• Aucun résultat trouvé

How do Intermittent Positive Pressure Breathing device improves the recovery of respiratory function after arthrodesis of the spine for adolescent idiopathic scoliosis

N/A
N/A
Protected

Academic year: 2021

Partager "How do Intermittent Positive Pressure Breathing device improves the recovery of respiratory function after arthrodesis of the spine for adolescent idiopathic scoliosis"

Copied!
52
0
0

Texte intégral

(1)

HAL Id: dumas-01755238

https://dumas.ccsd.cnrs.fr/dumas-01755238

Submitted on 4 Jun 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

improves the recovery of respiratory function after

arthrodesis of the spine for adolescent idiopathic scoliosis

Pauline André-Poyaud

To cite this version:

Pauline André-Poyaud. How do Intermittent Positive Pressure Breathing device improves the recovery of respiratory function after arthrodesis of the spine for adolescent idiopathic scoliosis. Life Sciences [q-bio]. 2016. �dumas-01755238�

(2)

 

THÈSE D'EXERCICE / UNIVERSITÉ DE RENNES 1

sous le sceau de l’Université Bretagne Loire

Thèse en vue du

DIPLÔME D'ÉTAT DE DOCTEUR EN MÉDECINE

présentée par

Pauline André-Poyaud

Née le 07/05/1988 à Echirolles

Apport du relaxateur

de pression dans la

récupération de la

fonction respiratoire

après chirurgie

d’arthrodèse de la

scoliose idiopathique

de l’adolescent.

Thèse soutenue à Rennes le 17/10/2016

devant le jury composé de :

Isabelle BONAN

Professeur - CHU de Rennes / Présidente du jury

Philippe VIOLAS

Professeur - CHU de Rennes / examinateur

Eric WODEY

Professeur - CHU de Rennes / examinateur

Christophe CHARBONNIER

Docteur – CRF Kerpape / examinateur

Vincent DANIEL

Docteur- CHU de Rennes / examinateur

Rachel HEYMAN

(3)
(4)

 

THÈSE D'EXERCICE / UNIVERSITÉ DE RENNES 1

sous le sceau de l’Université Bretagne Loire

Thèse en vue du

DIPLÔME D'ÉTAT DE DOCTEUR EN MÉDECINE

présentée par

Pauline André-Poyaud

Née le 07/05/1988 à Echirolles

Apport du relaxateur

de pression dans la

récupération de la

fonction respiratoire

après chirurgie

d’arthrodèse de la

scoliose idiopathique

de l’adolescent.

Thèse soutenue à Rennes le 17/10/2016

devant le jury composé de :

Isabelle BONAN

Professeur - CHU de Rennes / Présidente du jury

Philippe VIOLAS

Professeur - CHU de Rennes / examinateur

Eric WODEY

Professeur - CHU de Rennes / examinateur

Christophe CHARBONNIER

Docteur – CRF Kerpape / examinateur

Vincent DANIEL

Docteur- CHU de Rennes / examinateur

Rachel HEYMAN

(5)

   

PROFESSEURS DES UNIVERSITÉS –

PRATICIENS HOSPITALIERS

Nom Prénom

Sous-section de CNU

ANNE-GALIBERT Marie Dominique Biochimie et biologie moléculaire

BELAUD-ROTUREAU Marc-Antoine Histologie; embryologie et cytogénétique

BELLISSANT Eric

Pharmacologie fondamentale; pharmacologie

clinique; addictologie

BELLOU Abdelouahab

Thérapeutique; médecine d'urgence;

addictologie

BELOEIL Hélène

Anesthésiologie-réanimation; médecine

d'urgence

BENDAVID Claude

Biochimie et biologie moléculaire

BENSALAH Karim

Urologie

BEUCHEE Alain

Pédiatrie

BONAN Isabelle

Médecine physique et de réadaptation

BONNET Fabrice

Endocrinologie, diabète et maladies

métaboliques; gynécologie médicale

BOUDJEMA Karim

Chirurgie générale

BOUGET Jacques

Thérapeutique; médecine d'urgence;

addictologie

BOURGUET Patrick

Professeur des Universités en

surnombre

Biophysique et médecine nucléaire

BRASSIER Gilles

Neurochirurgie

(6)

BRISSOT Pierre

Professeur des Universités en

surnombre

Gastroentérologie; hépatologie; addictologie

CARRE François

Physiologie

CATROS Véronique

Biologie cellulaire

CHALES Gérard

Professeur des Universités émérite

Rhumatologie

CORBINEAU Hervé

Chirurgie thoracique et cardiovasculaire

CUGGIA Marc

Biostatistiques, informatique médicale et

technologies de communication

DARNAULT Pierre

Anatomie

DAUBERT Jean-Claude

Professeur des Universités émérite

Cardiologie

DAVID Véronique

Biochimie et biologie moléculaire

DAYAN Jacques

Professeur des Universités associé

Pédopsychiatrie; addictologie

DE CREVOISIER Renaud

Cancérologie; radiothérapie

DECAUX Olivier

Médecine interne; gériatrie et biologie du

vieillissement; addictologie

DELAVAL Philippe

Pneumologie; addictologie

DESRUES Benoît

Pneumologie; addictologie

DEUGNIER Yves

Professeur des Universités en

surnombre

Gastroentérologie; hépatologie; addictologie

DONAL Erwan

Cardiologie

DRAPIER Dominique

Psychiatrie d'adultes; addictologie

DUPUY Alain

Dermato-vénéréologie

(7)

EDAN Gilles

Neurologie

FERRE Jean Christophe

Radiologie et imagerie Médecine

FEST Thierry

Hématologie; transfusion

FLECHER Erwan

Chirurgie thoracique et cardiovasculaire

FREMOND Benjamin

Chirurgie infantile

GANDEMER Virginie

Pédiatrie

GANDON Yves

Radiologie et imagerie Médecine

GANGNEUX Jean-Pierre

Parasitologie et mycologie

GARIN Etienne

Biophysique et médecine nucléaire

GAUVRIT Jean-Yves

Radiologie et imagerie Médecine

GODEY Benoit

Oto-rhino-laryngologie

GUGGENBUHL Pascal

Rhumatologie

GUIGUEN Claude

Professeur des Universités émérite

Parasitologie et mycologie

GUILLÉ François

Urologie

GUYADER Dominique

Gastroentérologie; hépatologie; addictologie

HOUOT Roch

Hématologie; transfusion

HUGÉ Sandrine

Professeur des Universités associé

Médecine générale

HUSSON Jean-Louis

Professeur des Universités en

surnombre

Chirurgie orthopédique et traumatologique

JEGO Patrick

Médecine interne; gériatrie et biologie du

(8)

JEGOUX Franck

Oto-rhino-laryngologie

JOUNEAU Stéphane

Pneumologie; addictologie

KAYAL Samer

Bactériologie-virologie; hygiène hospitalière

KERBRAT Pierre

Cancérologie; radiothérapie

LAMY DE LA CHAPELLE Thierry

Hématologie; transfusion

LAVIOLLE Bruno

Pharmacologie fondamentale; pharmacologie

clinique; addictologie

LAVOUE Vincent

Gynécologie-obstétrique; gynécologie médicale

LE BRETON Hervé

Cardiologie

LE GUEUT Maryannick

Médecine légale et droit de la santé

LE TULZO Yves

Réanimation; médecine d'urgence

LECLERCQ Christophe

Cardiologie

LEGUERRIER Alain

Chirurgie thoracique et cardiovasculaire

LEJEUNE Florence

Biophysique et médecine nucléaire

LEVEQUE Jean

Gynécologie-obstétrique; gynécologie médicale

LIEVRE Astrid

Gastroentérologie; hépatologie; addictologie

MABO Philippe

Cardiologie

MALLEDANT Yannick

Anesthésiologie-réanimation; médecine

d'urgence

(9)

MOIRAND Romain

Gastroentérologie; hépatologie; addictologie

MORANDI Xavier

Anatomie

MORTEMOUSQUE Bruno

Ophtalmologie

MOSSER Jean

Biochimie et biologie moléculaire

MOULINOUX Jacques

Biologie cellulaire

MOURIAUX Frédéric

Ophtalmologie

ODENT Sylvie

Génétique

OGER Emmanuel

Pharmacologie fondamentale; pharmacologie

clinique; addictologie

PERDRIGER Aleth

Rhumatologie

PLADYS Patrick

Pédiatrie

POULAIN Patrice

Gynécologie-obstétrique; gynécologie médicale

RAVEL Célia

Histologie; embryologie et cytogénétique

RIFFAUD Laurent

Neurochirurgie

RIOUX-LECLERCQ Nathalie

Anatomie et cytologie pathologiques

ROBERT-GANGNEUX Florence

Parasitologie et mycologie

SAINT-JALMES Hervé

Biophysique et médecine nucléaire

SEGUIN Philippe

Anesthésiologie-réanimation; médecine

d'urgence

SEMANA Gilbert

Immunologie

(10)

SOMME Dominique

Médecine interne; gériatrie et biologie du

vieillissement; addictologie

SULPICE Laurent

Chirurgie générale

TARTE Karin

Immunologie

TATTEVIN Pierre

Maladies infectieuses; maladies tropicales

THIBAULT Ronan

Nutrition

THIBAULT Vincent

Bactériologie-virologie; hygiène hospitalière

THOMAZEAU Hervé

Chirurgie orthopédique et traumatologique

TORDJMAN Sylvie

Pédopsychiatrie; addictologie

VERGER Christian

Professeur des Universités émérite

Médecine et santé au travail

VERHOYE Jean-Philippe

Chirurgie thoracique et cardiovasculaire

VERIN Marc

Neurologie

VIEL Jean-François

Epidémiologie, économie de la santé et

prévention

VIGNEAU Cécile

Néphrologie

VIOLAS Philippe

Chirurgie infantile

WATIER Eric

Chirurgie plastique, reconstructrice et

esthétique; brûlologie

WODEY Eric

Anesthésiologie-réanimation; médecine

d'urgence

(11)

MAÎTRES DE CONFÉRENCES DES

UNIVERSITÉS – PRATICIENS HOSPITALIERS

Nom Prénom

Sous-section de CNU

AME-THOMAS Patricia

Immunologie

AMIOT Laurence

Hématologie; transfusion

BARDOU-JACQUET Edouard

Gastroentérologie; hépatologie; addictologie

BEGUE Jean-Marc

Physiologie

BOUSSEMART Lise

Dermato-vénéréologie

CABILLIC Florian

Biologie cellulaire

CAUBET Alain

Médecine et santé au travail

DAMERON Olivier

Informatique

DE TAYRAC Marie

Biochimie et biologie moléculaire

DEGEILH Brigitte

Parasitologie et mycologie

DUBOURG Christèle

Biochimie et biologie moléculaire

DUGAY Frédéric

Histologie; embryologie et cytogénétique

EDELINE Julien

Cancérologie; radiothérapie

GALLAND Françoise

Endocrinologie, diabète et maladies

métaboliques; gynécologie médicale

GARLANTEZEC Ronan

Epidémiologie, économie de la santé et

prévention

(12)

HAEGELEN Claire

Anatomie

JAILLARD Sylvie

Histologie; embryologie et cytogénétique

LAVENU Audrey

Sciences physico-chimiques et technologies

pharmaceutiques

LE GALL François

Anatomie et cytologie pathologiques

LE RUMEUR Elisabeth

Physiologie

MAHÉ Guillaume

Chirurgie vasculaire; médecine vasculaire

MARTINS Raphaël

Cardiologie

MASSART Catherine

Biochimie et biologie moléculaire

MATHIEU-SANQUER Romain

Urologie

MENARD Cédric

Immunologie

MENER Eric

Médecine générale

MILON Joëlle

Anatomie

MOREAU Caroline

Biochimie et biologie moléculaire

MOUSSOUNI Fouzia

Informatique

MYHIE Didier

Médecine générale

PANGAULT Céline

Hématologie; transfusion

RENAUT Pierric

Médecine générale

RIOU Françoise

Epidémiologie, économie de la santé et

(13)

ROPARS Mickaël

Anatomie

SAULEAU Paul

Physiologie

TADIÉ Jean-Marc

Réamination; médecine d'urgence

TATTEVIN-FABLET Françoise

Médecine générale

TURLIN Bruno

Anatomie et cytologie pathologiques

VERDIER Marie-Clémence

Pharmacologie fondamentale;

pharmacologie clinique; addictologie

VINCENT Pascal

Bactériologie-virologie; hygiène hospitalière

(14)
(15)

REMERCIEMENTS

Au Docteur Rachel HEYMAN,

Merci d’avoir accepté de diriger ma thèse, merci pour l’idée originale, merci de

m’avoir soutenue, merci pour les dizaines de relecture, les rendez-vous, les

briefings au téléphone. Et également merci pour ta bonne humeur et tes

encouragements.

Au Professeur Isabelle BONAN,

Merci d’avoir accepté de présider le jury de cette thèse. Merci également pour

votre disponibilité et votre accompagnement bienveillant en tant que

coordonnateur de DES.

Au Professeur Philippe VIOLAS, au Professeur Éric WODEY, au Docteur

Vincent DANIEL,

Merci d’avoir accepté de faire partie du jury de cette thèse, votre expertise dans

les domaines de la chirurgie de la scoliose, de l’anesthésie pédiatrique et des

Epreuves Fonctionnelles Respiratoires sera essentielle pour juger ce travail.

Au Docteur Christophe CHARBONNIER,

Merci d’avoir accepté de faire partie du jury de cette thèse. J’ai la chance

exceptionnelle de pouvoir profiter de tes enseignements avant ton départ de la

rééducation pédiatrique et je te remercie de la disponibilité avec laquelle tu

partages ton savoir et tes jeux de mots.

Un grand merci à Florence GAILLARD et sa maman pour la relecture en anglais.

Merci à Chloé ROUSSEAU pour son travail en statistiques.

(16)

Merci à ma famille, dispersée aux quatre coins de la France, mais toujours présente pour les fêtes et les moments importants. Merci Tatie, on peut toujours compter sur toi.

Merci à mes frères.

Merci maman, pour tout. Tout ce que tu as fait pour nous, pour moi, et tout ce qui reste à venir. Merci Hélène, pour ces moments partagés. Des rires, des joies, des découvertes, des voyages et des moments plus durs… Tu m’as fait murir. Un petit bout du chemin qu’il reste à faire… Merci à tous mes amis pour m’avoir accompagnée tout au long chemin.

Petite pensée pour le NC Corenc qui m’a vue grandir… Marzo, Steph, Oriane, Claire, Pauline, Estelle, Charlotte, c’était chouette de partager ces compètes, ces entrainements et tout le reste avec vous…

Merci à Mymy et Nico de s’être installés à Nantes pour garder un œil sur moi ! Myriam, toujours présente et pleine de douceur pour me tirer les vers du nez, c’est un grand privilège de pouvoir te compter dans mes amis. Nicolas, malgré tes phrases chocs pas toujours adaptées et ton amour pour la musique douteuse, tu es l’un des seuls « hommes » acceptés dans ma vie…

Merci à Vérane de nous rappeler tous les jours l’importance du bling bling… Ma grosse, je te kiffe !

Merci à Delphine, Marie et Anne-Cat, votre soutien et votre travail acharné m’ont permis de réussir une difficile 6ème année… Et visiter le Québec avec vous reste parmi mes plus belles vacances !

En espérant que la team Grenoble Forever ait toujours de beaux jours devant elle !

Merci à ceux que j’ai rencontrés pendant mon internat, qui ont rendu ma vie rennaise trépidante…

Merci à Elo, pour tous ces apéros, la découverte de l’Aventure, pour m’avoir accueillie chez toi et n’avoir refait ta cuisine qu’après mon passage…

Merci à Hélène, ta bonne humeur et ton humour ont sauvé nombre de mes journées !

Merci à Cynthia, ces discussions interminables au moment de dicter mes courriers m’ont énormément aidée à supporter des conditions de travail pas toujours faciles… J’attends avec impatience d’être invitée à Tahiti !

Merci à Meriem pour un semestre haut en couleurs !

Merci à Momo et Katoune, la dream team de l’internat vannetais, un bel été dans mes souvenirs…

Un merci particulier à l’équipe de MPRA, première famille dans mon parcours. A l’équipe de MPRE, pour l’accueil toujours chaleureux. A l’équipe de Beaulieu, pour les beaux moments d’échange. A l’équipe médicale de Vannes pour la découverte de la pédiatrie et les apéros-plage. A la neuropédiatrie d’Angers pour leur gentillesse, les nombreux cafés et les parties de rire. A l’équipe de l’HE à La Réunion, en espérant vous retrouver autour d’un verre à l’Hermitage ! A l’équipe de Kerpape, pour un final en apothéose.

Merci à tous les médecins et les équipes paramédicales pour tous les enseignements sur le terrain. Merci à ceux qui m’ont appris le soin et l’écoute, merci à ceux qui m’ont sortie quand je broyais du noir, merci à ceux qui ont égayé mes trop longues et douloureuses journées de travail et nuits de garde d’un sourire, d’une oreille attentive, de bonbons/chocolats ou de mots gentils.

Merci à tous les co-internes, pour le partage, le soutien et les sorties… Thibault, Thomas, Vincent, Augustin, Sarah, Nathalie, Lisa, Nelly, Célia, Pauline, Flore, Augustin, Lorène, Lucie, Lucie, Florence, Emilie, Damien.

(17)

16   

SOMMAIRE

TITRE ... 17

TITLE ... 17

RÉSUMÉ ... 18

ABSTRACT... 20

MOTS-CLÉS ... 20

KEY-WORDS... 22

LISTE DES ABRÉVIATIONS ... 23

1. INTRODUCTION ... 23

2. MATERIAL AND METHODS ... 27

3. RESULTS ... 30

4. DISCUSSION ... 35

5. CONCLUSION ... 39

RÉFÉRENCES BIBLIOGRAPHIQUES ... 40

LISTE DES TABLEAUX ... 43

LISTE DES FIGURES ... 44

TABLE DES MATIÈRES ... 45

ANNEXES ... I

 

(18)

17 

TITRE

Apport du relaxateur de pression dans la récupération de la fonction

respiratoire après chirurgie d’arthrodèse de la scoliose idiopathique de

l’adolescent.

TITLE

How do Intermittent Positive Pressure Breathing device improves the

recovery of respiratory function after arthrodesis of the spine for

adolescent idiopathic scoliosis.

(19)

18   

RÉSUMÉ

Introduction

La scoliose idiopathique de l’adolescent (SIA) entraine un syndrome restrictif pulmonaire proportionnel à la sévérité de la maladie. Le syndrome restrictif est corrélé à la présence de limitations fonctionnelles. L’arthrodèse rachidienne provoque une diminution des capacités respiratoires de l’ordre de 40 à 50% en post-opératoire immédiat, dont la récupération se fait progressivement entre le premier et le troisième mois post-opératoire.

Notre objectif était d'analyser l'effet d'une rééducation respiratoire par relaxateur de pression sur la récupération de la capacité vitale forcée (CVf) après une chirurgie d'arthrodèse dans la SIA.

Matériel et méthodes

Cette étude pilote, prospective et observationnelle d'un protocole de soins courants a été menée au sein du service de rééducation pédiatrique du CHU de Rennes. Les patients inclus présentaient une SIA pour laquelle une indication d’arthrodèse vertébrale était posée. Les patients exclus étaient atteints d'une scoliose secondaire ou d'une pathologie pulmonaire préexistante et non stabilisée.

Après un bilan initial 45 jours avant la chirurgie (T0), les patients débutaient la rééducation par relaxateur de pression. Après la chirurgie, ils suivaient un protocole de rééducation en hospitalisation en poursuivant l’utilisation du relaxateur de pression. Une spirométrie était effectuée à T0, la veille de la chirurgie (J-1), puis pendant la deuxième (S2), la troisième (S3) et la quatrième (S4) semaine d’hospitalisation. Une dernière spirométrie était réalisée 4 mois (M4) après l’intervention. Le critère de jugement principal était l’évolution de la CVf après la chirurgie.

Résultats

24 patients ont été inclus entre janvier 2011 et avril 2016. L’angle de Cobb moyen était 67,2° ± 16,5°. La CVf moyenne (% de la théorique) était de 69,3% à T0, 77,3% à J-1, 49% à S2, 57,1% à S3, 68% à S4, 74,3% à M4. La CVf à J-1 était plus élevée que la CVf à T0 de façon significative (+8%, p<0,05). Les CVf à S2 et à S3 étaient plus basses que la CVf à T0 de façon significative (respectivement -20,3% et -12,2%, p <0,001). Par contre, les CVf à S4 et à M4 ne différaient pas de la CVf à T0 de façon significative (respectivement -1,3% et 4,9%).

(20)

19 

Conclusion

Avec notre protocole, à la quatrième semaine post-opératoire la CVf est déjà revenue à la valeur pré-opératoire. Cette étude montre donc que la rééducation par relaxateur de pression accélère la récupération de la CVf après chirurgie d’arthrodèse dans les SIA.

(21)

20   

ABSTRACT

Introduction

Adolescent idiopathic scoliosis (AIS) leads to a restrictive lung disease, proportional to the severity of the scoliosis. The restrictive lung disease is closely related to functional limitations. Spinal fusion causes respiratory capacities to diminish up to 40 to 50% in the immediate post-operative period, and recovery occurs between the first and the third post-post-operative months. The goal of this study was to analyse the effect of respiratory rehabilitation with an intermittent positive pressure breathing (IPPB) device on the recovery of forced vital capacity (FVC) after spinal fusion in AIS.

Material and methods

This was a pilot prospective and observational study of a standard care protocol. The included patients were adolescents followed at the teaching hospital in Rennes, presenting an AIS with a surgical indication. Excluded patients were presenting secondary scoliosis or anterior and unstable pulmonary disease.

After an assessment 45 days before surgery (T0), patients started using the IPPB device at home. After the surgery, patients underwent the habitual rehabilitation program in a short hospitalization period and kept using the IPPB device. Follow-up spirometries were performed the day before surgery (D-1), and then during the second (W2), the third (W3), the fourth (W4) week of rehabilitation. A last spirometry was performed 4 months (M4) after surgery. The primary judgment criterion was FVC evolution after surgery.

Results

There were 24 patients included (4 boys, 20 girls) between January 2011 and April 2016. The mean Cobb angle was 67.2° ± 16.5 °. The mean adjusted FVC (% of predicted value) was 69.3% at T0. The FVC at D-1 was significantly higher than the FVC at T0 (+8%, (p<0.05). The FVC at W2 and W3 were significantly lower than the FVC at T0 (respectively -20.3% and -12.2%, p<0.001). The FVC at W4 and M4 were not significantly different from the FVC at T0 (respectively -1.3% and 4.9%).

(22)

21 

Conclusion

With our protocol, in the fourth post-operative week, FVC has already returned to pre-operative value. This study therefore demonstrates that rehabilitation with IPPB device accelerates the recovery of FVC after spinal fusion in AIS.

(23)

22   

MOTS-CLÉS

Scoliose, adolescent, arthrodèse vertébrale, capacité vitale, respiration en pression

positive intermittente, rééducation et réadaptation

KEY-WORDS

Scoliosis, adolescent, spinal fusion, vital capacity, Intermittent Positive-Pressure

Breathing (IPPB), rehabilitation

(24)

23 

LISTE DES ABRÉVIATIONS

AARC : American Association for Respiratory Care

AIS : Adolescent Idiopathic Scoliosis

ATS : American Thoracic Society

BTS : British Thoracic Society

CSF : Cerebro Spinal Fluid

D-1 : The Day Before Surgery

FEV : Forced Expiratory Volume in on second

FVC : Forced Vital Capacity

M4 : The fourth month after surgery

PFT : Pulmonary Function Tests

PSE : Physiotherapeutic specific exercises

r

p

: Pearson’s correlation coefficient

Sa02 : Oxygen saturation

SEPAR : Sociedad Española de Neumología y Cirugía Torácica

SOSORT : International Society on Scoliosis Orthopaedic and Rehabilitation

Treatment

T0 : The first assessment, 45 days before surgery

TLC : Total Lung Capacity

TV : Tidal Volume

VAS : Visual Analogic Scale

VC : Vital Capacity

VEmax : Ventilatory Efficiency at maximal exercise

VO2max : Maximal Oxygen Consumption

(25)

24   

1. INTRODUCTION

Scoliosis is the most frequent abnormality of the spine of child and adolescents. It corresponds to a three dimensional deformation of the spine, leading to a lateral curvature, a vertebral rotation and sagittal anomalies with complex effects on the anatomy of the thoracic cage. It is defined by a clinical rib hump and a vertebral curvature measured with Cobb angle. Idiopathic scoliosis is the most frequent form (85% of scoliosis), with a 0.2 to 6% prevalence in the population [1]. Recently, numerous studies tend to prove that there is a multifactorial etiology to this condition, implying different genes and neuroendocrine and biochemical factors such as melatonin and calmodulin [1, 2]. Adolescent idiopathic scoliosis (AIS) is more likely to affect girls with a 3:1 sex ratio, this ratio increasing with the severity of the scoliosis [3].

Scoliosis leads to a multifactorial restrictive lung disease, proportional to the severity of the scoliosis. Above 90° of Cobb angle, there is an important risk of cardio-respiratory insufficiency. Indeed, the thoracic cage mechanic is altered and conformational anomalies restraint the normal pulmonary inflation. On the muscular level, a weakness of respiratory muscles, a bad diaphragmatic conformation, and an intercostal muscles affection were found. Obstructive lung disease can sometimes be found as well [3]. As a consequence, ventilatory parameters are modified with an increased respiratory rate, a diminished total lung capacity (TLC) and a diminished tidal volume (Vt). But the Vt is augmented compared to the vital capacity (VC), which is an expression of the increase of the work of breathing with accessory respiratory muscles recruitment. TLC measure requires a plethysmography, but it is possible to estimate the restrictive lung disease by recording the forced vital capacity (FVC) whose decrease is proportional to TLC [4]. A restrictive lung disease detected on the pulmonary function testing (PFT) is associated with a risk of developing functional limitations [5]. The restrictive lung disease is also frequently associated with dyspnea and effort deconditioning [6]. During exercise, the respiratory response of adolescents with AIS is reduced compared to the norm, even in mild scoliosis. In the 6-minute walk test, there is a significant raise of the respiratory rate, of the heart rate, and of the score on Borg dyspnea scale, and a significant reduction of the blood oxygen saturation and the walking distance for AIS patients compared to the control group [7]. Other authors have demonstrated an impact on maximal exercise

(26)

25 

tolerance test with a decrease in maximal oxygen uptake (VO2max) and in ventilatory efficiency at maximal exercise (VEmax), in AIS patients even with moderate scoliosis (Cobb angle <45°) [8]. Others confirm those results and report a decrease in global muscular capacities (respiratory and limb muscles) [9, 10]. In severe scoliosis, the increase of arterial pulmonary pressure could play a role in reducing the exercise capacities.

Spinal fusion is the key surgical treatment of progressive AIS. The arthrodesis effect on respiratory function is not clear yet. Several studies have indeed demonstrated that the different arthrodesis techniques could either ameliorate, deteriorate or stabilize the respiratory function. On the other hand, it is generally accepted that the respiratory function drops at the immediate post-operative period. Some authors have indeed demonstrated that FVC decreases to 40 to 50% of pre-operative value and that all PFTs diminish by 60% around the third post-operative day, to rise up progressively to 80 to 100% of pre-operative value from the second post-operative month, in every scoliosis and all types of surgeries [11].

AIS rehabilitation modalities are highly controversial, and the scientific literature does not enable to conclude formally that there is a proof of efficacy. According to the SOSORT (International Society on Scoliosis Orthopaedic and Rehabilitation Treatment) in 2012, physiotherapeutic specific exercises (PSE) are recommended because they seem to limit the worsening of the scoliosis and to improve lung function [12, 13]. More generally, the physical reconditioning training also plays a role in improving respiratory capacity. [14] To our knowledge, no study has evaluated the effect of a specific respiratory rehabilitation after spinal fusion for AIS and especially the effect of the use of an Intermittent Positive Pressure Breathing (IPPB) device in this indication. Yet the IPPB (Alpha 200® 300®, Bird®) has proven its efficacy in the prevention and treatment of restrictive lung disease. This device delivers a positive pressure during inspiration, after triggering by the patient, and causes pulmonary hyper insufflation. It increases the pulmonary alveolar recruitment, it reduces the work of breathing, it improves chest wall compliance and thus increases the VC of patients [15, 16]. Its use is recommended by several scientific societies (AARC, BTS, SEPAR) in the care of neuromuscular diseases and kyphoscoliosis restrictive lung diseases [17, 18, 19].

(27)

26   

The aim of this pilot study was to analyze the effect of a specific respiratory rehabilitation with an IPPB device on the recovery of lung function after spinal fusion in AIS. Recovery of lung function was assessed by the speed of the recovery of the preoperative value of FVC and also by the possible increase in the value of FVC after surgery.

(28)

27 

2. MATERIAL AND METHODS

Study population

We conducted a prospective observational study of a standard care protocol from January 2011 to April 2016 within the Pediatric Physical Medicine and Rehabilitation department in Rennes University Hospital. Patients included were children followed at Rennes University Hospital with AIS, whatever the Cobb angle and the topography of scoliosis, for whom there was an indication of spinal fusion, whatever the type of surgery. Patients with secondary scoliosis, or with a pre-existing and unstablized lung disease were excluded.

This study was approved by the Ethics Committee of the University Hospital of Rennes.

Study protocol

The patients included followed the usual rehabilitation protocol set up in the pediatric physical medicine and rehabilitation department. The protocol was as follows: 45 days prior to spinal fusion surgery, the patients had a preoperative assessment (T0) including a complete clinical examination by a physiotherapist and a rehabilitation physician (measurement of height standing and sitting, measurement the hump in degree with a scoliometer, measure of sagittal balance with a plumb line, measure of the deviation in the frontal plane in centimeters), pain VAS (visual analogic scale); an analysis of recent radiographs (total spine standing face and profile: topography of scoliosis, Cobb angle, vertebral rotation, Risser test, measure of pelvic parameters including pelvic incidence, lumbar lordosis and pelvic tilt, and measure of thoracic kyphosis); spirometry measurements with FVC, FEV (forced expiratory volume in one second), FEV/FVC; a 6-minute walk test performed by a sports educator.

An education to the use of the IPPB device (Alpha 200® or 300®) was given by a physiotherapist trained in the use of the device, who adjusted the ventilatory parameters according to each child. The pressure that was found to be effective was the one that lead to a mobilization of upper ribs. The flow rate was the slowest the child could tolerate. Patients were then asked to use the IPPB device twenty minutes a day seven days a week until the date of the surgery. A timer was set up the day of the beginning of rehabilitation to monitor the compliance of each patient.

(29)

28   

The day before surgery, a new spirometry was performed (D-1) in the same conditions as the previous ones.

8 days after surgery, the children were admitted to the pediatric in-patient rehabilitation service (with return home on weekends) for an average of 3.5 weeks. They all followed the same multidisciplinary rehabilitation program including a medical evaluation, management of pain, physiotherapy (respiratory and global), occupational therapy, psychomotricity, balneotherapy and adapted physical education. Reeducation through IPPB device was continued at the rate of two times twenty minutes a day, every day, including weekends at home.

At hospital discharge around day 28 after surgery (week 4, W4), the IPPB rehabilitation was continued if postoperative FVC was less than 80% of predicted FVC and / or in case the recovery of the preoperative FVC was not completed (twenty minutes sessions per day for 3 months). For these patients, the timer was kept at the hospital discharge to check for compliance.

For all patients, a final assessment was performed 4 months after surgery (M4), including a medical and physiotherapeutic assessment, a spirometry and a 6-minute walk test.

Judgment criteria

The primary judgment criterion of the study was the speed of FVC recovery up to preoperative values.

Spirometry was performed with a spirometer Jaeger, LAB 5.0 software, by physiotherapists or trained technicians. To measure FVC, children were instructed to inspire deeply and blow as quickly as possible all the air from their lungs into the spirometer. Three measurements were made under the same conditions in a sitting position and the best of three values were retained. We also measured FEV and FEV / FVC ratio. In our study, spirometry was performed 45 days before surgery (T0), the day before surgery (D-1), during the second postoperative week (W2), during the third postoperative week (W3), during the fourth postoperative week (W4) and at the fourth post-operative month (M4) to describe the recovery of FVC.

(30)

29 

The secondary criteria were the correlations between the anthropometric parameters of population and the recovery of the FVC, and the evolution of the 6-minute walk test parameters after surgery. The 6-minute walk tests were performed by a sports educator at T0 and M4. The data collected were the distance and walking speed, maximum heart rate during exercise and score in the Borg dyspnea scale.

Statistical analysis

For statistical analysis the parameters measured at different times were compared using parametric paired Student test or non-parametric Wilcoxon signed ranks. The links between FVC (% predicted) at W4 and T0 parameters were sought using univariate linear regression for quantitative parameters, and ANOVA models for qualitative parameters (such analyzes were adjusted on FVC at T0). The links between the effect of surgery on the spinal parameters and improvement in FVC between T0 and W4 and between T0 and M4 (quantitative variables) were sought using Pearson linear correlations (parametric data), or Spearman’s rank monotonic correlations (nonparametric data). A repeated measures model was conducted to see if there was an effect of time on the evolution of post-operative FVC. FVC at various times was compared with respect to T0 adjustment with Dunnett.

(31)

30   

3. RESULTS

Population characteristics

Over the period from January 2011 to April 2016, 24 patients met the inclusion criteria of this study. Table 1 summarizes the characteristics of the population. There were 4 boys (16.7%) and 20 girls (83.3%). The mean Cobb angle for the main curve was 67.2 °± 16.5°. The majority of scoliosis were classified Lenke 4 (56.5%), 26.1% were Lenke 3. 58.3% of patients wore a brace full-time or night wear and 79.2% of patients were receiving physiotherapy.

21 patients underwent posterior spinal fusion. There was an average of 10 thoracic vertebrae included in the arthrodesis. The rate of correction of the Cobb angle was 59.5 +/- 14.7%. The pelvic incidence was not affected, but the lumbar lordosis and thoracic kyphosis were reduced. The rate of complications in surgical suites was 33.3% (surgical site infection, CSF leak, pneumothorax ...). 25% of patients required oxygen therapy for a few hours and up to 2 days after the operation. Furthermore, there was no significant change in pain (VAS) one month after surgery.

(32)

31                                           

Variable Population (n=24) Difference before and after surgery Sex

Boys 4 (16.7%)

Girls 20 (83.3%)

Known respiratory pathology

No 20 (83.3%) Yes 4 (16.7%) Brace No 10 (41.7%) Yes 14 (58.3%) IPPB No 5 (20.8%) Yes at D-45 19 (79.2%) BMI 19.4 ± 4.5 Age at scoliosis diagnosis

10.4 ± 3.1 Lenke classification 1 1 ( 4.3%) 2 2 ( 8.7%) 3 6 (26.1%) 4 13 (56.5%) 5 1 ( 4.3%) 6 0

Cobb angle, main curve

Before surgery 67.2 ± 16.5

After surgery 28.1 ± 13.5 p < 0.0001 (S app)

Thoracic kyphosis

Before surgery 26.7 ± 14.1

After surgery 17.4 ± 11.9 p < 0.0001 (S app)

Lumbar lordosis

Before surgery 47.8 ± 11.8

After surgery 39.1 ± 8.5 p = 0.0002 (S app)

Type of arthrodesis

Posterior 21 (87.5%)

Anterior + posterior 1 ( 4.2%) Halo traction + posterior 1 ( 4.2%) Anterior + posterrior then halo

traction + posterior 1 ( 4.2%) Surgery complications No 16 (66.7%) Yes 8 (33.3%) Post-operative oxygenotherapy No 18 (75.0%) Yes 6 (25.0%)

Qualitative parameters : Number (%).

Quantitative parameters : Mean ± standard deviation Paired Student tests (S app)

(33)

32   

Evolution of respiratory parameters

The mean FVC at T0 was 2.3 ± 0.7L (70.8 +/- 20.5% of the predicted value). 8 (33%) patients had a FVC <60% of predicted, and 6 (25%) had a FVC between 60% and 80% of predicted. The mean FEV was 1.9 ± 0.7L (67.5 ± 24.4% of predicted). The results of spirometry are summarized in Table 2.

       

Time of the study

T0 D-1 W2 W3 W4 M4 FVC in L (%pre) 2.3 ± 0.7 (70.8 ± 20.5) 2.7 ± 0.7 (77.5 ± 21) 1.8 ± 0.5 (52.5 ± 15) 2.1 ± 0.6 (61.8 ± 16.2) 2.5 ± 0.6 (69.7 ± 18) 2.7 ± 0.7 (75.9 ± 21.1) FEV in L (%pre) 1.9 ± 0.7 (67.5 ± 24.4) 2.4 ± 0.6 (82 ± 23.2) 1.5 ± 0.5 (51 ± 17.9) 1.7 ± 0.6 (57.8 ± 17.1) 2.1 ± 0.5 (67.8 ± 18.5) 2.1 ± 0.8 (70.7 ± 26.5) FEV/VC 79.5 ± 9.8 88.9 ± 3.4 84 ± 13.4 80.9 ± 12.9 85.2 ± 11.1 77.8 ± 10.7

Values : Mean +/- Standard deviation

Table 2. Values of spirometry according to time

 

(34)

33 

Changes in FVC over time is shown in Figure 1, the values of FVC are given in Table 3. FVC at D-1 was significantly higher than FVC at T0 (+ 8%, p <0.05). FVC at W2 and W3 were significantly lower than FVC at T0 (respectively -20.3% and -12.2%, p <0.001). However, the FVC at W4 and M4 did not significantly differ from FVC at T0 (-1.3% and 4.9% respectively).

Figure 1. FVC evolution versus time.

A repeated measures model was performed for each of the two groups to see if there was an effect of time. The p-values of the models were shown on the graph, they correspond to the comparison with T0. * P <0.05; ** P

<0.001

 

Time of the study

T0 D-1 W2 W3 W4 M4 FVC in %pre 69.3 ± 3.99 77.4 ± 4.3 49 ± 4.1 57.1 ± 4.0 68 ± 3.97 74.3 ± 4.0 Difference with FVC at T0 (p-value) 8.0758 (p=0.0426) -20.3221 (p<.0001) -12.2136 (p<.0001) -1.3369 (p=0.9808) 4.9218 (p=0.2190) Values : Adjusted means +/- Standard deviation

Table 3. FVC evolution versus time

* ** ** 0 10 20 30 40 50 60 70 80 90 100 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 C Vf  ( %t h é o ri q u e ) Temps (semaines post-opératoires) Début de la  rééducation  avec  relaxateur  de pression Arthrodèse  rachidienne

(35)

34   

6-minute walk test

Regarding the 6-minute walk test, only 16 of the 24 patients were evaluable. The average walking speed was 5.2 +/- 0.9 km/h at T0 and 5.3 +/- 1km/h at M4, the average walked distance was 497 +/- 103.2m at T0 and 517.8 +/- 112.2m at M4, and the average heart rate was 140 +/- 20.4bpm at T0 and 141.8 +/- 14.9bpm at M4. The differences were not statistically significant.

Correlation analysis

We found a negative correlation between the presence of postoperative complications and recovery of FVC at W4 (β coefficient = -12.4, p <0.05) [Appendix 2]. There was a positive correlation between the reduction of thoracic kyphosis after surgery and the recovery of the FVC between W4 and M4 (rp = 0.7000, p = 0.011 where rp is the Pearson correlation coefficient).

We did not find significant correlation between the reduction of the Cobb angle after surgery and the recovery FVC.

   

(36)

35 

4. DISCUSSION

The study population differs slightly from that of other studies on respiratory function in this pathology. We found a female predominance with a sex ratio of 5: 1 (from 1: 1 to 3: 1 in other studies), a mean pre-operative Cobb angle of 67° while between 50 and 60° in literature [20, 21, 22, 23, 24]. These differences can be explained by surgical habits that vary from country to country, and by the fact that the sex ratio increases with the severity of scoliosis and therefore with the Cobb angle.

Preoperative FVC of patients in our study is reduced compared to normal (70.8% of predicted FVC), which is consistent with the literature data relating restrictive lung disease in idiopathic adolescent scoliosis, including moderate scoliosis. In other studies on the subject, preoperative FVC was 67 to 87.7% [20, 22, 23, 24].

The decrease in FVC is correlated to the decrease in TLC, reflecting the installation of a restrictive lung disease. Some authors have clearly identified the decrease in FVC as a predictive marker of respiratory failure in adult patients with non-operated AIS: having an FVC<45% of predicted value in adolescence is correlated with the installation of respiratory failure after 20 years of evolution [25]. This was partly explained by the natural evolution of the VC, which increases until the end of the growth phase in young adulthood and then gradually decreases with age.

In addition, the restrictive pattern detected on the PFT is associated with a risk of functional limitations (ability to walk more than 1 mile, carry more than 10 pounds, need of help in activities of daily living) [5]. This restrictive lung disease is commonly associated with dyspnea and effort deconditioning [6]. The American Thoracic Society (ATS) has also defined that a "moderate" deterioration of respiratory function characterized by a FVC between 50% and 59% of the predicted value (or a FEV between 41% and 59% of predicted) was sufficient to decrease patients ability to perform normal work. The deterioration is described as "mild" when the FVC or FEV are between 60% and 79% of the predicted values [6]. In our study, before surgery, 33% of patients had a moderate deterioration of their respiratory capacities as defined by the ATS, and 25% had a mild deterioration. The management of these alterations in respiratory function is essential in the treatment of the AIS. Indeed, the improvement in FVC and its speed is a major issue in the patient’s functional recovery after spinal fusion.

(37)

36   

Adequately, our results suggest a beneficial effect of IPPB device in the respiratory rehabilitation of patients with AIS. Indeed, in the immediate postoperative period, the FVC of our patients fall to 75.6% of the preoperative FVC value, while studies on the subject reported a drop of 40 to 50% of the preoperative FVC value [26].

Our patients also have a recovery of FVC in the post-operative period faster than described in literature (Figure 2). Indeed, a recent meta-analysis shows that in the case of posterior vertebral arthrodesis for AIS, FVC gradually rises to 70% of the predicted value 1 month after surgery, and reaches 100% of the preoperative value 3 months after surgery [20, 21, 22, 26, 27]. Whereas in our study, the recovery occurs from the fourth post-operative week: FVC at W4 corresponds to 98.2% of pre-operative FVC (the difference between predicted FVC at T0 and at W4 was 1.3% and was not statistically significant).

In addition, there is a trend towards more rapid improvement in FVC, since 4 months after surgery it corresponds to 108.9% of the preoperative value (not significant), while literature only puts out a progressive increase in FVC compared to preoperative FVC after 1 post-operative year (gain between 6 and 17% of the predicted FVC or 108 to 125% of the preoperative FVC between 1 and 20 years after surgery) [20, 21, 22, 26, 27]. These results need to be confirmed by a follow-up of postoperative FVC over a longer period.

Figure 2. FVC evolution versus time in our study compared to literature data

0 10 20 30 40 50 60 70 80 90 100 110 120 130 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 F VC  in  %  o f  pr e o pe ra ti v e  v a lue Time (post-operative weeks)

Population of the study Literature data without rehabilitation Beginning of  rehabilitation with IPPB  device for the  population of  the study Spinal  fusion

(38)

37 

A decrease in FVC is also associated with the recruitment of accessory respiratory muscles, increased in the effort in these patients often presenting an effort deconditioning [3]. Therefore, one may think that patients in the post-operative catabolism period should, thanks to the IPPB device, improve their FVC recovery speed, which would allow them to recover faster autonomy to moderate effort. For patients in this study, although there was a trend to improved parameters (walking distance, walking speed) in the 6-minute walk test performed 4 months after pulmonary rehabilitation, the latter is not statistically significant. It should be noted that this analysis has a lack of power linked to the low number of subjects who benefited from these assessments.

The conclusions that can be drawn from correlational analysis in our study are limited because of the small size of our population. It was noted that the presence of post-operative complications correlated with poorer recovery of FVC. There was no correlation between the percentage reduction of the Cobb angle and the recovery of the FVC, while studies show that the bigger the Cobb angle was, the lower the FVC was [28]. We did not find a correlation between the percentage of reduction of the thoracic kyphosis and recovery of FVC at W4, but we found a positive correlation between the reduction of kyphosis and recovery of FVC between W4 and M4. This result is not very well explained because literature shows that the lower the thoracic kyphosis is, the lower the FVC is [28].

Pulmonary complications are part of the first causes of morbidity and mortality in the period following the arthrodesis surgery, with an incidence of 0.6 to 1.5% depending on the studies [29, 30]. There is no direct correlation found in literature between pre-operative pulmonary function and the incidence of complications [3]. Moreover, it appears that post-operative oxygen saturation rate is reduced compared to the preoperative value [31]. We have not found studies reporting the percentage of patients requiring postoperative oxygen therapy. In a doctoral thesis with a comparable population, out of the 13 patients with AIS, 4 (30.7%) required postoperative oxygen [32]. Our study was not designed to analyze the links between the preoperative pulmonary rehabilitation and the occurrence of pulmonary complications after surgery. However, although 25% of patients (N = 6) were in need of post-operative oxygen

(39)

38   

therapy, only one patient had severe pulmonary complications (pneumothorax). Thus, it would be interesting to conduct a study analyzing more specifically this aspect.

Moreover, we noted that beginning the rehabilitation with the IPPB device 45 days before the date of surgery seemed to already increase the FVC (108% of pre-operative FVC, statistically significant result). We could therefore assume that the introduction of the IPPB device may have an interest in other periods of the management of AIS.

This pilot study provides evidence for the first time of the importance of including specific respiratory rehabilitation through IPPB in the management of peri-operative adolescent idiopathic scoliosis.

Thus, this study aiming at investigating the feasibility and interest of such rehabilitation is emerging as a major preliminary study. It opens many research perspectives in order to harmonize practices and develop recommendations for before and after spinal fusion respiratory rehabilitation. Because of its pilot character, it presents bias (small numbers, lack of control group, open-label and single-center). To confirm these results, a randomized controlled multicenter study is needed.

(40)

39 

5. CONCLUSION

 

Our study shows that pulmonary rehabilitation with Intermittent Positive Pressure Breathing accelerates the recovery of pulmonary vital capacity after spinal fusion in adolescent idiopathic scoliosis. Functional walking capacities also appear to be improved. Finally, the longer term FVC recovery tends to be greater than in the absence of specific pulmonary rehabilitation. Therefore, rehabilitation with IPPB device must be considered more often in the common care of spinal fusion for AIS patients, as it probably ameliorates patients’ functional capacities, and thus their quality of life after surgery.

(41)

40   

RÉFÉRENCES BIBLIOGRAPHIQUES

1. Dayer, R., Haumont, T., Belaieff, W., et al. (2013). Idiopathic scoliosis: etiological concepts and hypotheses. Journal of children's orthopaedics, 7(1), 11-16.

2. Acaroglu, E., Bobe, R., Enouf, J., et al. (2012). The metabolic basis of adolescent idiopathic scoliosis: 2011 report of the “metabolic” workgroup of the Fondation Yves Cotrel. European Spine Journal, 21(6), 1033-1042.

3. Koumbourlis, A. C. (2006). Scoliosis and the respiratory system. Paediatric respiratory reviews, 7(2), 152-160.

4. Tsiligiannis, T., & Grivas, T. (2012). Pulmonary function in children with idiopathic scoliosis. Scoliosis, 7(1), 1.

5. Mannino, D. M., Ford, E. S., Redd, S. C. (2003). Obstructive and restrictive lung disease and functional limitation: data from the Third National Health and Nutrition Examination. Journal of internal medicine, 254(6), 540-547.

6. Renzetti Jr, A. D., Bleecker, E. R., Epler, G. R., et al. (1986). Evaluation of impairment/disability secondary to respiratory disorders. American Review of Respiratory Disease, 133(6), 1205-1209.

7. dos Santos Alves, V. L., Avanzi, O. (2009). Objective assessment of the cardiorespiratory function of adolescents with idiopathic scoliosis through the six-minute walk test. Spine, 34(25), E926-E929.

8. Barrios, C., Pérez-Encinas, C., Maruenda, J. I., et al. (2005). Significant ventilatory functional restriction in adolescents with mild or moderate scoliosis during maximal exercise tolerance test. Spine, 30(14), 1610-1615.

9. Sperandio, E. F., Alexandre, A. S., Liu, C. Y., et al. (2014). Functional aerobic exercise capacity limitation in adolescent idiopathic scoliosis. The Spine Journal, 14(10), 2366-2372.

10. Martinez-Llorens, J., Ramirez, M., Colomina, M. J., et al. (2010). Muscle dysfunction and exercise limitation in adolescent idiopathic scoliosis. European Respiratory Journal, 36(2), 393-400.

11. Yuan, N., Fraire, J. A., Margetis, M. M., et al. (2005). The effect of scoliosis surgery on lung function in the immediate postoperative period. Spine, 30(19), 2182-2185.

12. Weiss, H. R. (1991). The effect of an exercise program on vital capacity and rib mobility in patients with idiopathic scoliosis. Spine, 16(1), 88-93.

(42)

41 

13. Negrini, S., Aulisa, A. G., Aulisa, L., et al. (2012). 2011 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis, 7(1), 1.

14. dos Santos Alves, V. L., Stirbulov, R., Avanzi, O. (2006). Impact of a physical rehabilitation program on the respiratory function of adolescents with idiopathic scoliosis. CHEST-CHICAGO, 130(2), 500.

15. Dohna‐Schwake, C., Ragette, R., Teschler, H., et al. (2006). IPPB‐assisted coughing in neuromuscular disorders. Pediatric pulmonology,41(6), 551-557.

16. Denehy, L., Berney, S. (2001). The use of positive pressure devices by physiotherapists. European Respiratory Journal, 17(4), 821-829.

17. Sorenson, H. M., Shelledy, D. C. (2003). AARC clinical practice guideline. Intermittent positive pressure breathing--2003 revision & update. Respiratory care, 48(5), 540-546. 18. Bott, J., Blumenthal, S., Buxton, M., et al. (2009). Guidelines for the physiotherapy

management of the adult, medical, spontaneously breathing patient. BMJ Publ. Group. 19. Farrero, E., Antón, A., Egea, C. J., et al. (2013). Guidelines for the management of

respiratory complications in patients with neuromuscular disease. Archivos de Bronconeumología (English Edition), 49(7), 306-313.

20. Vedantam, R., Lenke, L. G., Bridwell, K. H., et al. (2000). A prospective evaluation of pulmonary function in patients with adolescent idiopathic scoliosis relative to the surgical approach used for spinal arthrodesis.Spine, 25(1), 82.

21. Verma, K., Lonner, B. S., Kean, K. E., et al. (2011). Maximal pulmonary recovery after spinal fusion for adolescent idiopathic scoliosis: how do anterior approaches compare?. Spine, 36(14), 1086-1095.

22. Pehrsson, K., Danielsson, A., Nachemson, A. (2001). Pulmonary function in adolescent idiopathic scoliosis: a 25 year follow up after surgery or start of brace treatment. Thorax, 56(5), 388-393.

23. Upadhyay, S. S., Ho, E. K., Gunawardene, W. M., et al. (1993). Changes in residual volume relative to vital capacity and total lung capacity after arthrodesis of the spine in patients who have adolescent idiopathic scoliosis. J Bone Joint Surg Am, 75(1), 46-52. 24. Kim, Y. J., Lenke, L. G., Bridwell, K. H., et al. (2005). Pulmonary function in

adolescent idiopathic scoliosis relative to the surgical procedure. J Bone Joint Surg Am, 87(7), 1534-1541.

25. Pehrsson, K., Bake, B., Larsson, S., et al. (1991). Lung function in adult idiopathic scoliosis: a 20 year follow up. Thorax, 46(7), 474-478.

(43)

42   

26. Lee, A. C., Feger, M. A., Singla, A., et al. (2016). Effect of Surgical Approach on Pulmonary Function in Adolescent Idiopathic Scoliosis Patients: A Systemic Review and Meta-analysis. Spine.

27. Kumano, K., Tsuyama, N. (1982). Pulmonary function before and after surgical correction of scoliosis. J Bone Joint Surg Am, 64(2), 242-248.

28. Johnston, C. E., Richards, B. S., Sucato, D. J., et al. (2011). Correlation of preoperative deformity magnitude and pulmonary function tests in adolescent idiopathic scoliosis. Spine, 36(14), 1096-1102.

29. Coe, J. D., Arlet, V., Donaldson, W., et al. (2006). Complications in spinal fusion for adolescent idiopathic scoliosis in the new millennium. A report of the Scoliosis Research Society Morbidity and Mortality Committee. Spine-Philadelphia-Harper And Row Publishers Then Jb Lippincott Company Then Lippincott Williams And Wilkins, 31(3), 345.

30. Reames, D. L., Smith, J. S., Fu, K. M. G., et al. (2011). Complications in the surgical treatment of 19,360 cases of pediatric scoliosis: a review of the Scoliosis Research Society Morbidity and Mortality database. Spine, 36(18), 1484-1491.

31. Kinnear, W. J. M., Kinnear, G. C., Watson, L., et al. (1992). Pulmonary function after spinal surgery for idiopathic scoliosis. Spine, 17(6), 708-713.

32. Grein, E. (2013). Intérêt de l'étude de la fonction respiratoire au lit du patient dans la chirurgie du rachis chez l'enfant et l'adolescent. Thèse de doctorat, Faculté de médecine de Nancy.

33. Scoliosis Research Society. (2016). Adolescent Idiopathic Scoliosis [en ligne]. Scoliosis Research Society [Consulté le 5/09/16]. Disponible sur:

http://www.srs.org/professionals/online-education-and-resources/conditions-and-treatments/adolescent-idiopathic-scoliosis

(44)

43 

LISTE DES TABLEAUX

Table 1. Population characteristics ... 31

Table 2. Values of spirometry according to time ... 32

Table 3. FVC evolution versus time ... 33

 

(45)

44   

LISTE DES FIGURES

Figure 1. FVC evolution versus time. ... 33

Figure 2. FVC evolution versus time in our study compared to literature data.. 36

 

(46)

45 

TABLE DES MATIERES

PROFESSEURS DES UNIVERSITES – PRATICIENS HOSPITALIERS ... 4

MAITRES DE CONFERENCES DES UNIVERSITES – PRATICIENS

HOSPITALIERS ... 10

REMERCIEMENTS ... 14

SOMMAIRE ... 16

TITRE ... 17

TITLE ... 17

RESUME ... 18

ABSTRACT... 20

MOTS-CLES ... 22

KEY-WORDS... 22

LISTE DES ABRÉVIATIONS ... 23

1. INTRODUCTION ... 23

2. MATERIAL AND METHODS ... 27

Study population ... 27

Study protocol ... 27

Judgment criteria ... 28

Statistical analysis ... 29

3. RESULTS ... 30

Population characteristics ... 30

Evolution of respiratory parameters ... 32

(47)

46   

Correlation analysis... 34

4. DISCUSSION ... 35

5. CONCLUSION ... 39

REFERENCES BIBLIOGRAPHIQUES ... 40

LISTE DES TABLEAUX ... 43

LISTE DES FIGURES ... 44

TABLE DES MATIERES ... 45

ANNEXES ... I

Annexe 1 : Traitement chirurgical de la scoliose ... I

Appendix 1: Scoliosis surgical treatment ... I

Annexe 2 : Analyse des corrélations entre la récupération de CVf et les

paramètres de la population ... II

Appendix 2: Correlation analysis between FVC recovery and the

population’s parameters ... II

(48)

ANNEXES

Annexe 1 : Traitement chirurgical de la scoliose

Appendix 1: Scoliosis surgical treatment

There is no curative treatment for scoliosis, and the different treatments existing (rehabilitation, orthotics treatment, surgery) aim at preventing it from worsening and at preventing complications (respiratory, functional and esthetical). Spinal fusion is the key surgical treatment of AIS. The surgeon corrects the curvature of the spine and maintains the obtained correction by inducing a vertebral fusion with osteosynthesis devices and bone graft. It is indicated for simple thoracic, thoraco-lumbar or high lumbar AIS with Cobb angle higher than 40-45°, for simple high lumbar AIS with Cobb angle higher than 50-60°, for superior double curvatures AIS with Cobb angle higher than 60-70°, depending on the localization and the intensity of vertebral rotation, and for scoliosis evolving despise the brace treatment. Optimal age for the surgery is around 13 years of bone age for girls and 15 years of bone age for boys, along with appearance of Risser 1 stage, and closing of the Y cartilage [33]. It is at this age that the speed of the spine growth slows down, whereas the worsening of the curvature is still important, therefore arthrodesis is no longer risky for residual growth of the spine.

(49)

II   

Annexe 2 : Analyse des corrélations entre la récupération de CVf et les paramètres

de la population

Appendix 2: Correlation analysis between FVC recovery and the population’s

parameters

Variable Number β P-value

Cobb angle, main curve 16 0.03 0.8484

Cobb angle, secondary curve 13 -0.00 0.9873

Pelvic incidence 16 0.16 0.3018 Lumbar lordosis 16 0.16 0.4330 Thoracic kyphosis 15 0.00 0.9939 FVC 16 0.76 0.0000 FEV 15 -0.25 0.3413 FEV/FVC 15 -0.22 0.3777 Walking speed 14 1.35 0.6247 Distance walked 14 0.02 0.4260 Heart rate 7 0.08 0.6310

Number of thoracic vertebrae fused 16 0.64 0.7708

Pain VAS > 0 at T0 16 0.01 0.9982

Known respiratory pathology 16 3.92 0.5484

Brace wearing 16 -1.86 0.6771 Anterior physiotherapy 16 2.49 0.7149 Post-operative complications 16 -12.4 0.0138 Post-operative oxygenotherapy 16 -0.22 0.9647 Quantitative parameters : Linear regressions   Qualitative parameters : ANOVA

(50)
(51)

                               

(52)

     N°   ANDRE­POYAUD, Pauline.  Apport du relaxateur de pression dans la récupération de la fonction respiratoire après chirurgie  d’arthrodèse de la scoliose idiopathique de l’adolescent  41 feuilles, 2 figures, 3 tableaux, 2 annexes, 30 cm.­   Thèse : Médecine ; Rennes 1; 2016 ; N°       .  Résumé français  Introduction  La scoliose idiopathique de l’adolescent (SIA) entraine un syndrome restrictif pulmonaire proportionnel à la  sévérité  de  la  maladie.  Le  syndrome  restrictif  est  corrélé  à  la  présence  de  limitations  fonctionnelles.  L’arthrodèse rachidienne provoque une diminution des capacités respiratoires de l’ordre de 40 à 50% en post­ opératoire immédiat, dont la récupération se fait progressivement entre le premier et le troisième mois post­ opératoire.  

Notre  objectif  était  dʹanalyser  lʹeffet  dʹune  rééducation  respiratoire  par  relaxateur  de  pression  sur    la  récupération de la capacité vitale forcée (CVf) après une chirurgie dʹarthrodèse dans la SIA.   Matériel et méthodes  Cette étude pilote, prospective et observationnelle dʹun protocole de soins courants a été menée au sein du  service de rééducation pédiatrique du CHU de Rennes. Les patients inclus présentaient une SIA pour laquelle  une indication d’arthrodèse vertébrale était posée. Les patients exclus étaient atteints dʹune scoliose secondaire  ou dʹune pathologie pulmonaire préexistante et non stabilisée.   Après un bilan initial 45 jours avant la chirurgie (T0), les patients débutaient la rééducation par relaxateur de  pression.  Après  la  chirurgie,  ils  suivaient  un  protocole  de  rééducation  en  hospitalisation  en  poursuivant  l’utilisation du relaxateur de pression. Une spirométrie était effectuée à T0, la veille de la chirurgie (J­1), puis  pendant  la  deuxième  (S2),  la  troisième  (S3)  et  la  quatrième  (S4)  semaine  d’hospitalisation.  Une  dernière  spirométrie était réalisée 4 mois (M4) après l’intervention. Le critère de jugement principal était l’évolution de  la CVf après la chirurgie.   Résultats  24 patients ont été inclus entre janvier 2011 et avril 2016. L’angle de Cobb moyen était 67,2° ± 16,5°. La CVf  moyenne (% de la théorique) était de 69,3% à T0, 77,3% à J­1, 49% à S2, 57,1% à S3, 68% à S4, 74,3% à M4. La  CVf à J­1 était plus élevée que la CVf à T0 de façon significative (+8%, p<0,05). Les Cvf à S2 et à S3 étaient plus basses que la CVf à T0 de façon significative (respectivement ­20,3% et ­12,2%, p <0,001). Par contre, les CVf à  S4 et à M4 ne différaient pas de la CVf à T0 de façon significative (respectivement ­1,3% et 4,9%).   Conclusion 

Avec  notre  protocole,  à  la  quatrième  semaine  post­opératoire  la  CVf  est  déjà  revenue  à  la  valeur  pré­ opératoire. Cette étude montre donc que la rééducation par relaxateur de pression accélère la récupération de  la CVf après chirurgie d’arthrodèse dans les SIA.   Rubrique de classement :    DIAGNOSTIQUE ET THERAPEUTIQUE    Mots-clés :  Scoliose, adolescent, arthrodèse vertébrale, capacité vitale, respiration  en pression positive intermittente, rééducation et réadaptation    Mots­clés anglais MeSH :  Scoliosis, adolescent, spinal fusion, vital capacity, Intermittent  Positive­Pressure Breathing (IPPB), rehabilitation    JURY :    Président :       Madame le Professeur Isabelle BONAN    Assesseurs :            Madame le Docteur Rachel HEYMAN [directeur de thèse]  Monsieur le Professeur Philippe VIOLAS   Monsieur le Professeur Eric WODEY  Monsieur le Docteur Christophe CHARBONNIER  Monsieur le Docteur Vincent DANIEL     

Figure

Table 1. Population characteristics
Table 2. Values of spirometry according to time   
Figure 1. FVC evolution versus time.
Figure 2. FVC evolution versus time in our study compared to literature data 0102030405060708090100110120130-6-5-4-3-2-10123456789 10 11 12 13 14 15 16 17FVC in % of preoperative value
+2

Références

Documents relatifs

Erectile dysfunction can greatly affect quality of life among patients who have had prostate can- cer treatment, and every effort should be made to improve sexual

A final defining feature of the recovery regimes is the ratio between the timespans of local and regional recov- ery. Since the system may be far from its equilibrium locally,

We found a similar response rate at first ACTH test (9/20 responders). Comparison between responders and non-responders for the cut-offs that we have established was not

An interdisciplinary approach based on three methods was developed to better analyze Saint Martin’s resilience to natural hazards: (1) a cartographical study of the

In animals, different PFC have been tested for partial and/or total liquid ventilation, including Rimar 101 [6-8], FC-77 [9], perfluorodecalin (PFD) [3,10] or perfluorooctyl

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In patients 10–17, a positive correlation could be detected between the aphasia severity, which is related to comprehension (AAT-token test), and the MMN latency on T1 (r =

We assess the recovery patterns of gas exchange parameters and heart rate (HR) in children with repaired Tetralogy of Fallot (rToF) compared to healthy peers and investi- gate