• Aucun résultat trouvé

An in vitro study of highly confined blood flows: From single bifurcations to 2D-networks

N/A
N/A
Protected

Academic year: 2021

Partager "An in vitro study of highly confined blood flows: From single bifurcations to 2D-networks"

Copied!
2
0
0

Texte intégral

(1)

OATAO is an open access repository that collects the work of Toulouse

researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator:

tech-oatao@listes-diff.inp-toulouse.fr

This is an publisher’s version published in:

http://oatao.univ-toulouse.fr/18634

To cite this version:

An in vitro study of highly confined blood flows: From single

bifurcations to 2D-networks Merlo, Adlan and Berg, Maxime

and Duru, Paul and Lorthois, Sylvie An in vitro study of highly

confined blood flows: From single bifurcations to 2D-networks.

(2017) In: Blood Flow: Current State and Future Prospects, 9

October 2017 - 11 October 2017 (Paris, France).

(2)

An in vitro study of highly confined blood flows:

From single bifurcations to 2D-networks

Adlan Merlo

1

, Maxime Berg

1

, Paul Duru

1

, Sylvie Lorthois

1 1Institut de Mécanique des Fluides de Toulouse (IMFT),

Université de Toulouse, CNRS, INPT, UPS, Toulouse, France Corresponding author: adlan.merlo@imft.fr

Since the very first observations of microvascular networks in small animals by Jean-Marie Poiseuille in the XVIIIth century, the blood microcirculation has been extensively studied. One of the most striking feature highlighted by the French physicist is the highly heterogeneous distribution of the red blood cells (RBCs) throughout microvessel networks. Despite the intimate link between local RBC concentration (also called hematocrit) and surrounding tissue oxygenation, the coupling between microvascular architecture and hemodynamics is still poorly understood.

In vivo experiments provide data on spatio-temporal distribution of RBC concentration and

velocities within a given microvascular network, but are limited to dilute regimes or highly confined flows, where the RBCs are arranged in single files and are therefore individually discernible [1]. Also, in such conditions, shape and diameters of the vessels cross-section is not precisely known. Along with physiological feedbacks, these uncertainties might be sources of errors. In vitro experiments can overcome such issues, inherent to the living [2]. Yet, providing reliable quantitative data at the scale of the blood microcirculation is challenging since the vessel diameters range from ~3 to ~10 µm, which is of the same order as the RBCs', or even smaller, and studies are often limited by the microfabrication process. Our study aims at providing in vitro quantitative data on the distribution of the RBCs in geometries of increasing complexity: from diverging bifurcations to 2D-channel networks, with squared cross-section (WxW, W=5, 10, 20 µm). First, we have developed a calibration method that allows us to measure the hematocrit in situ, i.e. directly in the channel of interest, for a broad range of concentrations. Alongside with the hematocrit profiles, we are able to measure the RBC velocity profiles and thus deduce the RBC flow rate. By making simple assumptions on the suspending fluid, we deduce also the total blood flow rate. As a result, we have performed a parametric study of the phase separation (PS) effect, i.e. the non-proportional distribution of RBCs between the two daughter branches of a simple divergent bifurcation, and compared our results with the only in vivo empirically derived PS law [3]. Finally, we have designed 2D honeycomb networks and compared our experimental network perfusion with numerical simulations. For these networks, we show that the correlation between hematocrit and blood flow rate depends on the confinement of RBCs.

Acknowledgement: This work is supported by the ERC project BrainMicroFlow GA61510

References

[1] Desjardins et al., Neurobiol. Aging, 37, 1947-1955 (2014) [2] Roman et al., Biomicrofluidics, 10, 034103 (2016)

[3] Pries et al., Microvascular Res., 38, 81-101 (1989)

CT-10

Références

Documents relatifs

Figures highlight a tight relationship between sediment TEs input, spring freezing level, precipitation and freezing day frequencies, supporting thus the hypothesis of an

This allows us to draw a full evolutionary sequence for the incubators in the Trifid Nebula, from the early stage when they are embedded in low-density material of the parental

The pioneering study on the low- temperature strength of olivine by Evans and Goetze [1979] employed micro-indentation tests from room tem- perature to 780°C on single crystal

The 9 digital holograms were recorded with 9 different illumination directions obtained by illuminating the device using a VCSEL at 673nm as a readout source for the analogic

Cependant, il reste toute une série de questions à résoudre notamment celle de l’utilisation de ces schémas dans certaines populations, les femmes enceintes, les patients atteints

Pulmonary epithelial cells (Calu-3 cell line) and macrophages (THP-1 differentiated cells) were cultivated on the apical side and pulmonary endothelial cells (HPMEC-ST1.6R cell line)

We show that geometric induction, applied to one dimensional characters of the action groupoid of a suitable G-set X affords a Gelfand Model for G in the case where G is either