• Aucun résultat trouvé

On the Riemannian structure of the residue curves maps

N/A
N/A
Protected

Academic year: 2021

Partager "On the Riemannian structure of the residue curves maps"

Copied!
11
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 14252

To link to this article : DOI :

10.1016/j.cherd.2015.05.029

URL : http://dx.doi.org/10.1016/j.cherd.2015.05.029

To cite this version : Shcherbakova, Nataliya and Gerbaud, Vincent

and Rodriguez-Donis, Ivonne On the Riemannian structure of the

residue curves maps. (2015) Chemical Engineering Research and

Design, vol. 99. pp. 87-96. ISSN 0263-8762

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

(2)

On

the

Riemannian

structure

of

the

residue

curves

maps

Nataliya

Shcherbakova

a,∗

,

Vincent

Gerbaud

b

,

Ivonne

Rodriguez-Donis

b

aLaboratoiredeGénieChimique,UniversitéPaulSabatierINPENSIACET,4,alléeEmileMonso,CS84234,31432

Toulouse,France

bLaboratoiredeGénieChimique,CNRS,4,alléeEmileMonso,CS84234,31432Toulouse,France

Keywords:

Residuecurves Gradientsystems Riemannianmetric

a

b

s

t

r

a

c

t

Inthispaper,werevisethestructureoftheresiduecurvemaps(RCM)theoryofsimple evaporationfromthepointofviewofDifferentialGeometry.RCMarebroadlyusedforthe qualitativeanalysisofdistillationofmulticomponentmixtureswithinthethermodynamic equilibriummodel.Nevertheless,someoftheirbasicpropertiesarestillamatterof discus-sion.Forinstance,thisconcernstheconnectionbetweenRCMandtheassociatedboiling temperaturesurfaceandthetopologicalcharacterizationofthedistillationboundaries.In thispaperweputinevidencetheRiemannianmetrichiddenbehindthethermodynamic equilibriumconditionwrittenintheformofthevanderWaals–Storonkinequation,andwe showthatthedifferentialequationsofresiduecurveshaveformalgradientstructure.We discussthefirstnon-trivialconsequencesofthisfactfortheRCMtheoryofternarymixtures.

1.

Introduction

Thepreliminarydesignofdistillationprocessesforthe sepa-rationofmulticomponentmixturesreliesupontheanalysis of residue curve maps (RCM). Typically RCM can be used forassessing the distillation columnsequence in continu-ousoperationor thestepsequence inbatchoperation,the achievableproductofeachcolumnorstep,thecomposition andtemperaturetrajectoriesintheproducttanksandinthe column.

Indeed,thetopologicalpropertiesofRCMenableto iden-tifyinthecompositionmanifoldsomefeatureslikeazeotropes and distillationboundaries,whose knowledgeisofutmost importance for the choice of a suitable distillation pro-cessanditsdesign.Otherpropertiesrelevantfordistillation processesare displayed interms oftemperature, unidistri-bution and univolatility manifolds. These properties have beensurveyedinseveral works,inparticularinthe review paperbyKiva et al.(2003), whichalso provides a compre-hensivehistoryofRCM, and inDoherty andMalone (2001)

Correspondingauthor.Tel.:+33534323650.

E-mailaddress:nshcherb@ensiacet.fr(N.Shcherbakova).

and Petlyuck books(2004).Theusefulness ofthese proper-tiesforazeotropicdistillationprocessdesignisdescribedin

WidagdoandSeider(1996)andSkiborowskietal.(2014)and for extractive distillation in Gerbaud and Rodriguez-Donis (2014).

Inthispaper,wefocusonthesimpleisobaricdistillationof homogeneousn-componentmixturesunderthermodynamic equilibrium.Residuecurvesdescribetheevolutionofthe liq-uidcompositionwithrespecttosomeparameter,andcan becomputed bysolvingthesystem ofordinary differential equations

dxi

d =vi(x,Tb(x1,...,xn−1)), i=1,...,n−1, (1) wherevi=xi−yi,i=1,...,n−1arecomponentsofthe

equilib-riumvectorfieldv,Tbistheboilingtemperatureofthemixture

ofcompositionx=(x1,...,xn−1),xi,yibeingthemolar

concen-trationsoftheithcomponentintheliquidandvapourphases correspondingly. Despiteoftheir broadutilisation,someof the basic properties ofresidue curves are still a matterof

(3)

discussion.Indeed,itturnsoutthattheglobalintrinsic struc-tureofRCMisnotyetwellestablished.

Several authors observedthat many features ofresidue curvesmakethink thattheyare integralcurvesofa gradi-entflowassociatedtotheboilingtemperatureTb.Indeed,the

criticalpoints ofTb are singularpoints ofv,which

generi-callycanbestable/unstablenodesorsaddles.Tbisincreasing

alongresiduecurves,moreover,TbisaLyapunovfunctionfor

dynamicalsystem(1).Theseare typicalpropertiesof gradi-ent systems(Hirschet al., 2004),but they arecontradicted bythefactthatinreal mixturesvisnotorthogonaltothe isothermsurfacesofTb.Forinstance,thenon-orthogonality

was shown by van Dongen and Doherty (1984), who dis-played the boiling temperature surface isotherms and the steepest descent lines along with the corresponding RCM for four azeotropic mixtures. They also proved that sys-tem(1) cannotbewritten asagradient systemofTb. This

result was later confirmed in Rev (1992). It is natural to ask what is then the true intrinsic structure of equations

(1)?

Thenextquestion,closelyrelatedtothepreviousone, con-cernsthenatureofthedistillationboundariesofRCM.Recall thatinthecaseofternarymixtures,distillationboundaries are remarkableresidue curves connecting nodes and sad-dles,whichdividethedistillationdomainindistinctregions. Bytheirnature,the boundariescannotbecrossedbyother residue curves and theymust start and end atthe singu-larpointsoftheRCM.Usuallythedistillationboundariesare computed numerically as separactrices of system (1) with somelossinprecision duetothe numericalintegration. A differentapproach based onthe variational viewpoint was recentlyproposed by Lucia and Taylor (2006,2007). In the caseofternarymixtures,definingdistillationboundariesas theconcatenationofresiduecurvesgoingfromanunstable nodetoastablenodepassingthroughasaddle,theyshowed thatdistillationboundariesmaximize thelengthamongall other residue curves joining the same points. In the case

n=4theyclaimthatdistillationboundariesareminimal sur-faces(BellowsandLucia,2007).Theinterestingandstillopen questioniswhetherdistillationboundariescanbedetected without numerical integration, for instance, by computing somescalarparameterthatdistinguishesthemamongother residuecurves.

Formany yearsit wasa commonbelief thatdistillation boundariesareprojectionsontheRCMplaneoftheflexures oftheboilingtemperaturesurface,theso-calledridge/valley curves.Butitturnsoutthatthispicturecontradictswiththe experimentaldata, andnumericalcomputations(Rev, 1992; vanDongenand Doherty,1984),so that todaymostofthe authorsagreethattheridge/valleycurvesoftheboiling tem-peraturesurfacearenotdistillationboundariessincetheycan becrossedbysomeresiduecurves.Inthiscontextwewantto stressoutthatthereisnoonecommonlyaccepteddefinition oftheridge/valleycurvesoftheboilingtemperature(seein

Kivaetal.,2003andreferencestherein).So,manyofpublished resultsarebasedonratherwronggeometricalconstructions, sometimesleadingtoparadoxicalresults,likethevalleys pre-sentedinvanDongenandDoherty(1984)thatdonotevenpass throughazeotropes.However,thenotionofaridgeoravalley onasurfacehasaclearmathematicalmeaningin Differen-tialGeometry,andinparticularin3DImageProcessdomain (Bruceetal.,1996;PeikertandSadlo,2008).Itseemsimportant toanalyzetheconsistencyofthisnotionwiththedefinition ofdistillationboundaries.

Inthispaper,wetrytoanswerthefollowingnatural ques-tions:

Q1: What isthe relation betweenisotherm hyper-surfaces and residue curves? More generally, what is the true

intrinsicstructureofequations(1)?

Q2: Howfast the boilingtemperature grows along residue curves?

Q3: Whataretheridge/valleycurvesoftheboiling tempera-turesurfaceandisthereanyrelationbetweenthemand thedistillationboundaries?

The key tools of our analysis are the van der Waals–Storonkin equations of phase coexistence, which expressthethermodynamicequilibriumconditiondG=0and generalize theclassical vander Waalsequations forbinary mixtures to the multicomponent case (see in Storonkin, 1967;ZharovandSerafimov,1975;ToikkaandJenkins,2002). In the RCM theory these equations imply the remarkable relation betweenthe boiling temperature gradient and the equilibriumvectorfield

∇Tb= 1

1sD

2

xglv, (2)

whichcanbefound,forinstance,inDohertyandMalone(2001)

andDohertyandPerkins(1978).Here1sissomepositivescalar functiondepending onthe molarentropiesand concentra-tionsofeachcomponentinbothphases,whileglistheGibbs

free energyofthe liquid phase. Already in 1970’s, Filippov remarkedthattheHessianoftheGibbsfreeenergyappearing inthecoupleofvanderWaals–Stronkinequationsforboth phasesdefinesametricinthemathematicalsense(Filippov, 1977).Heusedthisfactforthelocalanalysisofthebehavior oftheresiduecurvesinthevicinityoftheinternalazeotropes. Though inadifferentway,wecometoasimilarresultand introducea metric(different fromthe Filippov’sone) asso-ciatedtotheHessian oftheGibbsfreeenergyoftheliquid phase,whichleadsustoaratherfar-goingconclusionabout theglobalgradientnatureofRCMequations(1).

This paperisorganizedas follows.Afterashortreview ofsomebasicfactsfromRiemanniangeometryinSection2, inSection3,usingthevanderWaals–Storonkinequation,we showthattheRCMofopenevaporationcarriesonanon-trivial RiemannianmetricthatwecalltheGibbsmetric.Recallthata metricinthespacedefinesthewaytocomputescalar prod-ucts,andhencenormsandanglesbetweenvectors,aswell asthelengthofcurvesandthegradientsoffunctions.In gen-eral,thestandardEuclideanmetricused“bydefault”givesjust thelocalapproximationofthetruegeometricalstructureofthe space,like,forinstance,thecityplanthatrepresentsasmall pieceoftheEarthglobe.Thepresenceofthenon-trivialGibbs metricallowsustoprovethatsystem(1)isagradientsystemof

Tb,wherethegradientshouldbecomputedinthe

Riemann-iansense.Thisfactexplainstheaforementionedqualitative properties ofRCM, and in addition, it implies that residue curvesareindeedorthogonaltotheisothermhyper-surfaces inthesenseoftheGibbsmetric.InSection4weanalyzein greaterdetailtheternarymixturescase.Inparticular,we con-siderarigorousmathematicaldefinitionofridge/valleycurves oftheboilingtemperatureandshowthatthereisnoreason forthesecurvestocoincidewithdistillationboundaries.We illustrateourcomputationsforternarymixturescombining

(4)

analyticalandnumericalcomputationsusingMathematica9 package.

2.

Riemannian

structures

Inthispaper,weconsiderthestatespaceofaphysical sys-temasadifferentialmanifoldM,whosedimensionisequalto thenumberofdegreesoffreedomofthesystem.Theevolution ofthesystemisusuallymeasuredwithrespecttosome non-decreasingscalarparameter,forinstance,timet.Atagiven momentoftime thestateofthe systemwithn degreesof freedomisapointxM,whichcanbedescribedbythesetof

localcoordinatesx=(x1,...,xn),whosederivatives ˙x =( ˙x1,..., ˙xn)

form a velocity vector ˙x∈TxM in the tangent space to M atx.MiscalledaRiemannianmanifoldifitstangentbundle

TM=

S

x∈MTxM isendowed witha scalarproduct. In other words,thereisapositivedefinitequadraticformcalledmetric, whichinlocalcoordinatesisdescribedbyasymmetricmatrix

G(x)={gij(x)},sothatforanytwovectorsv,wTxM

hv|wiG= n

X

i,j=1

gij(x)viwj=vTG(x)w.

ThemetricdefinesanormofvectorsbykvkG=√hv|viG,and

hencethelengthofcurvesinM:givenacurve joiningpoints

x0andx1intime,andsuchthat ˙ (t)=v,thelengthof is

givenbyℓ( )=

R

0kv( (t))kGdt.

Thesimplest example ofa Riemannianmanifold isthe standard Euclidean space Rn: the local coordinates are the usual Cartesian coordinates, and the scalar product is defined by the identity matrix G(x)=Id. In particular, the distance between two points p and q is d(q,p)=

p

(q1−p1)2+···+(qn−pn)2,andmoregenerally,theshortest

pathbetweentwopointsisastraightline.Thesefactsareno moretrueinRiemannianmanifoldswithnon-trivial,i.e., non-Euclidean,metricstructure.Infact,theshortestpathbetween twopointsisthegeodesiccurveofthemetric,i.e.,thecurveof minimallength,likeforinstance,the meridiancircleson a sphere.IntrinsictopologicalpropertiesofRiemannian mani-foldscanbecharacterizedintermsoftheircurvaturetensor, butwewillnotdiscussithere.Inwhatfollows,inordertoavoid anyambiguity,weuse k·kG andh·|·iG todenotethe scalar

productsandnormscomputedwithrespecttothe Riemann-ianmetricG,whilek·kandh·|·iwilldenotetheirEuclidean equivalents.

WeconcludethisshortreviewofRiemanniangeometryby recallingthemeaningofagradientofafunction(Dubrovin et al. (1991)). Let f be a smooth function inthe Riemann-ianmanifoldMequippedwithsomemetricG.Itsdifferential dxf=

P

ni=1∂xif(x)dxi isalinearoperatorinTxM,alsocalleda

differential1-form.

Definition1. AvectorwTxMiscalledthegradientofthe func-tionfatapointxMifitsscalarproductwithanyothervector

vTxMisequaltothedirectionalderivativeoffwithrespect tovcomputedatx:

vf(x)=dxf(v)=vT∇f(x)=hv|wiG.

Intherestofthispaper∇Gf(x)denotesthegradientoffinM

definedinthesenseofthemetricG,i.e.,

vf(x)=hv|∇Gf(x)iG.

Itiseasytoverifythatinlocalcoordinates∇Gf(x)isrelatedto

theusualEuclideangradient∇f(x)asfollows:

∇Gf(x)=G−1(x)∇f(x). (3)

3.

Open

evaporation

of

homogeneous

multicomponent

mixtures

Letusconsideranopenevaporationprocessofan-component homogeneousmixture.Weassumethattheprocessisisobaric (P=const)andthatthethermodynamicequilibriumbetween liquidandvapourphasesispreserved.

3.1. Thestatespace

For i=1,...,n denotebyxi, yi the partialmole fractionsof

theithcomponentintheliquidandvapourphases respec-tively.Since

P

ni=1xi=1,then−1independentmolefractions

oftheliquidphasex=(x1,...,xn−1)belongtotheGibbssimplex

={xi∈[0,1]:

P

i=1n−1xi≤1}.Inwhatfollows∂willdenote

the boundary of. According tothe Gibbsphase rule, the system underconsideration hasndegreesoffreedom,and itsthermodynamicalstatecanbedescribedintermsofn−1 independentmolefractionsoftheliquidphasexandthe tem-peratureT.So,thestatespaceofthesystemisthedifferential manifoldM={q=(x,T): x∈, T∈R}.

3.2. Partialmassbalanceandboilingtemperature

Inthestandardequilibriummodelofopenevaporationa mul-ticomponentliquidmixtureisvaporizedinastillinsuchaway thatthevapouriscontinuouslyevacuatedfromthecontact withtheliquid(DohertyandPerkins,1978).Thepartialmass balanceofsuchasystemcanbewrittenintheform

dxi

d =xi−yi(x,T)=vi(x,T), i=1,...,n−1. (4)

Here∈[0,1]isanon-decreasing parameterdescribingthe change intheoverallmolarquantityofthe liquidphasenl

intimet:=ln(nl(0)/nl(t)).Solutionstosystemofdifferential

equations(4)arecalledresiduecurves,andtheirgraphical rep-resentation inthe simplexformsthe residue curve map (RCM). Therighthand sideof(4) definesa vector fieldv= (v1,...,vn−1)∈TMcalledtheequilibriumvectorfield. Its

singu-larpoints,i.e.,thepointsqMsuchthatv(q)=0describethe purecomponentsandtheazeotropesofagivenmixture.

Bydefinitionofmolefractions,

n

X

i=1

yi(x,T)=1. (5)

Thisconstraintdefinesahyper-surfaceWinthestatespace

M,calledtheboilingtemperaturesurface,whichisinvariantwith respectto(4).Sinceinahomogeneousmixtureeach compo-sitionoftheliquidphasexischaracterizedbyauniquevalue ofT,inprincipleequation(5)canbesolvedinordertoexpress

(5)

ofagivenmixture.1Inotherwords,theboilingtemperature

surfacecanberepresentedasagraphoffunctionTb:

W={q∈M: q=(x1,...,xn−1,Tb(x1,...,xn−1))}.

It is worth to underline that in practice, due to the high complexityofthermodynamicalmodelsofrealmixtures,the functionTb(x)cannotbewrittenexplicitly.Nevertheless,ifthe

mole fractionsyi(x, T)are known,equations (4), (5) forma

closedsystemofdifferentialalgebraicequations,whichcanbe solvednumerically.Thisisthestandardchemicalengineering approachforpracticalcomputations.

Despiteitspracticalutility,themodelmadeofequations

(4)and(5)isnotsuitableforthequalitativeanalysisofRCM. Inparticular,itgivesnotanswertothequestionsposedinthe Introduction.Forthiswehavetolookcloseratthe thermody-namicequilibriumcondition.

3.3. ThevanderWaals–Storonkinequation

Adifferentwaytoexpressthethermodynamicequilibriumis providedbythevanderWaals–Storonkinequationsofphase co-existence.Theirrigorousmathematicalderivationfromthe equilibriumconditiondG=0,whereGisthetotalGibbsfree energyofthesystem,canbefoundinStoronkin(1967),Zharov and Serafimov (1975) and in the reviewpaper (Toikkaand Jenkins,2002).Theequationfortheliquidphasereads

sv−sl+ n−1

X

i=1 (xi−yi) ∂sl ∂xi

!

dT− n−1

X

i,j=1 ∂2gl ∂xi∂xj(xi− yi)dxj=0. (6)

Heresl and sv are the entropies ofthe liquid and vapour

phases,and gl istheGibbsfreeenergyoftheliquidphase.

ThetermscontainingdPareneglectedin(6)sinceonly iso-baricprocessesareconsidered.Ananalogousequationcanbe alsowrittenforthevapourphase.Inthecasen=1equation

(6)impliestheClausiusequation,whereasifn=2itbecomes theclassicalvanderWaalsequation.

Letusseeunderwhichconditionthemodel(4),(5)basedon themassbalanceargumentsisconsistentwithstateequation

(6).

3.4. TheGibbsmetric

Considerthefollowingdifferential1-forminthestatespace

M: =1s dT+ n−1

X

i,j=1 ∂2gl ∂xi∂xj vidxj, where 1s=sv−sl+ n−1

X

i=1 (xi−yi) ∂sl ∂xi = n

X

i=1 yi(svi −s l i), sl

i,svi beingthepartialmolarentropiesoftheithcomponent

ineachphase.InwhatfollowswedenotebyD2

xgl={∂x2ixjgl}n−1 i,j=1

theHessianmatrixofglwithrespecttox

i,i=1,...,n−1.The

materialstabilityconditionimpliesthatD2

xgl definesa

posi-tivedefinitequadraticform,while1s>0forall(x,T)∈M,in particular,ontheboilingtemperaturesurfaceW.

1 ThisfactfollowsfromtheImplicitfunctiontheorem.

Geometricallyspeaking, equation(6) meansthat ifıxis apossibleinfinitesimalchangeinthesystemunder thermo-dynamicequilibrium,then(ıx)=0.Allpossibleinfinitesimal changes in the system under thermodynamic equilibrium formavectordistribution6={ıxTM:(ıx)=0}.Observethat the form placesrestrictions onthe possibledynamicsof thesystemratherthanonitsstateatagivenmoment,while the boilingtemperaturesurfaceWMrepresentsall possi-blestatesofthesystemcompatiblewiththethermodynamic equilibrium.ThereforeTW⊂6.SincethetangentspacetoWis spannedbyvectorsoftheformri=∂xi+∂xiTb∂T,weget(ri)=0

fori=1,...,n1,andhence ∇Tb(x)= 1

1sD

2

xgl|T=Tb(x) v(x), x∈. (7)

Thepositivedefinitenessof 1

1sD2xgl|T=Tb(x) inallowsusto

introduceaRiemannianmetricinassociatedtothe sym-metricmatrix

Ŵ(x)=1s1 D2xgl|T=Tb(x),

whichwewillcalltheGibbsmetric.Comparisonofformulae(7)

and(3)yields

v(x)=∇ŴTb(x).

CalculatingnowthederivativeofTbalonganyresiduecurve

x(),weget dTb(x())

d =v(x())

TŴ(x())v(x())

=kv(x())k2Ŵ. (8)

Remark. Althoughthe1-formisdefinedeverywhereinM, someofthesecondderivatives∂2

xixjglblowupatthepure

com-ponents(verticesof)andontheedgesof(seeexamples later).So,strictlyspeaking,theGibbsmetricŴisawelldefined Riemannianmetriconlyintheinteriorpointsof.

Theabovecomputationscanbesummarizedasfollows.

Theorem 1. Theopen setint={xi∈(0,1):

P

n−1i=1xi<1}of

partialmolefractionsendowedwiththeGibbsmetricŴisa Riemann-ianmanifold.Residuecurvesaresolutionstothegradientsystem

dx

d =∇ŴTb(x), x∈, (9)

wheretheboilingtemperatureTbplaystheroleofthepotential

func-tion.Moreover,alonganyresiduecurvex(),theboilingtemperature changesaccordingtotheequation

dTb(x())

d =kv(x())k

2 Ŵ,

andthusitisanaturalLyapunovfunctionforsystem(4).

Remark. Eqs.(8)and(9)providetheexplicitanswersto ques-tionsQ1andQ2formulatedinSection1.Wealsoremarkthat Eqs. (8) and (7) are well known inthe residue curves the-ory(see,forinstance,inZharovandSerafimov,1975,Doherty and Perkins, 1978, vanDongenand Doherty, 1984), though theirintrinsicgradientstructurewasdenied(vanDongenand Doherty,1984;Rev,1992).

LookingatresiduecurvesthroughtheopticoftheGibbs met-ric, onecan deriveall qualitativepropertiesofRCM asthe trivialconsequenceofthegradientformofsystem(4).Indeed,

(6)

Fig.1–Idealmixture:methanol(x1),ethanol(x2)and1-propanol.(a)Theboilingtemperaturesurfaceanditsisothermlevel

setsonit;(b)theresiduecurvesmap.

propertiesofRiemanniangradientsystemsarewellknown, andtheyareanalogoustothepropertiesoftheclassical gra-dientsystemsintheEuclideanspaceRnmodulothechangeof themetric(seeforinstanceinHirschetal.(2004)).Inparticular: – criticalpointsofTbaresingularpointsof(4)inint;

– generically,theycanbestable/unstablenodesorsaddles; – if cisaregularvalueofTb, i.e.,if∇Tb|T−1

b (c)=/0,thenthe

vectorfieldvisorthogonaltothelevelsetT−1

b (c)inthesense

oftheGibbsmetricŴ.

The first two properties are well known and widely used inthe RCM analysis.The thirdoneis truewithinthe Rie-mannian viewpoint, but it is not if we use the Euclidean metric.Thisexplainsthedebateaboutisothermsandresidue curvesorthogonalityintheliterature.However,thehigh non-trivialityoftheGibbsmetricŴmakesthetopologyofresidue curvesmapsmuchmoresophisticatedthantheoneofa clas-sicalgradientflow.

One may ask what happens when a residue curve x()

approachestheboundary∂oftheGibbssimplex?Inthis casetheGibbsmetricblowsupandk·kŴisnotdefined,while

kvk→0andgenerically2∇T

b|∂ =/ 0andhasbounded

compo-nents.So,kvkŴ=

p

hŴ−1∇Tb|∇Tbistaysboundedon∂,and

henceasx()approachesacriticalpointx*∈∂(apure

com-ponentor an azeotrope oforder <n), kv(x())k∼kv(x())k2Ŵ as

x()→x*.Observe that thesituation isdifferent ifx*∈int 

isanazeotropeofordern,inthiscasekv(x())k∼kv(x())kŴ.

So,theborderandinternalsingularitiesoftheresiduecurves mapsinareofdifferentnature:whileinternalazeotropes arecriticalpointsoftheboilingtemperature,thesingularities atpurecomponentsandatazeotropesoforder<nresultfrom theblowupofthemetricŴ.Moreover,sincetheboiling tem-peratureisnotdecreasingalongresiduecurves,thosecanbe re-parametrizedbytakingTbinsteadof:

dx

dTb =

v(x)

kv(x)k

. (10)

2 i.e.ifthereisnotangentialazeotropes.

ThistransformationcanbeusedtoregularizethewholeRCM ifitcontainsnointernalazeotropes.Inparticular,thisshould simplifythenumericalintegrationofresiduecurvessincethe newparameterisbounded:Tb∈[Tbmin,Tmaxb ],while∈[0,+∞).

4.

Ternary

mixtures:

first

results

Thefirstnon-trivialsituation,wheretheGibbsmetricappears, concernsthesimpleevaporationofthree-components mix-tures. In addition, inthis case we caneasily visualize the conceptsintroducedabove.TheRiemannianviewpointmakes clearstructuralpropertiesoftheRCM,forinstance,the rela-tion between residue curves and isotherms, and between distillationboundariesandridge/valleycurvesoftheboiling temperaturesurface.

4.1. Residuecurvesandisotherms

Weconsiderhereonlythegenericsituationofhomogeneous ternarymixturewithouttangentialazeotropes.Choosingtwo independentmolefractionsx1,x2,theboilingtemperature

sur-faceWovercanbeseenasa2Dsurfaceina3DEuclidean spacewithcoordinatesx1,x2,T.Onthex-plane,alongwith

the residue curves,we have another family ofcurves, the isotherms,definedastheprojectionsofthelevelsetsT−1

b (c)

oftheboilingtemperature.Atanypointx∈int,thetangent vectortotheisothermisgivenbyw=(−∂x2Tb(x),∂x1Tb(x))=

(∇Tb(x))⊥.TheŴ-orthogonalityofvectorsvandwcanbe

veri-fieddirectly:

hv|wiŴ=hŴv|wi=hŴŴ−1∇Tb|(∇Tb)⊥i=0.

Moreover, away from ternary azeotropes the vectors ev=

v/kvkŴandew=w/kwkŴformawelldefinedŴ-orthonormal

basisinint.

Example 1. The ideal mixture methanol (x1)-ethanol (x2)

-1-propanol.Ourcomputationsarebasedonthe3-suffix Mar-gulesmodelforactivitycoefficients(Prausnitzetal.,1998).In

Fig.1b,weshowtheRCM,whileFig.1ashowstheboiling tem-peraturesurfaceWwherethethincurvescorrespondtothe isothermlines.Anycurve(x(),T(x())onWprojectsonthe

(7)

Fig.2–ComponentsofŴ(thickcurves)vs.componentsof

e

Ŵ(dashedcurves). residuecurvex()(boldcurveinFig.1b)ontheplane(x1,x2).

Thevectorsvandwdescribedabovearenotorthogonalalong

x(),asshowninFig.1a.Onmaythinkthattheirprototypeson

TWareorthogonal.Tocheckthispropertywehavetocompute theirscalarproduct,thusweneedtochooseametriconW.

4.2. 3Dgeometryoftheboilingtemperaturesurface

AlongwiththeGibbsmetricŴ,thereisanothermetriconW, whichdescribesthe embeddingofthegraphoffunctionTb

intothe3DEuclideanspacewithcoordinatesx1,x2,T.Indeed,

assumethatWisendowedwithsomeRiemannianmetric

e

Ŵ. ThelengthofanycurvelyingonWcanbecomputedintwo differentways:asalengthwithrespecttothemetric

e

ŴonW, orasalengthofthesamecurveconsideredintheambient3D Euclideanspace.Thereexistsauniquechoiceof

e

Ŵthatassures thatthesetwolengthscoincide(Dubrovinetal.,1991).

Definition2. TheRiemannianmetricontheboiling tempera-turesurfaceW={q∈R3: q=(x1,x2,Tb(x1,x2))}associatedto

thequadraticformwithcomponents

e

Ŵ11=1+



∂T b ∂x1



2 ,

e

Ŵ22=1+



∂T b ∂x2



2 ,

e

Ŵ12= ∂Tb ∂x1 ∂Tb ∂x2.

iscalledthenaturalRiemannianmetric

e

Ŵ.

In Differential Geometry the natural metric is also called theI-stfundamentalformofasurface.Roughlyspeaking,it describesthevisibleshapeofthesurfacein3D.Unlikelythe GibbsmetricŴ,thenaturalmetric

e

Ŵiswelldefinedandfinite everywherein,in,particular,onitsboundary.Itisimportant tostressoutthatŴand

e

Ŵdefinetwodifferentgeometrieson

W.

Example1(Continuation). InFig.2wecomparethe compo-nentsoftheGibbsmetricsŴwiththecomponents

e

Ŵinthe sectionx1=0.2fortheidealmixtureofFig.1.Observetheblow

upoftheGibbsmetric(thickcurves)intheneighborhoodof theboundaryof.Letusnowcomebacktothelastquestion oftheprevioussubsection.Denoteby()theanglebetween theequilibriumvectorvandthetangentvectortoisothermw

alongx().Remarkthatdependsonthechoiceofthemetric

gsincecos=kvkhv|wigkwkgg.Fig.3showsthevariationofthecos alongthetestcurvex()ofFig.1baccordingtothreepossible metrics:theEuclideanmetricg=Id(dashedcurve),the natu-ralmetric

e

Ŵ(thickdashedcurve),andtheGibbsmetricŴ(thick curve).Onlyinthelattercasecos<10−2,whichmeansthat

vandwareŴ–orthogonalwithintheaccuracylimitsofthe model.

4.3. Ridge/valleyscurvesoftheboilingtemperature

Aswealreadymentioned,therelationbetweenthedistillation boundariesandridge/valleycurvesontheboilingtemperature surfaceWisstilldebated.Variousdefinitionsforridge/valley curveswereproposedintheliterature(Kivaetal.,2003),but inouropinionnoneofthemissatisfactory.Letusanalyzethe rigorousdefinitionofthisobjectusedinDifferentialGeometry takingintoaccountthenon-trivialRiemannianmetricŴ.

Consider a gradient dynamical system ofform (9), and denotebyCtheisothermcorrespondingtothelevelsetTb=c.

ApointxonCbelongstoaridgeoravalleyofTbifk∇ŴTb(x)k2Ŵ=

kv(x)k2Ŵhasamaximumoraminimumatthispoint(Boscain etal.(2013)).Thisleadstothefollowingdefinition,which pro-videstheanswertothefirstpartofquestionQ3.

Definition3. Theridge/valleycurvesoftheboiling tempera-turearelociofpointsx∈intsuchthat

h∇Ŵkvk2 (x)|wiŴ=wkvk2Ŵ(x)=0, (11)

where wkvk2

Ŵ denotes the directionalderivative of kvk2Ŵ with

respecttow,wbeinganytangentvectortotheisotherm pass-ingthroughx.

According toDefinition 3, the ridge/valley curves ofthe boilingtemperatureareintrinsicallyrelatedtothe Riemann-iangradientofTb.Eq.(11)impliesthatazeotropesandpure

componentsbelongtoridge/valleycurves.Moreover,theyare tangenttotheeigenvectorsoftheJacobianDxvatazeotropes

and pure components. Observe also that knowingjust the function Tb(x1, x2) over  is not enough to compute the

ridge/valleycurves:inadditiononeneedstoknowtheGibbs metric Ŵ. Forthis reasonthe shapeofthesurfaceWin3D cannotbeused todefinethe distillationboundariesasthe

Fig.3–OrthogonalitytestalongtheboldcurveofFig.1in differentmetricson.

(8)

Fig.4–Non-idealmixture:benzene,acetone(x1),chloroform(x2).(a)Theboilingtemperaturesurfaceandisothermlevel

sets;(b)theresiduecurvesmap;(c)theheightsurfaceofkvk2

Ŵ;(d)ewkvk2Ŵalongthedistillationboundary.

projectionsitsflexuresassomeotherauthorsdid(vanDongen and Doherty, 1984, Rev, 1992 and other references in Kiva etal.,2003).Infact, itfollowsthatinordertovisualizethe ridge/valleycurvesoftheboilingtemperature,wehaveto ana-lyzethelandscapeoftheheightsurfaceofkv(x)k2Ŵratherthan

theWitself.

Remark. ObservethatifbothTbandŴ(andhencev)areknown

forallx∈,theridge/valleycurvescanbedetectedbyfinding zerosofthe scalartestfunctionwkvk2

Ŵ withoutsolvingany

differential equation,which makesthis notionparticularly interestingfromthecomputationalpointofview.

Thenexttwoexamplesillustrateourconstructionforternary mixtureswithdistillationboundaries.Inbothcasesweused the thermodynamic model based on the NRTL equations (Prausnitzetal.,1998).

Example 2. Benzene– acetone (x1)–chloroform (x2)

(Serafi-mov’stopologicalclass1.0−2accordingtoKivaet al.,2003).

ThemainfeaturesofthismixtureareshowninFig.4:ithasa binaryazeotropeofsaddletypeatthepointxaz(0.351,0.649),

characterizedbytheboilingtemperatureTaz

b ≈65.11◦C.The

distillationboundaryistheseparatrixcomputedvia numeri-calintegrationofsystem(4)onW.Itisdisplayedbythethick blackcurve,whichstartsatxaz andgoestotheorigin

(ben-zenepurecomponent, Tb≈80.10◦C).InFig.4cweshowthe

heightsurfaceofkvk2Ŵ:thethincurvesaretheisoclines,and

the thick blackcurve showsthe positionofthedistillation boundaryonit.Weseethatthedistillationboundarypasses veryclosetothebottomofthevalleyoftheheightsurface ofkvk2Ŵ.Nevertheless,thecomputationofthefunctionewkvk

alongit(Fig.4d)showsthatitdivergesfromthevalley’s bot-tomwhileapproachingthepointx=(0,0)correspondingtothe benzenepurecomponent.

Example 3. Methanol–acetone (x1)–chloroform (x2)

(Serafi-mov’s topologicalclass3.1-4according toKivaet al.,2003),

(9)

Fig.5–Non-idealmixture:methanol,acetone(x1),chloroform(x2).(a)Theboilingtemperaturesurfaceandisothermlevel

sets;(b)theresiduecurvesmap;(c)theheightsurfaceofkvk2

Ŵ;(d)ewkvk2Ŵalongthedistillationboundaries.

shown in Fig. 5a. As we can see, the topological struc-tureofthe RCM (Fig. 5b)ofthis mixtureis morecomplex. Ithas

– three binary azeotropes: 2unstable nodes at the points

B12≈(0.7928,0) andB13≈(0,0.6536),and onestablenode

atB23≈(0.3511,0.6489)withmaximumbolingtemperature

T23

b ≈65.11◦C;

– oneternaryazeotropeofsaddletypeatthepointA≈(0.3676, 0.2107), characterized by the boiling temperature Taz

b ≈

56.99◦C.

Four separatrices (thick black curves) form the distillation boundaries, which divide the RCM into four distillation regions.Asinthepreviousexample,theywerecomputedby numericalintegrationofsystem(4).Fig.5.cshowstheheight surfaceofkvk2Ŵ.Asbefore,thethincurvesareisoclines,and

the thick blackcurves indicate the location of the distilla-tionboundaries.Whilethedistillationboundaryconnecting thepointsB12,B13 seemstofollowthebottomofthevalley

ofthe height surface,the curve connecting B23 with x=(0,

0) (methanol pure component) diverges significantly from the ridge.Infact,this divergencebecomeevidentfrom the computationofthetestfunctionewkvk2Ŵ(Fig.5.d):the thick

curvecorrespondstothecurveconnectingB23with(0,0),the

dashedcurvecorrespondstothecurve connectingB12with

B13. Weconcludethis example byshowingthebehaviorof

thecomponentsofGibbsmetricoverthecompositionspace  (Fig. 6).As stated inSection3.4, theyblow up along the boundaryofGibbstriangle,butstayregularattheternary azeotrope.

Inbothoftheaboveexamplesweobservedthatdistillation boundariesdonotcoincidewiththeridge/valleycurvesofthe boilingtemperature.Onemayaskiftheobserveddifference betweenthetwotypesofcurvesisrelatedtotheaccumulation ofthenumericalerror,andDefinition3issuitabletodefine distillationboundaries.Aswewillshowinthenextsection withasimpleacademicexample,theanswerisnegative:in generalthereisnoreasonforthesetwofamiliesofcurvesto coincide.

(10)

Fig.6–LevelsurfacesofthecomponentsofGibbsmetricforthemixturemethanol-acetone-chloroform

4.4. Ridge/valleysanddistillationboundaries

Let us now check if the notion of the ridge/valley curves introducedin Definition 3is consistentwith the notionof adistillationboundary.Weprecisethatdistillationboundaries

areseparatrices ofRCMconnecting stable/unstablenodes to saddles.3Inparticular,ifacurve (·)

∈isadistillation bound-ary,then:

(a) itisaresiduecurve,i.e.,itisanintegralcurveofsystemof differentialequations(4),andhenceitcannotbecrossed byanyotherresiduecurve;

(b) itstartsatanunstablenodeandfinishesatasaddle,or startsatasaddleandfinishesatastablenode;

(c) atitsterminalpointsitistangenttotheeigenvectorsof theJacobianDxv,or,equivalently(ZharovandSerafimov

(1975)),oftheHessianD2 xTb.

Aswesaw,properties(b)and(c)arealsoverifiedbyridge/valley curvesdefinedbyequation(11).Thisiswhyitseemsnatural toexpectthatthetwodefinitionsareequivalent.Toconclude, onemusttestwhethertheridge/valleycurvesverifyproperty (a).Letusputthisquestioninamoregeneralmathematical context.Onaplane(x1,x2)consideragradientsystem

asso-ciatedtosomepotentialfunctionF,andassumethatithasat leastonenodeandonesaddle.Isittruethattheridge/valley curveofFdefinedbyequation(11)isananintegralcurveof thegradientsystem ˙x =∇F(x)whateveristhemetricofthe plane?Ingeneral,theanswerisnegative,asitisshownbythe followingacademiccounterexample.

Example4. Forsimplicity, we considerthe Euclidean case whereall the computationscanbedone explicitly. LetF= x1−x31−(x2−x1)2.Thecorrespondinggradientsystemis

˙x1=1−3x21−2(x1−x2), ˙x2=2(x1−x2), (12)

ithasasaddletypesingularityatthepointA=(−1/√3,−1/√3) and a stablenode atB=(1/√3,1/√3).Its phaseportrait is showninFig.7,wherethickblackcurvesrepresentthe sepa-ratriciescomputednumerically.Equation(11)canbewritten intheform

4

#

−9x41−4x1+1



+8

#

9x31+6x21−3x1+2



x2−48x1x22=0,

3 Inthetheoryofdynamicalsystemssuchcurvesarecalled het-eroclinicorbitsofsystem(4).

whichyieldstwofamiliesofridge/valleycurves(reddashed curvesinFig.7): x2= 9x3 1+6x21±

q#

3x2 1−1



2

#

9x2 1+4



−3x1+2 12x1 .

AsFig.7shows,thedashedcurvesdonotcoincidewiththe blackcurvesrepresentingtheseparactrices.Inordertoavoid anydoubtconcerningthenumericalerrorrelatedtothe inte-grationof(12),observethatthepointx0=(0,−1/4)belongsto

theridgecurve,whichatthispointistangenttothevector(16, 13).Ontheotherhand,∇F(x0)=(1/2,1/2),sotheridge/valley

curvepassingthroughx0isnotasolutionto(12),andhenceit

canbecrossedbyintegralcurvesof(12).

NowweareabletocompletetheanswertoquestionQ3

posedintheIntroduction:theridge/valleycurvesofDefinition 3connectthesingularpointsofRCMandaretangenttothe distillationboundariesatthesepoints,but ingeneral,they are notresiduecurves,andthustheycannotbedistillation boundaries.So,althoughweareusingadifferentdefinitionof

Fig.7–Phaseportraitofthegradientflowof F=x1−x3

1−(x2−x1)2:separatrices(thickblackcurves)and

(11)

ridge/valleycurves,weconfirmthegeneralconclusionmade byvanDongenandDoherty(1984)andbyotherauthors(Rev, 1992;Kivaetal.,2003).

5.

Conclusion

Thethermodynamicalequilibriumcondition,describedbythe vanderWaals–Storonkinequation (6)endowsRCMofopen evaporationby a non-trivialRiemannianmetric: the Gibbs metricŴ.Withinthisgeometricalmodel,anyRCMistheset oftheintegralcurvesoftheRiemanniangradientflow asso-ciatedtotheboilingtemperatureTb,whichplaystheroleof

apotentialfunctionforRCM.Thiskeyfactexplainsall well-knownpropertiesoftheresiduecurvesmapsandoftherole ofTb,andinaddition,itimpliesthatunlikelyintheclassical

Euclideancase,theequilibriumvectorfieldisŴ-orthogonalto theisothermfrontsawayfromazeotropes.

Weexploredthefirstnon-trivialconsequencesofthis geo-metricviewpointinthecaseofternarymixtures.Inparticular, wediscussedtherelationbetweendistillationboundariesand the ridge/valley curves of the boiling temperature Tb and

showed that they do not coincide ingeneral since the Tb

ridge/valleycurvesarenotresiduecurves.

References

Bellows,M.,Lucia,A.,2007.Thegeometryofseparation

boundaries.Fourcomponentmixtures.AIChEJ.53,1770–1778.

Boscain,U.,Charlot,G.,Ghezzi,R.,2013.Normalformsand invariantsfor2-dimensionalalmost-Riemannianstructures. Differ.Geom.Appl.31,41–62.

Bruce,J.,Giblin,P.,Tari,F.,1996.Ridges,crestsandsub-parabolic linesofevolvingsurfaces.Int.J.Comput.Vis.18,195–210.

Doherty,M.,Malone,M.,2001.ConceptualDesignofDistillation Systems.McGraw-Hill,NewYork.

Doherty,M.,Perkins,J.,1978.Onthedynamicsofdistillation processes.I:Thesimpledistillationofmulticomponent non-reacting,homogeniousliquidmixtures.Chem.Eng.Sci. 33,281–301.

Dubrovin,B.,Fomenko,A.,Novikov,S.,1991.ModernGeometry– MethodsandApplications:PartI:TheGeometryofSurfaces, TransformationGroups,andFields,2nded.Springer.

Filippov,V.,1977.Thermodynamicsofn-componentazeotropein theGibbspotentialmetrics(inRussian).Thermodynamicsof heterogeneousSystemsandTheoryofsurfacephenomena4., pp.3–24.

Gerbaud,V.,Rodriguez-Donis,I.I.,2014.Extractivedistillation. DistillationBook,vol.IIEquipmentandProcesses.Elsevier, Amsterdam.

Hirsch,M.,Smale,S.,Devaney,R.,2004.DifferentialEquations, DynamicalSystems,andanIntroductiontoChaos,2nded. AcademicPress.

Kiva,V.,Hilmen,E.,Skogestad,S.,2003.Azeotropicphase equilibriumdiagrams:asurvey.Chem.Eng.Sci.58,1903–1953.

Lucia,A.,Taylor,R.,2006.Thegeometryofseparationboundaries: I.Basictheoryandnumericalsupport.ProcessSyst.Eng.52, 582–594.

Lucia,A.,Taylor,R.,2007.Thegeometryofseparationboundaries: II.Mathematicalformalism.AlChEJ.53,1779–1788.

Peikert,R.,Sadlo,F.,2008.Heightridgecomputationandfiltering forvisualization.In:ProceedingsofIEEEPacificVisualization Symposium,Kyoto,March5–7,2008,pp.119–126.

Petlyuck,F.,2004.DistillationTheoryandItsApplicationto OptimalDesignofSeparationUnits.CambridgeUniversity Press,Cambridge.

Prausnitz,J.M.,Lichtentheler,R.,deAzevedo,E.G.,1998.

MolecularThermodynamicsofFluid-PhaseEquilibria,3rded. PrenticeHall.

Rev,E.,1992.Crossingofvalleys,ridges,andsimpleboundaries bydistillationinhogeniousternarymixtures.Ind.Eng.Chem. Res.31,839–901.

Skiborowski,M.,Harwardt,A.,Marquardt,W.,2014.Conceptual designofazeotropicdistillation.DistillationBook,vol.I FundamentalsandPrinciples.Elsevier,Amsterdam.

Storonkin,A.,1967.ThermodynamicsofHeterogeneousSystems, Parts1–2.LenigradUniversityEd,Leningrad(inRussian).

Toikka,A.,Jenkins,J.,2002.Conditionsofthermodynamic equilibriumasabasisforthepracticalcalculationsof vapor–liquidequilibria.Chem.Eng.J.89,1–27.

vanDongen,D.,Doherty,M.,1984.Onthedynamicsofdistillation processes.V:Thetopologyoftheboilingtemperaturesurface anditsrelationtoazeotropicdistillation.Chem.Eng.Sci.39, 883–892.

Widagdo,S.,Seider,W.,1996.Journalreviewazeotropic distillation.AIChEJ.42,96–130.

Zharov,V.,Serafimov,L.,1975.Physical–ChemicalFoundationof DistillationandRectification.Chemistry,Leningrad(in Russian).

Figure

Fig. 1 – Ideal mixture: methanol (x 1 ), ethanol (x 2 ) and 1-propanol. (a) The boiling temperature surface and its isotherm level sets on it; (b) the residue curves map.
Fig. 3 – Orthogonality test along the bold curve of Fig. 1 in different metrics on  .
Fig. 4 – Non-ideal mixture: benzene, acetone (x 1 ), chloroform (x 2 ). (a) The boiling temperature surface and isotherm level sets; (b) the residue curves map; (c) the height surface of kvk 2 Ŵ ; (d) e w kvk 2 Ŵ along the distillation boundary.
Fig. 5 – Non-ideal mixture: methanol, acetone (x 1 ), chloroform (x 2 ). (a) The boiling temperature surface and isotherm level sets; (b) the residue curves map; (c) the height surface of kvk 2 Ŵ ; (d) e w kvk 2 Ŵ along the distillation boundaries.
+2

Références

Documents relatifs

For a given parametric representation of a curve, PTOPO computes the special points on the curve, the characteristic box, the corresponding graph, and then it visualizes the

We show that the analog of the Riemann hypothesis for the zeta function of an optimal formally self-dual code is false using the family of codes constructed in §2.. The section

Using the BCIFS model we have shown how it is possible to construct the joining curve between two curves defined by two different iterative processes.. With the automaton describing

In fact, up to permutation of the entries, there are 1054 numerical types of exceptional curves E on the blow up X of P 2 at r = 9 generic points such that the image of E is a curve

In particular we give a complete formula for the norm residue symbol of exponent p&#34; attached to a cyclotomic extension ofQp containing the p&#34;-th roots of unity, and we give

Eisenstein series has a pole at the point in question, the residue can be expressed as a regularized theta integral for the ’complementary’ quadratic form2. This

Two plane algebraic curves are said to have contact of order o at a common point P if each curve is smooth at P and if the intersection number at P

We study a second-order variational problem on the group of diffeomorphisms of the interval [0,1] endowed with a right-invariant Sobolev metric of order 2, which consists in