• Aucun résultat trouvé

Cosmological parameters and the redshift distribution of gravitational lenses.

N/A
N/A
Protected

Academic year: 2021

Partager "Cosmological parameters and the redshift distribution of gravitational lenses."

Copied!
10
0
0

Texte intégral

(1)

Your thesaurus co desare:

12 (12.07.1; 12.03.4; 12.03.3)

AND

ASTROPHYSICS

1.9.1995

Cosmological parameters and the redshift distribution of

gravitational lenses

PhillipHelbig ?

and RainerKayser ??

HamburgerSternwarte,Gojenb ergsweg112,D-21029Hamburg-Bergedorf,Germany

Received16January;accepted15July,1995

Abstract. Forknowngravitationallenssystemsthe

red-shiftdistributionof thelensesiscomparedwith

theoreti-calexp ectationsfor10 4

Friedmann-Lema^trecosmological

models,whichmorethancovertherangeofp ossiblecases.

Thecomparison isused forassigning a relative

probabil-itytoeachofthemodels.Theentirepro cedureisrep eated

fordi erentvalues oftheinhomogeneit yparameterand

the limiting sp ectroscopic magnitudem

lim

, which is

im-p ortant for selection e ects. The dep endence on these

two parameters is examined in more detail for the sp

e-cial cases

0

=0andk=0.

Previous results that this method is a b etter prob e

for

0

than

0

are con rmed, but it app ears that the

lowprobabilit yofmodelswithlarge

0

valuesfoundusing

similarmethodsisdue toa selectione ect.

Thep owerofthismethodtodiscriminateb etween

cos-mologicalmodelscanofcourseb eimpro vedifmore

grav-itationallens systems arefound. However,ournumerical

sim ulationsindicatethatareasonablenum b erofobserved

systems cannotdeliverinterestingconstraintsonthe

cos-mologicalparameters.

Key words: gravitationallensing{ cosmology: theory{

cosmology:observations

1. Introduction

It has recently b een suggested by man y authors (see,

forexample,Fukugitaetal.(1992 )andreferencestherein)

that gravitational lensing statistics can provide a means

of distinguishing b etween di erent cosmological models,

most e ectively concerning the value of the

cosmologi-cal constant. This is fortunate, since mostof the

classi-cal methodsfordeterminingcosmological parametersare

moresensitivetootherquantitiessuchasthedensity(

0 )

Sendo printrequeststo:P.Helbig

?

phelbig@hs.uni-hamburg.de

??

or deceleration (q

0

) parameters. It has even b een

sug-gested (Carrolletal.1992) that gravitational lens

statis-tics based on current observations already give the b est

upp er limitson

0

for world models withk >0,andare

themostpromising methodofdoingsofork=0.

Ko chanek(1992)hassuggestedamethodbasednoton

the total num b erof lens systems but rather on the

red-shiftdistribution ofknown lenssystems characterised by

observables suchas redshiftand imageseparation.Lo

ok-ing at a few di erent models, he concludes that at,

-dominatedmodelsare vetotentimeslessprobablethan

more `standard' models. The advantage of this method

is that it is not plagued by normalisation diculties as

are most schemes involving the total num b er of lenses.

The aim of this pap er is to extend this method to

arbi-traryFriedmann-Lema^trecosmologicalmodelsaswellas

to look at thein uence of observational bias concerning

thebrightnessofthelens. Inaddition, numericalsim

ula-tions are used to estimate the usefulness of the method

whenmore systemsareavailable.

It is importantto note that the method described in

this pap er treats 

0 and

0

as indep endent parameters,

that is, they can in principle b e determined sim

ultane-ously. Also important is the fact that

0

is the global

value, i.e., determined by the contribution of all

com-p onents, regardless of degree of homogeneit y and so on.

This isb ecause thecosmological parameters mak e

them-selvesfeltthroughthecosmologicalmodel;mostmethods

of determining

0

will miss any matter homogeneously

distributedona scalelargerthanthat surveyed.

2. Theory

We mak e the `standard assumptions' that the Universe

can b e described by the Robertson-Walker metric and

that lensgalaxies canb emodelledasnon-evolving

singu-larisothermalspheres(SIS).Ifonedropsthe rst

assump-tion,thecosmologicalparameters 

0 , 0 andH 0 losetheir

(2)

calcula-the attainable accuracy (see Krauss & White(1992) for

a discussion). In order to have a well-de ned

statisti-cal quantity, which is based on the optical depthd for

`strong'lensingevents, 1

thisdiscussionislimitedto

grav-itationallenssystemswithsourceswhicharem ultiply

im-aged(!imageseparation)byisolated(!negligible

clus-ter in uence) singlegalaxiesand with known sourceand

lensredshifts. Anadditionalrequirementisthat the

sys-temm usthaveb eenfoundwithoutanybiases concerning

the redshift of the lens. (See Ko chanek(1992) for a

dis-cussionoftheseselectioncriteria.)

MakinguseofthefactthattheSISpro ducesaconstant

de ection angle,i.e.,indep endent of the p osition of the

sourcewithrespecttotheopticalaxis(de nedaspassing

through observer and lens), one can de ne the angular

crosssectiona 2

ofasinglelensfor`strong'lensingevents

(Turneretal.1984): a 2 =16  3  v c  4  D ds D s  2 ; (1)

wherev is the one-dimensionalvelo city disp ersion ofthe

lens galaxy,c the sp eed of lightand D

ds (D

s

) the

angu-lar size distance b etween lens and source (observer and

source).Follo wingKo chanek(1992 ),onecan arriveat an

expressionfortheopticaldepthasfollo ws.

For a xed mass and mass distribution(!v ), world

model and z

s

, the di erential optical depth due to all

lenses of a given mass as a function ofz

d

is of course

prop ortional to the num b er of lenses of the given mass

p erz

d

-interval and to the cross section for strong

lens-ing events. In order to arriveat an expression ford for

a xed image separation, one needs to knowthe relative

num b er of lenses which, under the given circumstances,

can pro duce this image separation.This can b e doneby

using theSchechter luminosityfunction(Schechter 1976)

as well as the Fab er-Jackson and Tully-Fisher relations

(Fab er&Jackson1976,Tully&Fisher1977),which give

thedep endenceofthevelo citydisp ersion onthe

luminos-ityforellipticalandspiralgalaxies,respectively.Bringing

in the familiar parameters and dropping alltermswhich

are concernedonly withnormalisation, one arrives,after

some tediousbut trivialcalculations,at theexpression

d dz d = (1+z d ) 2 a a3 2  a a3 D s D ds  2 (1+ ) 2 D 2 d 1 p Q (z d ) exp 0  a a3 D s D ds  2 ! ; (2) wherea3 := 4  0 v3 c 1 (v 3 := v ofanL3galaxy ), is the

Fab er-Jackson/Tully-Fisherexp onent, theSchechter

ex-p onent,D

d

theangularsizedistanceb etweentheobserver

andthelensand

Q (z d ):=(1+z d ) 2 ( 0 z d +10 0 )+ 0 : (3) 1

SeeSchneideretal.(1992 )foraclari cationoftheconcept

Equation(2)is indep endentoftheHubbleconstantsince

the dep endences onH

0

in the angular size distances

and in the Fab er-Jackson/Tully-Fisher relation cancel.

In order to facilitate comparison with other authors, we

havechosenthe`standard values'01 : 1, 2.6,4, 144km/s

and 276km/s for the Schechter exp onent, the

Tully-Fisherexp onent,theFab er-Jacksonexp onent,v 3

spiral and

v 3

elliptical

, respectively. (Thevaluefor v 3

elliptical

includes

the factor (3= 2) 1

2

advo cated by Turneretal.(1984 ) and

so our ellipticalgalaxies correspond to thec =2 models

examinedbyKo chanek(1992).)

Theopticaldepth dep endsonthecosmologicalmodel

throughQ (z

d

) as well as through the angular size

dis-tances,b ecauseofthefactthatD

ij =D ij (z i ;z j ; 0 ; 0 ;).

The in uence of, which gives the fraction of

homoge-neously distributed, as opp osed to compact, matter is

felt only in the calculationof the angular size distances,

whereas the cosmological model in the narrower sense

mak esitsin uencefelthere aswell asthroughQ (z

d ).

Ingeneral,thereisnoanalyticexpressionfortheD

ij ;

they can b e obtained by the solution of a second-order

di erential equation. (See Kayser(1985) for the

deriva-tion of the di erential equation, also Linder(1988) for

a more general form ulation.Foran equivalentderivation

for

0

=0seeSchneideretal.(1992).Kayseretal.(1995)

giveageneraldiscussionandaneasy-to-usenumerical

im-plementation.)Ifonehasanecientmethodofcalculating

theangularsizedistances,itiseasytoevaluateEq.(2)for

variousworldmodelsdescribedbytheparameters

0 ,

0

and.

Worthyof note is theindependence of Eq.(2)on the

sourceluminosit yfunction(which ofcoursewillgenerally

itselfdep endonz

s

aswell),therelativenum b ersofgalaxy

typ es(thegalaxytyp eforaparticularlensisknown)and

thefractionofgalaxiesinclusters(themethodlooksonly

at eld galaxies); these factors haveto b e takeninto

ac-count whendoingstatistics basedonthetotalnum b erof

lenses. Also, Eq.(2) is insensitive to ner p oints of the

massmodelsuchas coreradiusandellipticity(cf.Krauss

&White(1992),Narayan&Wallington(1992 )).Themain

idea isto comparethe observed distributionof lens

red-shiftswiththeoreticalexp ectationsforvariousworld

mod-els;themethodisdescribedin thenextsection.

Equation2cantakeonappreciablevaluesat

interme-diate redshifts even though the lens galaxy would be too

faint to be seen at the redshift in question (m > m

lim ).

Inorder to correctforthis e ect,wehavecalculatedthe

redshiftat whichthe lensgalaxy wouldb ecome to o faint

to haveitsredshiftmeasuredfortheinvestigated

cosmo-logicalmodel andtruncatedd at this p oint. (Details in

thenextsection.)Itisimmediatelyobviousthatfailureto

correctforthefaintnessofthelensgalaxieswillarti cially

(3)

Table 1. Gravitational lens systemsused. For references seeRefsdal & Surdej(1994 ) and references therein. Note that  00

corresp ondstotheradiusoftheEinsteinringorhalf the imageseparation

name images  00 source m source z s lens m lens z l comments

0142-100 2 1.1 QSO B=17.0 2.719 EG R=19.0 0.493 `typical'multiply

B=19.1 imagedQSO

0218+357 2+ring 0.165 radiolobe 0.94 SG r20 0.6847 `radioring'

1115+080 4 1.15 QSO B=17.2 1.722 EG R=19.8 0.29

B=17.2

B=18.7

B=18.2

1131+0456 2+ring 1.05 EG,radiolobe 1.13 EG R=22 0.85 `radioring'

1654+1346 ring 1.05 radiolobe 1.74 EG R=18.7 0.254 `radioring'

3C324 3 1.0 AGN R=22.7 1.206 SG R=22.5 0.845

R=23.3

3. Calculations

The follo winggravitational lens systems meet our

selec-tioncriteria:0142-100(=UM673),0218+357,1115+080

(= TripleQuasar), 1131+0456, 1654+1346 and 3C324.

(SeeTable1forobservationaldataonthesesystems.)We

considered the follo wingranges of values for the

cosmo-logicalparameters: 010 <  0 < +10 0 < 0 < 10 0 <  < 1

which, of course, are m uch larger than contemporary

knowledge demands. However, the history of cosmology

showsthattheknowledgeofto dayisoftenoutoffashion

tomorro w,sothatweprefertodevelopanapproach

capa-ble of dealingwitha widerange of cosmological models.

Alsoimportantisthefactthat itwouldb eanadditional,

thoughbynomeansnecessary,p ointinfavourofthe

valid-ityofthemethodifitassignsthehighestprobabilit ytoa

cosmologicalmodelwithinthepresentlyaccepted

canoni-calparameterspace.

Welookedat1002100modelsin the

0 -0 planefor  = 0 : 0 ; 0 : 3 ; 0 : 5 ; 0 : 7 ; 1 : 0 for m lim =23 : 5 and m = 23 : 5 ; 24 : 5 ; 1 for =0 : 5

(JohnsonRmagnitudes).Inaddition,welookedat1002

100modelsinthe -0 andm lim -0

planesforthesp ecial

casesof

0

=0 andk=0.

Before one can examine the relative probabilit yof a

given cosmological model,one m ust rst see ifitis

com-patible with the observations. (Of course, this do es not

imply that the model is compatible with all

observa-tions, merely with the ones necessary for this analysis:

z l ,z s , 00

andgalaxytyp e.)Oneobviousrestrictionisthat

the largest source redshiftz

s; max

in the sample m ustb e

smallerthan z

max

,the maxim umredshiftp ossible in the

cosmologicalmodelinquestion.(See,e.g.,Stab ell&

Refs-dal(1966)orFeige(1992)foradiscussionofthese

cosmo-logical models.)Another restrictionconcerns the

bright-nessofthelens.Fromtheobservablesz

l ,z s , 00 andgalaxy

typ eone can useEq.(1)to calculatethevelo citydisp

er-sionv ,transformthistoanabsoluteluminosityusingthe

Fab er-JacksonorTully-Fisherrelationandthencalculate

theapparentmagnitudeforthegivencosmologicalmodel

(givenbytheangularsizedistanceuptop owersof(1+z

l )

andK-corrections 2

). Ifthiscalculatedlensbrightnessfor

2

Theapparent luminosityofthelensgalaxywascalculated

forthe JohnsonR-bandusingthe K-correctionsof Coleman,

Wu& Weedman(1980 ) andapplying astandardB0R

cor-rection(sincethe B-bandFab er-JacksonandTully-Fisher

re-lationswereused).SincetheseK-correctionsarebasedon

dis-placement ofstandardsp ectraatz=0whichextendintothe

UV-band,theyare givenonlyuptoz=2: 0,where

(4)

at least one lens is fainter than m

lim

then the model is

also incompatiblewith theobservations. Since a realistic

value for m

lim

is at least a magnitude fainter than any

m

lens

valueinTable1,thereisnodangerthattheactual

cosmologicalmodelwouldb eexcludedbythisrestriction,

even allo wingfor the uncertainty in calculating the lens

brightnessin thematterdescribed.

Inthesetwocasesweassignedthecorrespondingworld

modelaprobabilit yof0in ourplots,indicatedbywhite.

Sincethevalue0do esn'to ccur otherwise,allwhiteareas

are due to these two restrictions. Otherwise, to measure

therelative probabilit yofagivencosmologicalmodel,we

de nedthequantityf as follo ws:

0<f := R zl 0 d R z s 0 d <1 ; (4) wherez l

istheobserved lensredshiftfora particular

sys-tem. (z

d

is used to denote the variable corresponding to

lensredshiftasopp osedtothemeasuredvaluefora

partic-ularlens.) Thedistributionofthedi erentf values (one

foreachlenssysteminthesample)inbequally-sizedbins

in the interval ]0,1[ gives the relative probabilit yp of a

givencosmological model,with

p= b Y i =1 1 n i ! (5) wheren i

is the num b er of systems in thei-thbin. This

de nitionallo wsonlyafewdiscretevalues,ofcourse.The

variablebisa freeparameter;sincethemostinformation

isobtained whenb isequal tothenum b erof systems,we

adoptthis valueforb .

Were the other observables thesame for all systems,

theredshiftdistributionshouldb e givenbyEq.(2);since

this is notthe case, the quantity f is de ned, which

al-lowsoneto comparetheobservedwiththeexp ected

red-shiftsfordi erentobservablesandhencedi erentrelative

probabilit y curves(Eq.(2)) for each system. Ouransatz

is thus to exp ect that the f-values should b e uniformly

distributedforthecorrectcosmologicalmodel(barring

in-trinsicscatter,ofcourse).Simplecom binatorics(the

num-b erofwaystodistributeaobjectsinbbins) and

neglect-ingnormalisationthenleadstoEq.(5).Foragivenworld

model,the6f-values (oneforeachgravitationallens

sys-tem used) are calculated, and these values are used to

determinetherelativeprobabilit yviaEq.(5).

4. Results and discussion

Figure1 shows therelative probabilit y ofseveral

cosmo-logical modelsas given by Eq.(5). The grey scale in all

inmostcasesthegalaxyb ecomesto ofaintatmo destredshifts,

sotheassumptionofnoevolutionmadethroughoutthispap er

isprobablyjusti ed.

Table2.ValuesoftherelativeprobabilityintheplotsinFig.1

p 1 2 3 4 5 6 7 9 10 11 12 13 1 1 x 1 2 x x x x 1 4 x x x x x x x x x 1 6 x x x x x x x x x x x 1 8 x x 1 12 x x x x x x x x x x x 1 24 x x x x x x x x 1 36 x x x x x 1 48 x x x x x x x x x

plots is the same, regardless of the maxim um and

mini-m umini-mvaluesofeach individual plot.Theresolutionis 0.2

in 

0

and 0.1 in

0

, thus giving 10.000di erent models.

The scale isat theright.(Because the relative

probabil-itycan only takeona few discretevalues, contourlevels

aren'tveryusefulasindicatorsoftherelativeprobabilit y,

sincetheywouldmerelyindicate theb oundaries b etween

areasofconstantprobabilit y.Inordertoindicatethe

val-uesdirectly,Fig.1plotstherelativeprobabilit yonagrey

scale. Although in themselves not important, the

inter-ested readercan read o theprobabilitiesdirectly in the

legend,wherethediscretevalueswhichactuallyapp earin

theplotshaveb eenmark ed.Inaddition,Table2givesthe

valuesoftherelativeprobabilit ywhicho ccurineachplot.)

All plotsexcept(9), (10),(12)and(13)arein the

0

-0

plane. Plot(8) gives some orientation in this plane. The

diagonalline from upp erleft tolower centre corresponds

tok =0; thesix curvesare, left toright,for ht

0 =4, 5, 6,8and10210 9 a(h:=H 0 1100 01 km 01 1s1Mp c)aswell

as theb orderto theso calledb ounce models,i.e.models

withnobigbangandthus amaxim umredshiftz

max ; the

line on theright corresponds to q

0

=05. The values of

the xed parameters  and m

lim

are indicated on each

plot.Althoughsomeoftheareain thisplaneisde nitely

excluded 3

by simple arguments, a probabilit y has b een

computed foreach worldmodel,in keepingwiththe

sec-ondofourmotivationsmentionedab ove.Inthewhitearea

attherighttheprobabilit yis0b ecausetheseworldmodels

havea maxim umredshiftlowerthanthehighestredshift

in Table1;in plots(1), (2),(3) and(7) thereis an

addi-tionalwhitearea(p=0)separatedfromthe rstonebya

stripwhere p>0 duetothefact thatat leastonelens is

fainteratitsobservedredshiftthanm

lim

.(Thebrightness

of the lens was not used as an additionalconstraint due

mainlytothefactthatthecomputedbrightnessesareonly

correctto ab outa magnitudeorso(Ko chanek1992).)

3

Eventhoughnoteveryp ointintheplane,i.e.every

combi-nationof0 and0,corresp ondstoaworldmo delwhich

can-notb eexcludedbysimple arguments,neverthelesstheranges

of theindividual parametersareallowedassuming thelowest

(5)

l

W

-8.0

-4.0

0.0

4.0

8.0

2.0

4.0

6.0

8.0

m

W

21.0 22.0 23.0 24.0 25.0

2.0

4.0

6.0

8.0

l

W

-8.0

-4.0

0.0

4.0

8.0

2.0

4.0

6.0

8.0

l

W

-8.0

-4.0

0.0

4.0

8.0

2.0

4.0

6.0

8.0

l

W

-8.0

-4.0

0.0

4.0

8.0

2.0

4.0

6.0

8.0

l

W

-8.0

-4.0

0.0

4.0

8.0

2.0

4.0

6.0

8.0

l

W

-8.0

-4.0

0.0

4.0

8.0

2.0

4.0

6.0

8.0

h

W

0.2

0.4

0.6

0.8

2.0

4.0

6.0

8.0

l

W

-8.0

-4.0

0.0

4.0

8.0

2.0

4.0

6.0

8.0

l

W

-8.0

-4.0

0.0

4.0

8.0

2.0

4.0

6.0

8.0

l

W

-8.0

-4.0

0.0

4.0

8.0

2.0

4.0

6.0

8.0

l

W

-8.0

-4.0

0.0

4.0

8.0

2.0

4.0

6.0

8.0

l

W

-8.0

-4.0

0.0

4.0

8.0

2.0

4.0

6.0

8.0

m

W

21.0 22.0 23.0 24.0 25.0

2.0

4.0

6.0

8.0

l

W

-8.0

-4.0

0.0

4.0

8.0

2.0

4.0

6.0

8.0

h

W

0.2

0.4

0.6

0.8

2.0

4.0

6.0

8.0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

(5)=0 : 0,m lim =23 : 5 (13) 0 =0,=0 : 5 (4)=0 : 3,m lim =23 : 5 (8)orientation (12) 0 =0,m lim =23 : 5 (3)=0 : 5,m lim =23 : 5 (7)=0 : 5,m lim =24 : 5 (11)=0 : 5,m lim =1 (2)=0 : 7,m lim =23 : 5 (6)Ko chanek (10)k=0,=0 : 5

Fig. 1. Results for the systems in Table1. The relative probability fordi erent cosmological mo dels is plotted linearly on

thescaleshownat theright,where thediscretevalueswhichapp earintheplotsare marked.Fixed parametersareindicated

(6)

Lookingatplots(1),(2),(3),(4),(5),(7)and(11)the

general impression is that, apart from some small-scale

structure at the lower right of thep >0 area which

ap-p earstob esigni cant,thereisnotm uchstructure.Since

there are only discrete values ofp, there are some

dis-continuities. Apart from this large-scale-structure,

how-ever,thereisnotm uchchangefromworldmodeltoworld

model.Thecurvesalongwhichtheprobabilit yisconstant

are more vertical than horizontal, suggesting that this

method b etter prob es 

0

than

0

. Although not of any

use statistically, for each plotin Fig.1 the Kolmogoro

v-Smirno vprobabilit y (see Sect.5) was also computed. In

the interest of brevity, we havenot included these plots

here;however,thestructureisqualitativ elysimilar

(with-out the sharp discontinuities, of course) and also hints

at thesigni cance ofthesmall-scalestructure mentioned

ab ove.

Plots(1), (2),(3),(4)and(5)showthee ectof

vary-ing.Asonecansee,thegeneralstructuredo esn'tchange

m uch, especiallyifone concentrates onthearea nearthe

roughly vertical thin strip (which would still b e allo wed

assuminghighervalues forH

0

and/ortheageofthe

uni-verse)for relatively low

0

values (

0

< 4,say).This is

compatiblewiththeresultofFukugitaetal.(1992)which

indicates only a weak dep endence of the lensing cross

section on.  enters into the calculation only in the

computation of the angular size distances, whereas 

0

and

0

also enter the calculation through the function

Q (z

d

)asde nedinEq.(3).Also,theparticularcom

bina-tion of the angular size distances involved in computing

the lensing crosssection, (D

d D

ds )=D

s

(see, e.g., F

ukugi-taetal.(1992)orKo chanek(1992);inEq.(2)theexplicit

dep endenceonD

d

hasb eenlostin thenecessaryvariable

transformationandintegration(cf.Ko chanek(1992))),is

relatively insensitive to . This is not true, for

exam-ple, for the com bination D

ds = (D d D s ), which is

impor-tant for computing H

0

from the time delay b etweenthe

di erent imagesof a m ultiplyimaged source(cf.F

ukugi-taetal.(1992)).

Plots(3),(7)and(11)showthee ectofvaryingm

lim .

Of course,the additionalwhitearea described ab oveb

e-comes smaller as m

lim

b ecomes fainter,disapp earing for

m

lim

!1 (thisconditionis sucient but notnecessary

foreverylensgalaxytob ebrighterthanm

lim

fortheworld

modelsexamined). Themain di erences, however,o ccur

inthesmall-scalestructureatthelowerrightofthep>0

area:thefainterm

lim

b ecomes,thelessprobablethe

mod-elsneartheb orderofthisareaapp ear.Forexample,ifone

compares the models near the Einstein-deSitter model

(

0

=0 and

0

=1) withthe modelsnear thedeSitter

model(

0

=1 and

0

=0), twomodelswhichhaveb een

examined rather extensively in the literature on lensing

statistics,especiallyinthedirection`perp endicular'tothe

curvesdividingdi erent probabilities,then onesees that

form

lim

=23 : 5and m

lim

=24 : 5those nearthedeSitter

probabilit ythanthosenear theEinstein-deSittermodel;

only for m

lim

= 1 is the situation reversed, those near

theEinstein-deSittermodelhavingaclearlyhigher

prob-abilit y.

This is easy to understand, since it is these models

near the deSitter model which have a maximum in d

at relativelylargeredshifts (cf.Ko chanek(1992 ));for

re-alistic values ofm

lim

, one cannotsee thelensgalaxies at

these redshifts.If one usesa realisticvalueform

lim , one

comparestheredshiftdistributionsforthedi erentworld

models (givenby Eq.(2)) at small redshifts, where they

don't di ervery m uch. Ifone takesm

lim

=1 , implying

that one could measure theredshifts of the lensesat all

redshifts,whatevertheir brightness,then itapp ears that

models with a large median redshift in Eq.(2), such as

those onthe righthand b order ofthep>0area

includ-ing themodelswitha largecosmological constant

exam-inedbyKo chanek(1992),areimprobable.However,thisis

merelya selection e ect.The relativelylow lens redshifts

in Table1don'tmean thatworld models with alarge

me-dianlensredshiftareimprobable;itmeansthatwecan'tsee

the lensesatthese redshifts.Comparingprobability

distri-butions assumingthat we could arti ciallyexcludes these

models in preferencetomodels like the Einstein-deSitter

modelwithasmallmedianlensredshift.Intro ducingm

lim

mak esthesituationmore realistic,but meanscomparing

the distributions at small redshifts. Thus, the p ower to

discriminateb etweenvariousworldmodelsisreduced.

For realisticvalues ofm

lim

,such as thosein plots (3)

and(7),theexactvalueofm

lim

isn'tveryimportant;what

do esmak eadi erenceisassuminga valuewhichism uch

to ofaint. Thisiseasytounderstand, since,nearthe

red-shiftwherealensgalaxytypicallyb ecomesfainterthana

realisticvalueform

lim

,thefunctionm(z

d

)israthersteep.

Thismeansthatachangeinm

lim

byamagnitudeortwo

corresponds toarelativelysmallchangeinz

d

andthusto

a correspondingly smallchange in thearea under thed

curveuptothisz

d

value;thus,thereislittlein uence on

thevalueoff as de nedin Eq.(4).This isillustratedin

Fig.2.

For comparison, we have also tested the method on

the systems used by Ko chanek(1992), usingm

lim = 1

und =1,b oth ofwhich heimplicitlyassumes. 4

The

re-sultsarein plot(6)wheretherelativeprobabilitiesare 1

6 ,

1

2

and 1 andcomparing thevarious modelsexamined by

Ko chanekcon rmhis conclusions.Forinstance, the

rela-tive probabilities of the Einstein-deSitter and deSitter

model are 1 and 1

6

, con rming his result that at,

-dominatedmodelsare5{10timeslessprobablethan

stan-dardones.(However,takingm

lim

intoaccountand/or

us-4

Of course, when one considers nite values form

lim , one

cannot include systems with lens redshifts which have b een

determinedbymeansotherthanmeasuredemissionredshifts,

(7)

z

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

z

m

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

20.0

21.0

22.0

23.0

24.0

25.0

26.0

27.0

28.0

Fig.2.Therelativedi erentialopticaldepth(thincurve)and

thecalculatedlens brightness m(thick curve)as functionsof

z

d

.Theworldmo delisthedeSittermo del( 

0

=1: 0

0 =0: 0;

the value of  do esn't matter since there is no matter) and

the observables are those for the gravitational lens system

01420100 (see Table1). The ordinate gives the magnitude

inJohnsonR

ing onlydirectly measured lens redshifts would pro duce

quite di erent results,as discussed ab ove.)This plot

ar-ti cially indicates a low probabilit y for models near the

deSittermodelforthesamereasonsasthosediscussedin

connectionwithplot(11).

Plots(9)and(10)examinethein uenceofandm

lim ,

respectively, for the sp ecial case k = 0. Plots(12) and

(13)examinethein uenceof andm

lim

,respectively,for

the sp ecial case 

0

= 0. In plots(9) and (12) one can

easily seetheweakdep endenceon ,especially forsmall

values of

0

. Inplots(10)and (13)onecan see theeven

weakerdep endenceonm

lim

inthisrange.Therearehints

towardfainter magnitudes of a declining probabilit yfor

small

0

values, as discussed ab ove. The white area at

the left in plots(10) and (13) is due to the fact that at

least one lens is fainterat its observed redshift thanthe

corresponding m

lim

value. (Since these m

lim

values are

unrealistically small, these models are not incompatible

withtheobservations.)

At rst glance, the`oscillations' in the relative

prob-abilit y migh t app ear somewhat puzzling. According to

Eq.(5),ahigherprobabilit yisobtainedforamoreregular

distribution.Since Eq.(5)onlyallo wsdiscretevalues for

the relative probabilit y, a `jump' o ccurs when the

num-b er of systems in a certain bin changes (unless o setby

l

f

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

l

f

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

l

f

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

l

f

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

l

f

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

l

f

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

l

f

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

l

f

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

l

f

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

l

f

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

l

f

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

l

f

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

l

f

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig.3.`Oscillations'intherelativeprobability.Thethin

hori-zontallinesarethebinb oundaries.Thethickcurvesshow,from

top tob ottom, thef-valuesgiven by Eq.(4)forthe

gravita-tionallenssystems1131+0456,3C324,0218+357,01420100,

1115+080 and 1654+1346,resp ectively. Sincetwo systems

havesuchlargelensredshiftsthatd ispractically=0atthe

corresp ondingredshift,theirf-values(intheseworldmo dels)

arepractically=1andcannotb edistinguishedfromeachother

orfromthebinb oundaryatf=1intheresolutionoftheplot.

Table1showsthattheseare thetwohighestlensredshifts in

the sample.Beneaththe linesandcurves, showninthesame

wayasinFig.1,isthecorresp ondingrelative probability

in Fig.3,where for demonstrationpurp oses thef-values

given by Eq.(4) for each gravitational lens system used

are plotted as functions of 

0

for k = 0 and  = 0 : 3.

(That is, for the world models along the k = 0 line in

plot(4)inFig(1).)Itcanb eseenthat,although|dueto

thede nition|therelativeprobabilit ychangesby

notice-ableamoun tsb etweena few discretevalues,nevertheless

thef-valuesthemselvesaresmoothlyvaryingfunctionsof

theworldmodel.Figure3alsomak esthefollo winggeneral

conclusionsclearin thissp eci cexample.

{ Thefactthata coupleofsystemshavef-values which

are practically = 1 limits the maximum probabilit y,

sincetheseare alwaysin thesamebin.

{ `Oscillations' b etween di erent probabilities have no

physical signi cance, but rather are merely artifacts

of the particular lens redshifts. On the other hand,

extremelylowprobabilities,e.g.allsixsystems in the

same bin (p = 1

720

), would b e more indicative of a

low-probabilit ycosmological model.

(8)

in-8 Helbig&Kayser:Cosmologicalparametersandlensredshifts

indicate a probabilit y low enough to reject the

cor-responding cosmological models, were the parameter

space examined larger. Thus, the method migh t b e

abletoexclude`extreme'cosmologicalmodels.

TheinterestedreadercanuseFig.3togetherwithEq.(5)

toseehowtherelativeprobabilit yisarrivedat.

Thestatisticalsigni canceofallresultsinthissection

isdiscussedinthenextsection.

5. Numerical simulations

Numerical sim ulations were done for m

lim

= 23 : 5 and

for = 1. This value ofm

lim

= 23 : 5is the most

realis-tic basedon the present stateof observations and using

only one value form

lim

= 23 : 5 as well as for is

justi- edbasedontheweakdep endenceoftheresultsonthese

parameters,asdiscussedinSect.4.

Theobservables  00

(theradiusoftheEinsteinringor

half the imageseparation corresponding to thediameter

oftheEinsteinring),z

s

andgalaxytyp ewerechosen

ran-domly from anintervalroughlycorresponding tothe

ob-servedrangeofvalues inorder topro ducesyntheticdata

comparable to real observations. It is important to note

thatneithertheexactrangenortheshap eofthe

distribu-tion matters, sincethemethod looks at theredshift

dis-tributionofthelenseswiththeotherparameters xedby

observation. For convenience, a atdistributionwas

cho-sen foreach of the observables.For a given cosmological

model,thecorrespondinglensredshiftz

l

foreach system

wascalculatedfrom theobservables andarandomly

gen-eratedf through (numerical) inversion of Eq.(4). This

catalog was then used to determine a relative

probabil-ityforeachof thep ointsinthe 

0

-0

planein thesame

manneras fortherealsystems.

Withtheprobabilit y givenby Eq.(5), basedon

sim-ple com binatorics, one cannot know to what degreethe

values foreach cosmological modelarein uencedby

sta-tistical uctuations. However,with such a small num b er

ofsystems,thereisreallynoothermethodofcomputinga

relativeprobabilit y.Weexp ectthatthedistributionofthe

f-values,barringstatistical uctuations,shouldb e atfor

thecorrectcosmologicalmodel.Soweneedatestto

com-parethis distributionwitha atprobabilit ydistribution.

TheKolmogoro v-Smirnov(K-S)testisofcourseawell

un-derstoo dmethodfortestingiftwodistributionsare

statis-ticallysigni cantlydi erent.(See,e.g.,Presset.al.(1992)

forageneraldiscussionandde nitionoftheK-S

probabil-ity.)However,thistestcan onlyb eused fordistributions

with more than 20 data p oints. For purp oses of

com-parison,forthesystemsinTable1notonlywasthe

prob-abilit yde nedinEq.(5)computed(shownin Fig.1)but

also the K-S probabilit y.The K-S probabilit y should of

coursenotb etakenseriouslyifthereareto ofewsystems.

Wehavedonesim ulationsfora varietyofworld

mod-elsandalsofornum b ersofsystemsb etween20and50.In

l

W

-2.50 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Fig.4.Resultsbasedonacatalogueof50simulatedsystems.

(Notethedi erentscaleontheaxes.)Thecosmologicalmo del

used to generate the lens redshifts is the homogeneous

Ein-stein-deSittermo del( =1: 0,0 =0: 0,0 =1: 0).Thegrey

scaleisasinFig.1

shows the results derived from a catalogue of sim ulated

gravitational lens systems.Since, even with 50 systems,

no area can b e excluded basedon the K-S probabilit y{

the white area has p = 0 due to the fact that at least

one lens would b efainterthanm

lim

in these world

mod-els, as discussedab ove{ weconclude that,although one

canqualitativ elyunderstandthephysicswhichatleastin

part isresponsible fortheresultspresentedin Fig.1,the

actualrelative probabilitiesaremore indicativeof

intrin-sicscatterintheredshiftsofthelensesthanahintofthe

correctcosmological model.

6. Summary and conclusions

Inthispap erwehaveextendedthemethodoriginally

pro-p osed by Ko chanek (1992) for using the redshift

distri-bution of gravitational lenses to learn something ab out

the cosmological model. This method is particularly

at-tractive sinceitavoids thenormalisation diculties

nor-mally asso ciated with lensing statistics. First, we made

use of the equation derived by Kayser (1985 ; see also

Kayseretal.1995) to b e able to examine cosmological

modelsdescribedbyarbitraryvaluesof

0 ,

0

and.

Sec-ond, we looked at the in uence of observational bias by

intro ducingtheparameterm

lim

.(Thismeansthatwe

(9)

esti-Third, we used a more quantitative statistic to look at

relativeprobabilities.

Since the p otential reward from using the Ko chanek

formalism(settinglimitsoncosmologicalparametersb

et-terthanwithothermethodsusingonlyobservable

quanti-tiesandstandard assumptionswhosevalidit yinthis

con-text is undisputed) seemedlarge, our basic idea was to

extendthisformalismtoenableittolookatalarger

num-b er of cosmological models(arbitrary values for

0 and



0

as well as ) while correcting an obvious limitation

(selection e ects due to the brightness of the lens) and

using a variation of his statistic (Ko chanek(1992)

basi-cally usesourstatisticwith two bins) which allo wsmore

information ab out thedistribution of theredshift values

to b e used. That is, weintended to follo wtheformalism

of Ko chanek(1992) as closelyas p ossible. Unfortunately,

thefact thattherelativeopticaldepthgivenbyEq.(2)is

appreciably di erent only for those cosmological models

in which this di erence cannot b e seen due to the

selec-tion e ect rendersthe technique lessuseful than wehad

hop ed.

Wesawthatlittleextrauncertaintyinthederived

val-uesfor

0 and

0

isintro ducedbyletting b ea free

pa-rameter.Thesameistrueofm

lim

withtheexceptionthat

values which are unrealistically faint distort the results.

A comparisonwith theresults of Ko chanek(1992),

con- rmedwithourformalism,alsoshowtheconsequencesof

neglectingm

lim .

Aninteresting resultisthe degeneracyofthe derived

relativeprobabilit yalongcurvesroughlyparalleltocurves

of constant worldage in the

0

-0

plane. This indicates

that the method is more sensitive to 

0

than to

0 , but

also showsthatdemonstrating theconsistencyof agiven

cosmological model with theobservations using this

sta-tisticalmethodalsoimpliesconsistencywithalargerange

ofothercosmologicalmodels.

Thedramaticdi erencecausedbynotneglectingm

lim

castsdoubt onthedegreeto which present observations,

basedonly ontheredshift distribution, 5

are ableto rule

outcertaincosmologicalmodels;inparticular, atmodels

withalargecosmologicalconstant, havingahighmedian

5

Moreinformation is available intheoryby lo oking at not

onlythe redshiftdistribution,i.e.,theshapeofthe curve,but

alsothenumb er oflenses,i.e.,theareaunderthecurve.This,

however,intro ducesadditionaluncertaintiesdueto

normalisa-tion.Additionally,onecouldconsiderthecompletenessofthe

sample,as p ointed outto theauthorsbythereferees.For

ex-ample,thenumb eroflenssystemswithunmeasuredredshifts

could inprinciple b e usedto exclude cosmological mo dels in

which the redshifts could have b een measured, or the other

way around. This requires information regardingthe reasons

astowhytheredshiftshaven'tb eenmeasured|thee ectsof

thecosmology shouldb eseparatedfromthe current

observa-tionalstand,whichrequiresadetailedanalysisoftheobserv

a-tionalliterature,oraseparateobservationalprogramme,b oth

exp ectedlensredshift,b ecomemoreprobablethrough

in-tro ducingm

lim .

Nevertheless,plots(6) and(11)givesanideaofwhat

couldb edone,ifonewereabletomeasuretheredshiftsof

thefaintestlensgalaxies.Foragivenimageseparation,the

calculatedbrightnessofthelensgalaxyhasaminim umat

some intermediateredshift;thisistypicallyatab out30 m

inR ,sothatlargertelescopesandadvancesinimage

pro-cessing will probably b e able to mak esome progress on

this front in the next several years. If one were able to

measurethelensredshiftattheminim umbrightness,this

would havetheside-e ect of eradicating thedep endence

onm

lim

.Ontheotherhand,probablymorewouldb elost

thangained,b ecauseitwouldnolongerb ep ossibleto

ne-glectevolutionarye ects. For thisreason,one could

sup-p osethatmoreprogress intheimmediatefuture(barring

a revolutionin theunderstandingofevolutionarye ects)

will probablycomefrom increasingthenum b erof usable

systems (through the discovery of more systems and/or

throughmeasuringmoreredshiftsinknownsystems)than

from pushingm

lim

to faintervalues.

The results of using the method on synthetic data,

however,cast doubt on thestatistical signi cance of our

results and onthe hop e of using this method to exclude

certaincosmologicalmodels,especiallythosewhichcannot

b eexcludedbyothertests.Thus,b eingconservativeinour

appraisalofwhatthestatisticsofredshiftsofgravitational

lensescantellus, weconclude thatat present andin the

foreseeable future this method will probably not giveus

anyusefulinformation.

Acknowledgements.It is a pleasure to thank S.Refsdal and

T.Schrammforhelpfuldiscussions.

References

CarrollS.M.,PressW.H.,TurnerE.L,1992,ARAA,30,499

Coleman G.D., Wu C.-C., Weedman D.W., 1980, ApJS, 43 ,

393

FukugitaM.,FutamaseK.,KasaiM.,TurnerE.L.,1992,ApJ,

393 ,1

Fab erS.M.,JacksonR.E.,1976,ApJ,204 ,668

KayserR.,1985,Ph.D.thesis,University ofHamburg

KayserR.,HelbigP.&SchrammT.,1995,inpreparation

Ko chanekC.S.,1992,ApJ,384,1

KraussL.M.,WhiteM.,1992,ApJ,394,385

Linder,1988,A&A,206 ,190

Narayan R., Wallington S., 1992, Intro duction to basic

con-ceptsofgravitationallensing.In:KayserR.,SchrammT.,

NieserL.(eds.)GravitationalLenses.Springer-Verlag,

Hei-delberg,p.12

PressW.H.,FlanneryB.P.,Teukolsky,S.A.,VetterlingW.T.,

1986, Numerical Recipes. Cambridge University Press,

Cambridge,p.469

RefsdalS.,SurdejJ.,1994,Rep.Prog.Phys.,56,117

SchechterP.,1976,ApJ,203, 297

SchneiderP.,EhlersJ.,FalcoE.E.,1992,GravitationalLenses.

(10)

TurnerE.L.,OstrikerJ.P.,Gott J.R.,1984,ApJ,284 ,1

FeigeB.,1992,Astr.Nachr.,313, 139

Stab ellR.,RefsdalS.,1966,MNRAS,132,379

Thisarticlewaspro cessedbytheauthorusingSpringer-Verlag

L a

Figure

Table 1. Gravitational lens systems used. For references see Refsdal &amp; Surdej (1994 ) and references therein
Figure 1 shows the relative probabilit y of several cosmo-
Fig. 1. Results for the systems in Table 1. The relative probability for dierent cosmological mo dels is plotted linearly on
Fig. 2. The relative dierential optical depth (thin curve) and
+2

Références

Documents relatifs

that might have happened participle* in the past main clause in type III of the *infinitive + ed or Conditional sentences 3rd column of table of irregular verbs.. that might

[r]

10 مقر :ةركذملا يئادتبا ىلولأا ةنسلا :ىوــــــــتسملا ةقيقد 45:ةدــــملاةيضايرلاو ةيندبلا ةيبرتلا:ةداـــــــــــــملا 01 :ةصحلا نيعم

Section 6 discusses how to recover the ECF formula from our results and a decomposition of pairs of pants into annular maps and tight pairs of pants, and then states and proves

the norm of the current density is compared after applying a constant voltage of 4.2V. In the case of TiAl, most of the current flows through the sample whereas in the case of

Elles sont dans l’ensemble d’accord pour dire que le moment le plus propice pour ce genre de discussion reste le début de grossesse, plus précisément le

26 Figure II.7: Variation du paramètre de maille en fonction de la concentration d’In (%). II.4 Effet de la contrainte biaxiale sur la couche Ga 0.9375 Mn 0.0625 As /Ga 1-x In x As:

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.