21

x2



+3



f3α+

21

y2



+ 4



f4α+2

2eα 1

x

y



d

+ 



t



2

x nx+

3

yny+

4

ynx+

4

yny



−qβneα1−

t

x 2nx

t

y 3ny− eα4



t

y nx+

t

x ny



1

x M β xxnx

1

yM β yyny −Mβxy



1

ynx+

1

x ny



+qβnz1α+wtβzα2+Mβnnzα3+

t

n z β 4



ds=0. (38) Sincetherelationhastobevalidforeach

ω

βD thefluxandeffortvariablesareinD.Fortheboundarytermsthesame procedureasbeforehastobeappliedbyconsideringthedefinitionofthemomentaovertheboundary(seeEq.(27)).Then itcanbestatedthat

ω

αD. 

3.1.2. Includingdissipationandexternalforcesinthemodel

Distributedforcesorcontrol anddissipativerelationscanbeeasilyincludedinanaugmentedStokes-Diracstructureby simplydefiningtheappropriateconjugatedvariables.

Ifdistributedforceshavetobeconsidered,thentheset

Dd:=

(

f,fd,e,ed,z

)

F× Fd× E× Ed× Z

|

f =−

α

t =−Je− Gdfd, ed=Gde, z=B∂

(

e

)



(39) isaStokes-Diracstructurewithrespecttotheparing



(

f1,fd,1e1,ed,1,z1

)

,

(

f2,fd,2e2,ed,2,z2

)

 =  e T 1f2+eT2f1+ed,T1fd,2+eTd,2fd,1

!

d

+  ∂BJ

(

z1,z2

)

ds. (40)

Ifgravityhastobeincluded,thenGd=[1,0,0,0]T,fd=−

μ

g.

AnalogouslydissipationcanbeincludedinanaugmentedDiracstructure.Asanexample,therulingPDE,oncea dissipa-tivetermoffluiddampingtypeisconsidered,reads:

μ∂

2tw2 +r

w

t +

2M xx

x2 +2

2M xy

x

y +

2M yy

y2 =0, (41)

wherer>0isthedampingcoefficient.Ifthisequationisrewrittenusingtheport-Hamiltonianformalismthenweget:

α

t =

(

J− R

)

e, R:=

r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. (42)

TheRmatrix,whichisasymmetric,semi-positivedefiniteoperator,canbedecomposedas

R=GRSGR, (43)

whereS=r isacoerciveoperator(inthiscasesimplyapositivescalar),GR=

(

1000

)

T andGRdenotestheadjointoperator

toGR.Theaugmentedstructure

Dr:=

(

f,fr

)

F,

(

e,er

)

E, zZ

|

f=−

α

t =−Je− GRfr, fr=−Ser, er=GRe, z=B∂

(

e

)



(44) isaStokes-Diracstructurewithrespecttotheparing

(10)



(

f1,fr,1,e1,er,1,z1

)

,

(

f2,fr,2,e2,er,2,z2

)

 =  e T 1f2+eT2f1+eTr,1fr,2+eTr,2fr,1

!

d

+  ∂BJ

(

z1,z2

)

ds. (45)

Remark4. Moreinvolveddissipationmodelscanbefoundin[24].Morespecifically,forKirchhoff plate,somespecific damp-ingmodelscanbefoundin[25].

3.2.PHtensorialformulationoftheKirchhoff plate

InSection3.1theStokes-DiracstructureoftheKirchhoff platewasfoundbyusingavectorialnotationforthecurvatures andmomenta.Infactthesevariablesareoftensorialnatureandinthefollowingthetensorialformulationtakestheplace ofthevectorialone.Firstletusrewritethemomentaandcurvaturesassymmetricmatrices(correspondingtothechoiceof aCartesianframefortherepresentationoftensors):

K=



κ

xx

κ

xy

κ

xy

κ

yy



, M=



Mxx Mxy Mxy Myy



, (46)

wherenow,withaslightabuseofnotation,

κ

xy differsby 1/2fromthedefinitiongiveninEq.(13),i.e.

κ

xy=

2w

∂x∂y.Allthe

otherquantitiesstaythesamewithrespecttowhatstatedinSection2.1.TheHamiltonianenergyiswrittenas:

H= 



1 2

μ



w

t



2 +1 2M:K



d

,

(47)

wherethetensorcontractioninCartesiancoordinatesisexpressedas M:K=

2

"

i, j=1

Mi j

κ

i j=Tr

(

MTK

)

.

Forwhatconcernsthechoiceoftheenergyvariables,ascalarandatensorvariableareconsidered:

α

w=

μ∂

w

t , Aκ =K. (48)

Theco-energyvariablesarefoundbycomputingthevariationalderivativeoftheHamiltonian:

ew:=

H

α

w =

w

t :=wt, Eκ :=

H

Aκ =M. (49)

Remark5. Forthevariationalderivativewithrespecttoatensor,seePropostion1in[26]. Theport-Hamiltoniansystem(24)isnowrewrittenas:

α

w

t =−div

(

Div

(

Eκ

))

,

Aκ

t =Grad

(

grad

(

ew

))

, (50)

wheredivandDivdenotethedivergenceofavectorandofatensorrespectively.TheoperatorGraddenotesthesymmetric gradient:

Grad

(

a

)

= 1 2



a+

(

a

)

T



. (51)

TheoperatorGrad◦gradcorrespondstotheHessianoperator.InCartesiancoordinatesitreads: Grad◦ grad=



2 ∂x2 2 ∂x∂y 2 ∂y∂x 2 ∂y2



. (52)

Theorem3. TheoperatorGrad◦grad,correspondingtotheHessianoperator,istheadjointofthedoubledivergencediv◦Div.

Proof.LetusconsidertheHilbertspaceofthesquareintegrablesymmetricsquaretensorsofsizen× noveranopen con-nectedset

.ThisspacewillbedenotedbyH1=L2

(

,Rnsym×n

)

.Thisspaceisendowedwiththeintegralofthetensor

con-tractionasscalarproduct:



E,F



H1=  E:Fd

=  Tr

(

E TF

)

d

,

E,F[L2 sym

()

]n×n.

ConsidertheHilbertspaceH2=L2

()

ofscalarsquareintegrablefunctions,endowedwiththeinnerproduct:



e,f



H2 =



(11)

Letusconsiderthedoubledivergenceoperatordefinedas:

A: H1→H2,

E→div

(

Div

(

E

))

=e, withe=div

(

Div

(

E

))

=

n " i=1 n " j=1

2E i j

xi

xj. WeshallidentifyAA∗: H2→H1, fAf=F, suchthat



AE,f



H2=



E,Af



H1,

E∈Domain

(

A

)

H1

f∈Domain

(

A

)

H2.

Thefunction havetobelong totheoperatordomain,soforinstance fC2

0

()

∈Domain

(

A

)

thespaceoftwice

differ-entiablescalar functionswithcompactsupport onan open simply connectedset

andadditionallyE canbe chosen in

thesetC2

0

(

,R2sym×2

)

∈Domain

(

A

)

,thespaceoftwicedifferentiable 2× 2 symmetrictensorswithcompactsupporton

.A

classicalresultisthefactthattheadjointofthevectordivergenceisdiv∗=−gradasstatedin[27].Thismaybegeneralized totheadjointofthetensordivergenceDiv∗=−Grad(seeTheorem4of[26]).ConsideringthatAisthecompositionoftwo differentoperatorsA=div◦ Divandthattheadjointofacomposedoperatoristheadjointofeachoperatorinreverseorder, i.e.

(

B◦ C

)

=C◦ B,thenitcanbestated

A∗=

(

div◦ Div

)

=Div◦ div=Grad◦ grad.

Sinceonlyformaladjointsarebeinglookedfor,thisconcludestheproof. 

Ifthevariablesinsystem(50)aregatheredtogethertheformallyskew-symmetricoperatorJcanbehighlighted:

t



α

w Aκ



=



0 −div◦ Div Grad◦ grad 0



&

'(

)

J



ew Eκ



. (54)

whereallzerosareintendedasnullifyingoperatorfromthespaceofinputvariablestothespaceofoutputvariables.

Remark6. TheinterconnectionstructureJnowresemblesthatoftheBernoullibeam.Thedoubledivergenceandthedouble gradientcoincide,indimensionone,withthesecondderivative.

AgaintheboundaryportvariablescanbefoundbyevaluatingthetimederivativeoftheHamiltonian: ˙ H= 



α

w

t ew+

Aκ

t :Eκ



d

= 

{

−div

(

Div

(

Eκ

))

ew+Grad

(

grad

(

ew

))

:Eκ

}

d

, Integrationbyparts

= 

−n

&

· Div

'(

(

Eκ

)

)

qn ew+[ngrad

(

ew

)

]:Eκ

ds, See(27)and(28) = 

qnew+

ew

n

(

&

n

'(

n

)

:Eκ

)

Mnn +

ew

s

(

&

n

'(

s

)

:Eκ

)

Mns

ds, Dyadicproperties = 



qnwt+

wt

nMnn+

wt

s Mns



ds. (55)

Remark7. Thedefinitions

qn=−n· Div

(

Eκ

)

, Mnn=

(

nn

)

:Eκ, Mns=

(

ns

)

:Eκ

areexactlythesameasthosegivenin(27).Thetensorialformalismallowsamorecompactwriting.

The kinematically independent variables must be highlighted. The tangential derivative has to be moved on the

tor-sional momentum. In order to do that, the boundary needs to be split in a collection of regular subsets

i, such that

(12)



wt

s Mns ds= " i  i

wt

s Mns ds = " i [Mnswt]i− 

Mns

s wt ds. (56)

Ifaregularboundaryisconsideredthefinalenergybalanceisexactlythesameastheobtainedwiththevectorial nota-tion,namely: ˙ H= 



wtqn+

wt

n Mnn



ds, whereqn:=qn

Mns

s . (57)

Thetensorialformulationallows highlightingtheintrinsicdifferentialoperators.Furthermorethesymmetricnature ofthe variablesis explicitlyexpressedby theusage ofsymmetrictensors.Now that theenergybalance hasbeenestablished in termsoftheboundaryvariablestheStokes-DiracstructurefortheKirchhoff plateintensorialformcanbedefined.Consider

nowthebondspace:

B:=

{

(

f,e,z

)

F× E× Z

}

, (58)

whereF=L2

()

:=L2

()

× L2

(

,R2×2

sym

)

andE=H2

()

=H2

()

× HdivDiv

(

,Rsym2×2

)

.ThespaceHdivDiv

(

,R2sym×2

)

issuch

that

HdivDiv

(,

R2×2 sym

)

=

.

A∈L2

(,

R2×2

sym

)

|

div

(

Div

(

A

))

L2

()

/

.

Considerthespaceofboundaryportvariables:

Z:=



z

|

z=



f e



, with f=



wt ∂wt ∂n



, e=



 qn Mnn



. (59)

ThedualitypairingbetweenelementsofB isthendefinedasfollows:





(

f1,e1,z1

)

,

(

f2,e2,z2

)





:=



e1,f2



L2()+



e2,f1



L2()+



∂BJ

(

z1,z2

)

ds, (60)

wherethepairing



·,·



L2()istheL2innerproductonspaceL2

()

andBJ

(

z1,z2

)

:=

(

f,1

)

Te∂,2+

(

f∂,2

)

Te∂,1.

Theorem4(Stokes-DiracStructurefortheKirchhoff plateintensorialform). ConsiderthespaceofpowervariablesB defined in(58)andthematrixdifferentialoperatorJin(54).ByTheorem2in[26]thelinearsubspaceD⊂ B

D=



(

f,e,z

)

B

|

f =−

α

t =−Je, z=



f e



, (61)

isaStokes-Diracstructurewithrespecttothepairing



· , ·



givenby(60).

4. DiscretizationoftheKirchhoff plateusingaPartitionedFiniteElementMethod

Followingtheprocedureillustratedin[9]theKirchhoff platewrittenasaport-Hamiltoniansystemcanbediscretizedby usingaPartitionedFiniteElementMethod(PFEM).ThismethodisanextensionoftheMixedFiniteElementMethodtothe caseofpHsystemsandrequirestheintegrationbypartstobeperformed,sothatthesymplectic structureispreserved. It consistsofthreedifferentsteps:

1.thesystemisfirstputintoweakform;

2.oncetheboundarycontrolofinterestisselected,thecorrespondingsubsystemisintegratedbyparts; 3.theproblemisdiscretizedbyusingaMixedFiniteElementmethod.

Theweakformisillustratedusingthetensorialformulation.Twodifferentkindofboundarycontrolswillbeshown: 1.boundarycontrolthroughforcesandmomenta,inthiscasethefirstlineof(54)isintegratedbyparts(inSection4.1.1); 2.boundarycontrolthroughkinematicvariables,inthiscasethesecondlineof(54)isintegratedbyparts(inSection4.1.2).

4.1. Weakform

Thesameproceduredetailedabovecanbeusedonsystem(54).Inthiscasethetestfunctionsareofscalarortensorial nature.KeepingthesamenotationthaninSection3.2thescalartestfunctionisdenotedbyvw,thetensorialonebyVκ.

(13)

4.1.1. Boundarycontrolthroughforcesandmomenta

Thefistlineof(54)ismultipliedbyvw(scalarmultiplication),thesecondlinebyVκ (tensorcontraction).



v

w

α

w

t d

= 

v

wdiv

(

Div

(

Eκ

))

d

,

(62)  Vκ:

Aκ

t d

=  Vκ :Grad

(

grad

(

ew

))

d

.

(63)

TherighthandsideofEq.(62)hastobeintegratedbypartstwice: 

v

wdiv

(

Div

(

Eκ

))

d

=  −n

&

· Div

'(

(

Eκ

)

)

qn

v

wds+  grad

(

v

w

)

· Div

(

Eκ

)

d

(64)

Applyingagaintheintegrationbypartsleadsto:  grad

(

v

w

)

· Div

(

Eκ

)

d

=  grad

(

v

w

)

·

(

n· Eκ

)

ds−  Grad

(

grad

(

v

w

))

:Eκd

(65)

Theusualadditionalmanipulationisperformedontheboundarytermcontainingthemomenta,sothattheproperboundary valuesarise:  grad

(

v

w

)

·

(

n· Eκ

)

ds= 



v

w

n n+

v

w

s s



·

(

n· Eκ

)

ds = 

v

w

n

&

(

n

'(

n

)

:Eκ

)

Mnn +

v

w

s

(

&

n

'(

s

)

:Eκ

)

Mns

ds = " i [Mns

v

w]i+ 



v

w

n Mnn

v

w

Mns

s



ds (66)

CombiningEqs.(64)–(66)thefinal expressionwhichmakes appearthedynamicboundary terms(forcesandmomenta)is

found: 

v

w

α

w

t d

=−  Grad

(

grad

(

v

w

))

:Eκd

+ 



v

w

n Mnn+

v

wqn



ds+ " i [Mns

v

w]i. (67)

Iftheboundaryisregular,thefinalexpressionsimplifies: 

v

w

α

w

t d

=−  Grad

(

grad

(

v

w

))

:Eκd

+ 



v

w

n Mnn+

v

wqn



ds. (68)

Sothefinalweakformobtainedfromsystem(54)iswrittenas:



v

w

α

w

t d

=−  Grad

(

grad

(

v

w

))

:Eκd

+ 



v

w

n Mnn+

v

wqn



ds,  Vκ:

Aκ

t d

=  Vκ:Grad

(

grad

(

ew

))

d

.

(69)

Thecontrolinputsu andthecorrespondingconjugateoutputsy are:

u=



 qn Mnn



, y=



wt

wt

n



.

4.1.2. Boundarycontrolthroughkinematicvariables

Alternatively, the sameprocedure can be performed on thesecond lineof the systemto make appear thekinematic

boundaryconditions,i.e.thevalue ofthe verticalvelocityandits normalderivative alongthe border.Oncethenecessary calculationsarecarriedout,thefollowingresultisfound:

(14)



v

w

α

w

t d

= 

v

wdiv

(

Div

(

Eκ

))

d

,

 Vκ :

Aκ

t d

=  div

(

Div

(

Vκ

))

ewd

+ 



v

Mnn

wt

n +

v

qnwt



ds. (70)

where

v

Mnn=

(

n n

)

:Vκ and

v

qn=−Div

(

Vκ

)

· n

v

Mns

s with

v

Mns=

(

n s

)

:Eκ.The control inputsu andthe

corre-spondingconjugateoutputsy are:

u=



wt

wt

n



, y=



qn Mnn



.

4.2.Finite-dimensionalport-Hamiltoniansystem

Inthissection,thediscretizationprocedureisappliedtoformulation(69).Thesameproceduremaybeperformedusing formulation(70).InSection5.2bothstrategieswillbeusedtocomputetheeigenvaluesofasquareplate.

Testandco-energyvariablesarediscretizedusingthesamebasisfunctions(GalerkinMethod):

v

w= Nw " i=1

φ

i w

(

x,y

)

v

iw, Vκ= " i=1



i κ

(

x,y

)

v

iκ, ew= Nw " i=1

φ

i w

(

x,y

)

eiw

(

t

)

, Eκ = " i=1



i κ

(

x,y

)

eiκ

(

t

)

, (71)

Thebasisfunctions

φ

i

w,



iκ,havetobechoseninasuitablefunctionspaceVhinthedomainofoperatorJ,i.e.Vh⊂ VD

(

J

)

.

ThiswillbediscussedinSection5.Thediscretizedskew-symmetricbilinearformontherightsideof(69)thenyields:

Jd=



0 −DT H DH 0



. (72)

MatrixDHiscomputedinthefollowingway:

DH

(

i,j

)

=





i

κ:Grad

(

grad

(

φ

wj

))

d

,

∈RNκ×Nw, (73)

wherethenotationA(i,j)indicatestheentryinthematrixcorrespondingtotheithrowandjthcolumn.Theenergyvariables arededucedfromtheco-energyvariables:

α

w=

μ

ew, Aκ =D−1Eκ, (74)

whereDi jkl is thesymmetric bendingrigidity tensor,the tensorial analogousofmatrixD defined in(15).The symmetric bilinearformontheleftsideof(69)becomes:

M=diag[Mw,Mκ], with Mw

(

i,j

)

= 

μ φ

i w

φ

j wd

,

∈RNw×Nw, Mκ

(

i,j

)

= 



D−1



i κ



:



κjd

,

∈RNκ×Nκ. (75)

Theboundaryvariablesarethendiscretizedas: qn= Nqn " i=1

φ

i  qn

(

s

)

q i n, Mnn= N"Mnn i=1

φ

i Mnn

(

s

)

M i nn. (76)

Thevariablesaredefinedonlyovertheboundary

.Consequently,theinputmatrixreads:

B=



Bqn BMnn 0 0



. (77)

(15)

Bqn

(

i,j

)

= 

φ

i w

φ

qjnds, ∈R Nw×Nqn, BMnn

(

i,j

)

= 

φ

i w

n

φ

j Mnnds, ∈R Nw×NMnn. (78)

Thefinalport-Hamiltoniansystem,asdefinedin[28]iswrittenas:

Me˙=Jde+Bu∂, y=BTe, (79) wheree=



e1 w,...,eNκκ



T andu=

1

q1 n,...,M NMnn nn

2

T

aretheconcatenationsofthedegreesoffreedomforthedifferent vari-ables.ThediscreteHamiltonianisthenfoundas:

Hd= 1 2 

{

α

wew+Aκ :Eκ

}

d

= 1 2

.

eT wMwew+eTκMκeκ

/

= 1 2e TMe. (80)

UsingEqs.(79)and(80)thetimederivativeoftheHamiltonianisgivenbythescalarproductoftheboundaryflows: ˙

Hd=yTu∂. (81)

TheaboveEquationisequivalenttotheenergybalanceofthecontinuoussystem,expressedby(31).Definition(80),together withsystem(79)arethe finite-dimensionalequivalentof(47)and(54).Thediscretized systemobtainedviaPFEMshares theport-Hamiltonianstructureoftheoriginalinfinite-dimensionalsystem, thediscretizationmethodisthereforestructure preserving.

5. Numericalstudies

InthissectionweillustratenumericallytheconsistencyofdiscretemodelobtainedwithPFEM.Forthispurpose compu-tationoftheeigenvaluesofasquareplateandtime-domainsimulationsforseveralboundaryconditionsarepresented.

5.1. Finiteelementchoice

ThedomainoftheoperatorJin(54)isD

(

J

)

=H2

()

× HdivDiv

(

,R2×2

sym

)

andboundaryconditions.

Remark8. It hasto beappointedthat,tothebestofauthors’knowledge,thespaceHdivDiv

(

,R2×2

sym

)

hasnever addressed

inthemathematicalliterature.ForthisreasonH2(

) conformingfiniteelementswereusedtodealwiththisproblem

nu-merically.

Asuitablechoiceforthefunctionalspaceisthus:

(

v

w,Vκ

)

H2

()

× H2

(,

R2sym×2

)

H, (82)

since H ⊂ D

(

J

)

.The H2 conformingfinite elements(like the Hermite, Bellor Argyrisfinite elements)do not satisfy the

properequivalence propertiestogive asimple relationshipbetweenthereferencebasis andnodal basison ageneralcell

[29].TheFiredrakelibrary[11]wasusedtoimplementthenumericalanalysisasitprovidesfunctionalitiestoautomatethe generalizedmappingsfortheseelements.

ThenfortheFiniteElementchoice,denote

Hk

r

(

Pl,

)

=

{

v

Hk

()

|

v

|T∈Pl

T∈Tr

}

thefiniteelementspacewhichisasubspaceofHk(

),basedontheshapefunctionspaceofpiecewisepolynomialsofdegree

l.TheshapefunctionspaceisdefinedoverthemeshTr=-iTi,wherethecellsTiaretriangles.Thesespacescanbe

scalar-valuedorsymmetricmatrixvalued, dependingonthevariables tobediscretized.Theparameterristheaveragesizeofa meshelement.Allthevariables,i.e.thevelocityewandthemomentatensorVκ aswellasthecorrespondingtestfunctions,

arediscretizedbythesamefiniteelementspace,theBellfiniteelementspace[30],denotedH2

r

(

P5,

)

.Forthiselementthe

field iscomputedusingquinticpolynomialswhosedegreesoffreedom arethevaluesofthefunction,its gradientandits Hessianatthevertexofeach triangularelement.TodealwithmixedboundaryconditionsLagrange multipliershavetobe introduced(the readercanrefer to[26],Section4.3foran explanation).Themultipliersarethereforediscretizedbyusing

seconddegreeLagrangepolynomialsdefinedovertheboundaryH1

(16)

Table 1

Eigenvalues obtained with 5 Bell element per side for ν= 0 . 3 , considering either the Grad ◦grad formula- tion (69) , either the Div ◦div formulation (70) . For comparison reference [31] is considered. reference,

ε< 0.1%:

Table 2

Eigenvalues obtained with 5 Bell element per side for ν= 0 . 3 , considering either the Grad ◦grad formulation

(69) , either the Div ◦div formulation (70) . For comparison reference [31] is considered: reference, ε< 0.1%,

ε< 1%, ε< 5%, ε< 15%.

5.2.Eigenvaluescomputation

The test case for this analysis is a simple square plate of side L, a benchmark problem which has been studied in

[31,32]for different boundary conditions on each plate side. The possible cases are the following:

clampedside(C),forwhichwt=0, wnt=0; simplysupportedside(S),wt=0,Mnn=0; freeside(F),qn=0,Mnn=0.

Inordertocompareourresultstheeigenfrequencies

ω

h

narecomputedinthefollowingnon-dimensionalform:

3

ω

h n=4L2

ω

hn



ρ

h D



1/2 , (83)

Theonly parameterwhich influences theresultsis thePoisson’sratio

ν

=0.3.The reportednon-dimensionalfrequencies areindependentoftheremaininggeometricalandphysicalparameters.Theerroriscomputedas:

ε

= abs

(

ω

3hn

ω

Ln

)

ω

L n

, (84)

where

ω

L

n are the eigenvalues computed in [31]. The results are computed either by using the forces and momenta as

control(69)ortheverticallinearandangularvelocity(70) (columnHessiananddivDivinTables1and2).Theresultsare obtainedusingaregular meshcomposed by5Bellelementoneachside.Hence,thestate vectorhasatotaldimensionof 864.ThedimensionoftheLagrangemultipliervectordependsontheboundaryconditionsuponconsideration.Whenusing

H2

r

(

P2,

)

ontheconsideredmesh,thisnumbercanvaryfrom0to80.Theresultsobtainedbyusing(69)areinperfect

agreementwiththe reference. Thisformulationwas alsoused tocompute the eigenvectorscorresponding to the vertical velocityforthedifferentcasesunderexamination(seeFigs.4–9).Forwhatconcernstheweakformulation(70)theresults deterioratewhenafreecondition(seeTable2)ispresent.

5.3.Time-domainsimulations

Inthisanalysisweconsider asquare plate,subjecteitherto anon nullshearforce ontheboundarieseithertoa dis-tributedforceoverthedomain.ThephysicalparametersandsimulationsettingsarereportedinTable3.Theenergyvariables andLagrangemultipliersarediscretizedusingBellshapefunctions(regularmeshoffiveelementsforeachside)andsecond

Figure

Fig.  1. Kinematic assumption for the Kirchhoff plate.
Fig.  2. Reference frames and notations.
Fig.  4. Eigenvectors for the CSCS case.
Fig.  9. Eigenvectors for the FSFS case.
+3

Références

Documents relatifs

F-HSCL-25, French version HSCL-25; GPs, General Practitioners; HSCL-25, Hopkins Symptom Checklist—25 items; NPV, Negative Predictive Value; PHQ-2, Patient Health Questionnaire 2

In this plan, Member States were urged to assess their food safety infrastructure and prepare a country profile for food safety; to establish or strengthen the national food

Nazarov, “On the essential spectrum of boundary value problems for systems of differential equations in a bounded domain with a cusp”, Funktsional. In Russian; translated

Third, to illustrate how the relationship between working memory and executive control varies as a function of age and task demand, we computed correlations between performance at

Then the time discretization of the semi-discrete system with a symplectic method is shown to give a corresponding fully discrete conservation law, a numerical dispersion relation

We have studied the range of validity of the Woinowsky-Krieger equations for the planar equilibrium and vibrations of post-buckled beams. The Woinowsky-Krieger equations are useful

Les personnes en situation de handicap sont placées dans différents types d’hébergement selon leur degré de déficience intellectuelle, mais les places

over the last decade, the first worldwide global university ranking was published in 2003 by the Institute of Higher Education at the Shanghai Jiao Tong University (SJTU), in an