• Aucun résultat trouvé

Effects of chlordecone on 20-hydroxyecdysone concentration and chitobiase activity in a decapod crustacean, Macrobrachium rosenbergii

N/A
N/A
Protected

Academic year: 2021

Partager "Effects of chlordecone on 20-hydroxyecdysone concentration and chitobiase activity in a decapod crustacean, Macrobrachium rosenbergii"

Copied!
11
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Aquatic

Toxicology

jo u r n al h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / a q u a t o x

Effects

of

chlordecone

on

20-hydroxyecdysone

concentration

and

chitobiase

activity

in

a

decapod

crustacean,

Macrobrachium

rosenbergii

Anne

Lafontaine

a,∗

,

Eric

Gismondi

a

,

Céline

Boulangé-Lecomte

b

,

Perrine

Geraudie

c

,

Nathalie

Dodet

a

,

Fanny

Caupos

d,e

,

Soazig

Lemoine

d

,

Laurent

Lagadic

e

,

Jean-Pierre

Thomé

a

,

Joëlle

Forget-Leray

b

aUniversityofLiège,LaboratoryofAnimalEcologyandEcotoxicology(LEAE),CentreofAnalyticalResearchandTechnology(CART),15AlléeduSixAout,

B-4000Liège,Belgium

bNormandieUniversity,ULH,UMRI-02,EnvironmentalStressesandBiomonitoringofAquaticEcosystems(SEBIO)—FRCNRS3730SCALE,25ruePhilippe

Lebon,F-76600LeHavre,France

cAkvaplan-Niva(NorwegianInstituteofWaterResearch)AS,FramCentre,9296Tromsoe,Norway

dDYNECAR-UMRBOREA(MNHN/CNRS7208/IRD207/UPMC),UniversityoftheFrenchWestIndiesandGuiana,CampusdeFouillole,Pointe-à-Pitre,

GuadeloupeF-97110,France

eINRA,UMR0985EcologyandEcosystemHealthResearchUnit,EcotoxicologyandQualityofAquaticEnvironmentsResearchGroup,65ruedeSaintBrieuc,

F-35042Rennes,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received8December2015 Receivedinrevisedform1April2016 Accepted5April2016

Availableonline6April2016

Keywords: Chlordecone Macrobrachiumrosenbergii 20-Hydroxyecdysone Chitobiase Endocrinedisruptors

a

b

s

t

r

a

c

t

Chlordecone(CLD)isanorganochlorineinsecticideabundantinaquaticenvironmentoftheFrenchWest Indies.However,fewstudieshaveinvestigateditsimpactonfreshwaterinvertebrates.WhereasCLDis suspectedofinducingendocrinedisruption,thisworkaimedtostudytheeffectsofenvironmentally relevantconcentrationsofCLDonthe20-hydroxyecdysone(20-HE)hormoneconcentrationandonthe chitobiaseactivity,bothhavingkeyrolesinthemoltingprocessofcrustaceans.Inaddition,the bioaccu-mulationofCLDwasmeasuredinthemuscletissueofMacrobrachiumrosenbergiitounderlinepotential dose-responserelationship.TheresultshaveshownthatCLDwasbioaccumulatedinexposedorganisms accordingtoatrendtoadose-responserelationship.Moreover,itwasobservedthatCLDdecreasedthe 20-HEconcentrationinexposedprawnswhencomparedtocontrol,whateverthedurationofexposure, aswellasitinhibitedthechitobiaseactivityafter30daysofexposure.Thepresentstudyindicatesthat CLDcouldinterferewithmoltingprocessofM.rosenbergiibydisturbingthe20-HEconcentrationand theactivityofchitobiase,suggestingconsequencesatthelongtermontheshrimpdevelopment.This studyalsoconfirmedthatCLDcouldbeanendocrinedisruptorindecapodcrustaceans,asitwasalready observedinvertebrates.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Endocrinedisrupting compounds(EDCs) areexogenous

sub-stancesormixturesabletointerferewiththeendocrine system

ofexposedorganisms.Theycouldaffectthehormonalsignaling

pathwaysthroughseveralmechanisms,for example by

inhibit-ingthesynthesisofhormonesordecreasingthehormonerelease

byendocrinecells(Craigetal.,2011;TabbandBlumberg,2006;

∗ Correspondingauthorat:LaboratoryofAnimalEcologyandEcotoxicology (LEAE),UniversityofLiège,Bât.B6C,15,Alléedu6Aout,B-4000Liège,Belgium.

E-mailaddress:Anne.Lafontaine@ulg.ac.be(A.Lafontaine).

Rodríguezetal.,2007).EDCscanalsodisrupthormone-receptor

interactions and act as an agonist or antagonist by binding to

thehormone-receptorcomplex(Rodríguezetal.,2007;Tabband

Blumberg,2006).Aquaticenvironmentsareconsideredthemain

sinkforcontaminants(Kloasetal.,2009;Meyer-ReilandKöster,

2000),andthusaquaticorganismsarethereforemajorpotential

targetsforEDCs(Kloasetal.,2009).

SeveralstudiesonthebiologicaleffectsofEDCsinaquatic

ver-tebrateshaveledtothedevelopmentofbiomarkersin orderto

measure thebiological responsestowardsanthropogenic

pollu-tions,suchaschangesinthereproductivefunction.Forexample,

Jobling and Sumpter (1993) introduced the concept that the

productionofvitellogenin(Vg)inmalefishindicatesanexposure

http://dx.doi.org/10.1016/j.aquatox.2016.04.006

(2)

toestrogeniccompoundandVgisnowawidelyusedbiomarkerof

xenoestrogenexposureinvertebrates.AlthoughEDCeffectshave

beenextensively described in aquaticvertebrates (Kortenkamp

etal.,2011;LeBlanc,2007),onlyfewstudieshaveexaminedthe

effectsofEDCsininvertebrates,althoughtheyrepresentthemajor

partoftheanimalkingdom(DeFuretal.,1999).Thislackcould

bepartiallyduetothefactthattheendocrinesystemof

inverte-bratesisstillobscure(Tillmannetal.,2001).Ithasnevertheless

beenobservedthat EDCs canalsodisrupt invertebrate

physiol-ogy.Forexample,Giustietal.(2013)haveshownthattributyltin

affectedtheproductionofyolkferritin(i.e.Vgequivalent)in

Lym-naeastagnalis,andXuerebetal.(2011)observedthatnonylphenol

(estrogeniccompound)impactedtheexpressionofa

vitellogenin-likegene in theamphipod Gammarusfossarum. It appears that

vitellogenin-likeproteinsininvertebratescouldserveas

biomark-ersofEDCexposure,butmechanismsinvolvedinVgproductionin

invertebratesarestillunclear(e.g.hormonalreceptor).

EDCscancomefromdifferentsourcessuchassynthetic

hor-mones(e.g.ethinylestradiol),syntheticsubstances(e.g.plasticizers

suchasphthalates,herbicides)andpesticidesoftenusedto

eradi-cateinsects.IntheFrenchWestIndies(FWI),thetropicalclimate

promotestherapiddevelopmentofpestswhichexertssignificant

pressureoncropsleadingtotheuseofconsiderableamountsof

pesticidesintheseregions(BocquenéandFranco,2005).Theuse

oforganochlorinepesticidesfirststartedinthe1950’sandledto

widespreadcontaminationoftheenvironment(Coatetal.,2006).

Becauseoftheirphysicochemicalproperties,organochlorine

pes-ticidesarepersistent in theenvironment and are knowntobe

accumulatedalongfoodchains,resultinginpronounced

ecotoxico-logicaldamage(Cailleaudetal.,2009;Matsumura,1975).Themost

worryingorganochlorinepesticideresidueinGuadeloupe(FWI)is

chlordecone(CLD)(Coatet al.,2011).CLDisaninsecticide that

wascommonlyemployedtocontrolthebananaweevil

Cosmopo-litessordidusfrom1972to1993underthetradenameKepone®or

Curlone®(Cabidocheetal.,2006,2009).Afewyearsaftertheuseof

CLD,widespreadpollutionofsoils,rivers,wildanimalsandaquatic

organismswasreported(Cavelier,1980;Snegaroff,1977),which

ledtotheprohibitionoftheuseofthispesticideinGuadeloupe

in1993.Moreover,in2009,CLDwasincludedintheStockholm

ConventiononPOPs(PersistentOrganicPollutants)andits

produc-tionandusewerebannedworldwide(ZaldívarandBaraibar,2011).

Nowadays,CLDisstillpresentinsoils,especiallyinthedensely

cul-tivatedareasfromsouthofBasse-Terre(Guadeloupe)(Cabidoche

etal.,2009).Although,Fernández-Bayoetal.(2013)showedthe

existenceofCLDdegradingorganismsinatropicalsoil(andosol)

microcosmunder aerobicconditions, CLDundergoesno

signifi-cantorquick bioticorabioticdegradation(Dolfingetal.,2012;

Levillainetal.,2012).Drivenbythewatercycle,CLDinsoilsis

pro-gressivelytransferredtoaquaticecosystems(Coatetal.,2011)and

alsointhefoodwebbecauseofitshighKoc(SoilOrganicCarbon

WaterPartitioningCoefficient)(15849L/Kg),Kow(Octanol-Water

PartitionCoefficient)(4.5–6.0)anditsaffinityforlipids(Cabidoche

andLesueur-Jannoyer,2012;Clostreetal.,2013;SterrettandBoss, 1977;UNEP,2005;US-EPA,2008).Humancontaminationhasalso

beendetectedinFWIpopulationmainlyresultingfrom

consump-tionofcontaminatedfood,seafoodandrootvegetables(Dubuisson

et al., 2007; Gaumeet al., 2014; Guldner et al., 2010). Fishing

becameprohibitedwhenmostaquaticspecieshaveexceededthe

Europeanlegalmaximalresiduallimit(LMR)of20␮gofCLDper

kgwetweight(determinedbyNationalordinance,Anon.,2008).

Until 2008, one of the most important aquaculture resources

in Guadeloupe was the farms of the tropical giant freshwater

prawnMacrobrachiumrosenbergii.Severalstudieshaveunderlined

effects of pesticides onthis species (Revathi and Munuswamy,

2010;Satapornvanitetal.,2009),butveryfewinvestigationswere

carriedontheCLDimpactsonM.rosenbergii.However,Gaumeetal.

(2014)have observedthat theCLDexposurecaused the

induc-tionofgenesinvolvedindefensemechanismsagainstoxidative

stress(e.g.catalaseandglutathioneperoxidase),orinvolvedinthe

biotransformationprocess(i.e.cytochromeP450and

glutathione-S-transferase).

AsCLDissuspectedofbeinganendocrinedisruptor(Newhouse

etal.,2009)andasM.rosenbergiimoltingishormonallycontrolled,

thepresentstudyaimstoinvestigatetheCLDimpactonthe

molt-ingprocessbyinvestigatingtheeffectsofCLDontheconcentration

ofthe20-Hydroxyecdysone(20-HE)hormoneandonchitobiase

activityintissuesofM.rosenbergii.The20-HEhormoneisan

ecdys-teroidhormone, secretedbytheY-organ(Mykles,2011), which

initiatesmanyphysiological processes,suchasovarian

matura-tion,growth,molting,andreproductionincrustaceans(LeBlanc,

2007).Afewstudieshavebeendesignedtoinvestigatetheeffectsof

exposuretoenvironmentalEDCsontheendocrinesystemof

crus-taceansthroughecdysteroidconcentration,ortoinvestigatethe

endocrinesystemofinvertebrates(Oberdörsteretal.,1999;Palma

etal.,2009;Soetaertetal.,2007),butnostudieshaveusedthe

20-HEconcentrationtoinvestigatetheeffectsofchlordecone.

Chitobiaseisachitinolyticenzymeinvolved inthe

exoskele-tondegradationinarthropodsandthusplaysanimportantrole

in themoltingand growthof crustaceans (Duchet et al.,2011;

ZouandFingerman, 1999a).Severalstudieshave demonstrated

thatchitinolyticenzymesareinducedbythe20-HEhormone(Zou

andFingerman,1999b).However,manypollutantshavebeenalso

showntoinducethechitobiaseenzyme.Indeed,ZouandFingerman

(1999c) observed that someestrogenic agents, suchas Aroclor

1242,diethylstilbestrolorendosulfan,inhibitedchitobiase

activ-ityofthecrustaceanUcapugilator.Similarly,GismondiandThomé

(2014)notedthatsomepollutants,suspectedofbeingEDCs(i.e.

polybromodiphenylethers),coulddisturbthechitobiaseactivity

oftheamphipodGammaruspulex.

Finally,inparallelwiththesetwoparameters,the

bioaccumu-lationofCLDinM.rosenbergiiwasevaluatedtounderlinepotential

concentration-responserelationshipsbetweentheCLD

concentra-tionintissues,the20-HEconcentrationandthechitobiaseactivity.

Thesemeasuresensure assessingthemoltingdisruption,called

theinvisibleendocrinedisruption,becauseofthedisruptionofthe

crustaceanmoltingwhichisnotreadilyseeninthewild(Zou,2005).

2. Materialsandmethods

2.1. Testedorganisms

The3-month-oldpost-larvaeofM.rosenbergii(approximately

2g,7cmlengthandsexuallyundifferentiated)comingfromthe

same berried female, were provided by an aquaculture farm

(OCEAN-SA)locatedatPointe-Noire(Guadeloupe,FWI)ina

geo-graphicareafreeofCLDcontamination.Pretestshavepreviously

beencarriedout toevaluatethepresenceor absenceofCLDin

tissuesofprawnsfromPointe-Noireandresultshaveshown no

contamination(concentrations below detectionlimit) (datanot

shown).Prawnswerethentransferredtothelaboratory(DYNECAR,

UniversityoftheFrenchWestIndiesandGuiana,Guadeloupe),and

acclimatedforoneweekinglassaquariafilledwith28Loftapwater

prefilteredonactivatedcarbon.Aquariawereunderconstant

aera-tionwitha12hlight/darkphotoperiod.Duringacclimation,prawns

werefedoncedailywithartificialshrimppellets(completefood

forrearing,LeGouessant,France)atonepelletperindividual.A

constantwatertemperatureof27.6±0.2◦Cwasmaintained,and

pHremainedat7.57±0.03throughouttheexperiment.These

val-uesare inaccordance withoptimalwater temperature andpH

(3)

96.3±3.8%throughouttheexperiment,regardlessof the condi-tions.

2.2. Experimentaldesign

The10mgmL−1stocksolutionofCLD(100%,Riedel-de-Haën,

Sigma-Aldrich,USA)waspreparedinacetoneaswerealsoitsthree

differentdilutions:10␮gmL−1,100␮gmL−1and1mgmL−1.A

vol-umeof56␮Lofeachdilutionandofthestocksolutionwasdiluted

intothe28Lofaquariumwaterinordertoobtainthefour

nomi-nalconcentrationsofCLDinwater:0.02␮gL−1,0.2␮gL−1,2␮gL−1

and20␮gL−1.Theseconcentrationswerechosenbecauseoftheir

environmentalrelevance.AccordingtotheGuadeloupeanDIREN

(RegionalDepartmentfortheEnvironment),Guadeloupeanrivers

arecontaminatedbyCLDatconcentrationsthatrangefrom0.2to

4␮gL−1withamaximumof8.6␮gL−1 measuredintheGrande

AnseRiverin2003(GREPP,2004;InVS-Inserm,2009).

Inthisexperimentaldesign,twodifferentcontrolswereused.

Thefirst,called“watercontrol”,wastapwaterprefilteredthrough

activatedcarbon;and the second,called “solvent control”,was

obtainedbyspiking28Lofprefilteredtapwaterwith56␮Lof

ace-tone.Tenaquariawereusedforeachconditionofexposure.During

the30daysofexposure,M.rosenbergiiwerefeddailywithartificial

shrimppellets(completefoodforrearing,LeGouessant,France),

withonepelletperindividual.Wastewasremovedeverydayprior

tofeeding.Basedontheresultsofapre-testdesigned to

evalu-atetheconcentrationofCLDinwateraccordingtotheduration

ofexposure,itwasdecidedtorenewtheexposuremediumevery

96h,overatotalexposuretimeof30days.Thisprocessallowed

tomaintainconstantconcentrationsofCLDduringthe30daysof

exposure.

Atotal of360post-larvaeofM. rosenbergiicomingfromthe

sameberriedfemaleandhavingthesameage(seeSection2.1),

wereexposed (i.e.36prawnsper condition)for 30days, which

is the duration of two molt cycles (Ross, 2001). At the

begin-ning of the exposure (T0), prawns of M. rosenbergii were in

premoltstage,confirmedbythemeasurementofthe20-HE

con-centrationin12prawnsrandomlysampledbeforeexposure(i.e.

2058.61±371.66pgg−1). Thisconcentration corresponds tothe

peakreachedbythe20-HEhormoneduringthemoltcycle(see

belowtheconfirmationbyresultsof20-HEconcentrationinboth

controlsfrom1 to15daysand from15to30days,

correspond-ingtoonemoltcycleeach).FifteenM.rosenbergiiwererandomly

sampledforeachcondition,afterfourdurationsofexposure:1,4,

15and30days.Fiveprawns(correspondingto5replicates)were

usedfortheCLDbioconcentrationassessments,andtenprawns

(correspondingto10replicates)wereusedtomeasurethe20-HE

concentrationaswellasthechitobiaseactivity.Aftersampling,the

prawnswereimmediatelyfrozeninliquidnitrogenandstoredat

−80◦Cuntilanalyses.Beforeanalyses,bodylengthwasmeasured

andnosignificantdifference(two-wayANOVAtest,p>0.05)was

observedbetweengroups(Supplementarymaterial1).

2.3. ChlordeconeconcentrationinexposurewaterandM.

rosenbergii

2.3.1. Chlordeconeextractionfromwater

The CLDconcentration was analyzed in aquarium water by

liquid-liquid extraction. A volume from 10mL to 1L of water

(accordingtotheCLDconcentration)wascollectedand 5mLof

dichloromethane(Biosolve-Chimie,France)wasadded.Then,50␮L

of acetonic solution of PCB112 (100pg␮L−1) (Dr.Ehrenstorfer,

Germany),usedassurrogateinternalstandard,wereaddedbefore

the extraction procedure. This internal surrogate was used in

ordertoquantifypossiblelossofCLDduringtheextractionand

purificationprocedures.Theorganicphasewasrecoveredandthen

apurificationprocedurewasperformed(seeSection2.3.3).

2.3.2. Chlordeconeextractionfrommuscletissue

TheCLDconcentrationwasanalyzedinabdominalmuscleof

M.rosenbergiiaccordingtoamethodderivedfromDebieretal.

(2003),Multigneretal.(2010)andLagarrigueetal.(2014).Prawns

were thawed, and approximately 500mg of muscletissue was

freeze-driedduring20hwithaBenchtop3LSentryLyophilisator

(VirTis,USA).Thelyophilizedsampleswereweighedinorderto

determinewatercontent.TheextractionofCLDwasperformed

withasolventmixtureofn-hexane:dichloromethane(90:10;v:v;

Biosolve-Chimie, France)usingan AcceleratedSolventExtractor

(ASE200) (Dionex,ThermoScientific,USA) at80◦Cand undera

pressureof1500Psi.Beforetheextraction,100␮Lofahexanic

solu-tionofPCBcongener112(Dr.Ehrenstorfer,Germany)wasadded

tothesamplesasasurrogateinternalstandardtoobtainafinal

concentrationof50pg␮L−1.Then,500mgofanhydroussodium

sulfatewereaddedtoavoidanywatertraceintheextract.The

sol-vent,containingtheextractedfat,wascollectedinpre-weighed

vialsandevaporatedat40◦Cunderagentlenitrogenflowusinga

TurbovapLV(Zymarck,USA)untilaconstantweightofresidues.

Then,thelipidcontentwasdeterminedgravimetrically.

2.3.3. Samplepurifications

The purificationstep wasthesamefor water and biological

samples. The residues from the two different extraction were

resuspendedinto2mLofn-hexane(Biosolve-Chimie,France)and

transferredintoatesttubetocarryoutanacidclean-up.Avolume

of2mLof98%sulfuricacid(Merck,Germany)wasaddedinthe

extractsinordertoremoveorganicmatter(e.g.lipids,lipoproteins,

carbohydrates).Themixturewashomogenizedbyvortexingfor

1minwithaVibramax110(Heidolph,Germany),andcentrifuged

for3minat2160g,10◦C.Theorganicphasewascollectedintoa

newtubeandthesulfuricacidlayerwasextractedinthesameway

withanother3mLofn-hexanetoensureanoptimalrecovery.The

tworesultingorganiclayerswerepooledand5␮Lofnonanewere

addedasakeeper.Thisextractwasevaporatedunderagentle

nitro-gen streamusing a Visidryevaporator(Supelco, Sigma-Aldrich,

USA)beforebeingresuspendedwith45␮Lofn-hexaneand50␮L

ofasolutionofPCB209(100pg␮L−1inn-hexane)asaninjection

volumeinternalstandard(Dr.Ehrenstorfer,Germany).

Inparallelwithsampleextractions,aproceduralblankanda

QualityControl(QC)werecarriedout.Theproceduralblank

con-sistedoftheASEextractionwithoutbiologicalmatrix,allowingto

controltheextractionandtheclean-upprocedure.TheQCwas

per-formedtoassesstheCLDrecoverybyusingaCLD-freewateror

biologicalmatrix(here,freeze-driedmuscleofthedecapodPenaeus

monodon)spikedwithanacetonicsolutionofCLDinordertoobtain

a final concentration of 2.5ngL−1 for water and 2.5ngg−1 wet

weightforbiologicalsample.MuscletissueofP.monodonwasused

hereasbiologicalmatrixofdecapodbecausetheycamefrom

geo-graphicareafreeofCLDcontamination.

2.3.4. Chromatographyanalysis

Thepurifiedextracts,proceduralblankandQCwereanalyzed

by high-resolution gas chromatography using a Thermo Quest

Trace2000gaschromatographequippedwitha63NiECD

detec-tor(ThermoScientific,USA)and anauto-samplerThermoQuest

AS2000(ThermoScientific,USA).Theextractwasinjectedinthe

on-columnmodeat60◦C.CLDwasseparatedona30m×0.25mm

(0.25␮mfilm)DB-XLBcapillarycolumn(J&WScientific,USA).The

otheranalyticalparametersweredescribedelsewhere(Lagarrigue

etal.,2014;Multigneretal.,2010).Datawererecordedwith

Chrom-card 2.8 (Fisons Instruments,Italy) softwarefor Windows. CLD

(4)

Table1

Chlordeconeconcentration(mean±S.D.)measuredinwaterofexposure.LOQmeanslimitofquantification(0.01ngL−1).

Conditions: Watercontrol Solventcontrol 0.02␮gL−1 0.2␮gL−1 2␮gL−1 20␮gL−1

Nominalconcentration(␮gL−1) 0 0 0.020 0.20 2.00 20.00

Measuredconcentration(␮gL−1) <LOQ <LOQ 0.019±0.002 0.20±0.03 1.80±0.13 20.43±2.56

Table2

CLDbioconcentrations(mean±S.D.)measuredinthemuscletissueofMacrobrachiumrosenbergiiexposedatfourconcentrationsofCLDandsampledatfourtimesofexposure. LODmeanslimitofdetection(0.02ngg−1wetweight)andLOQmeanslimitofquantification(0.06ngg−1wetweight).Differentlettersindicatesignificantlydifferentvalues

foreachCLDconcentrationofexposure.Tukey’sHSDtestwasperformedwiththelog-transformedCLDconcentration(p-values<0.05).

NominalConcentration(␮gL−1) Time(days) Chlordeconeconcentrationinmuscletissue(ngg−1) BCF

Control 1 <LOD /

4 <LOQ /

15 <LOQ /

30 <LOQ /

SolventControl 1 <LOD /

4 <LOQ / 15 <LOQ / 30 <LOQ / 0.02 1 1.58±1.09a 79 4 4.20±3.34b 210 15 5.08±1.13b 254 30 30.80±10.37c 1540 0.2 1 10.56±1.64a 53 4 7.89±1.68a 39 15 38.12±13.48b 191 30 45.96±34.09b 230 2 1 36.06±11.90a 32 4 27.66±5.01a 14 15 241.52±127.38b 121 30 845.15±374.31c 423 20 1 292.75±133.11a 15 4 547.36±228.74a 27 15 26637.37±12411.53b 1332 30 5312.04±2683.82c 266

withalinearcalibrationcurve(1.5to200pg␮L−1)establishedwith

certifiedsolutionsofCLD(Riedel-deHaën,Germany).TheCLD

con-centrationsineachsampleandintheQCwerecorrectedwiththe

percentagerecoveryofthesurrogatePCB112.Therecovery

effi-ciencybasedontheCLDrecoveryinQC andontherecoveryof

thesurrogateinternalstandard(PCB112)rangedfrom88±4%to

115±5%,which waswithinthelimitsrecommendedbySANCO

(i.e.range from60 to140%–DocumentNoSANCO/12495/2011

EuropeanUnion,2011).The limit of detection(LOD) wasfixed

atthree times the backgroundnoise of thechromatogram (i.e.

0.005ngL−1forwatersampleand0.02ngg−1wetweightfor

mus-cletissue).Thelimitofquantification(LOQ)wasdeterminedwith

CLD-freewaterorfreeze-driedprawnmusclespikedwithvarious

concentrationsofCLDandwasestablishedat0.01ngL−1forwater

sampleand0.06ngg−1wetweightformuscletissue,

correspond-ingtoabouttentimesthebackgroundnoiseofthechromatogram.

TheCLDconcentrationsinwaterandinmuscletissueofM.

rosen-bergiiweremeasuredinfivereplicatesperconditionandthemean

calculated.TheCLDconcentrationsexpressedin␮gL−1forwater

samplearepresentedinTable1andinngg−1wetweightfor

bio-logicalsamplearepresentedinTable2.Thebioconcentrationfactor

(BCF)wascalculatedforeachconditionusingthemethodofTaylor

(1983)describedinDuquesneetal.(2000)(Table2).BCFistheratio

betweenCLDconcentrationinmuscletissuesofprawnsandCLD

concentrationintankwater.

2.4. 20-Hydroxyecdysoneconcentration

Theconcentrationsofthe20-HEhormoneanditsderivatives

(called “20-HE” in the following text, figures and tables) were

measured by following the manufacturer’s instructions of the

EnzymeImmunoAssay(EIA)kit(CaymanChemicalCompany,USA)

whichwereadaptedtoourbiologicalorganism(e.g.weightof

tis-sue,solventofhomogenization,standardcurve).Muscletissuewas

chosenasbiologicalmatrixinordertobeconsistentwiththetissue

usedfortheCLDconcentrationassessment.Inaddition,apretest,

which investigated the20HE concentrationin different organs,

showedthatthemuscletissuehasahigh20-HEconcentration(see

Supplementarymaterial2).Aweightof250mgoffrozenmuscle

tissueofM.rosenbergiiwashomogenizedin2:1(w:v)of

methanol-water(4:1,v:v)(i.e.500␮Lofmethanol-waterto250mgoftissue)

usingaPrecellyshomogenizer(BertinTechnologies,France).

Sam-pleswereincubatedovernightat−20◦Candcentrifugedfor10min

at10,000gand4◦C.Theresultingsupernatantwastransferredinto

aglasstubeandthesolventwasevaporatedwithaCentriVap

Cen-trifugalVacuumConcentratorcombinedwithaCentriVapColdTrap

(Labconco,USA) usingcentrifugal force,vacuumandcontrolled

temperature.Afterevaporation,sampleswereresuspendedinEIA

Buffer(1Mphosphate,containing1%BSA,4Msodiumchloride,

10mMEDTA,and0.1%sodiumazide).

A 96-well microplate precoated with mouse anti-rabbit IgG

(Cayman Chemical Company, USA) was used. Each microplate

contained blanks (i.e. appropriated substrate solution), diluted

samples in EIA Buffer in duplicate, and an eight point 20-HE

(Sigma-Aldrich, USA) standard curve (of 7.8125–1000pgmL−1).

Eachsamplereceivedasolutionof20-HEEIAAntiserum(Cayman

ChemicalCompany,USA)containinganti-20-HErabbitIgG.Then,

asolutionof20-HEAcetylcholinesterase(AChE)EIATracer

(Cay-manChemicalCompany,USA)containingacovalentconjugateof

(5)

overnightincubation at 4◦C, the platewas washedwith Wash

Buffer(4Mphosphate,pH7.4).Next,Ellman’sReagent(Cayman

ChemicalCompany,USA)wasaddedandtheplatewasincubated

for2hinthedarkwithgentleshaking.Theabsorbancewas

mea-suredat420nmandtheaverageofduplicatesofeachsamplewas

calculated.The20-HEconcentrationswereanalyzedin10

repli-catespercondition(i.e.10samplespercondition),andtheresults

wereexpressedinpgg−1offreshweightofM.rosenbergiimuscle

tissue.

2.5. Chitobiaseactivity

A weightof 50mg of frozenmuscletissue of M.rosenbergii

washomogenizedin500␮Lofcitratephosphatebuffer(0.15M,

pH 5.5) using a Precellys homogeneizer (Bertin technologies,

France). Samples were centrifuged for 10min at 10 000g and

4◦C, and the resulting supernatants were recovered and used

toanalyzethe chitobiase activity.Chitobiaseactivitywas

mea-sured using the method described by Espie and Roff (1996).

The chitobiase reaction used

4-methylumbelliferyl-N-acetyl-ß-D-glucosaminide (MUFNAG) as a substrate and generated the

fluorescent4-methylumbelliferone(MUF),whichwasevaluated.

Measurementswerecarriedoutin96-wellmicroplates

contain-ingablank(i.e.appropriatedsubstratesolution), aneight-point

MUF(Sigma-Aldrich,USA) standard curve(0–20␮M),and

sam-plesin duplicate.Everysample wasincubatedin thedarkwith

thesubstrateMUFNAG(Sigma-Aldrich,USA)for30minat25◦C.

Thereactionwasstoppedbyadditionof0.25NNaOH(pH14.1).

TheliberatedMUFwasmeasuredfluorometricallyatthe

excita-tionwavelengthof360nmandemissionwavelengthof450nm.

Thechitobiaseactivitywasmeasuredin10replicatesper

condi-tions.Eachreplicatewasanalyzedinduplicateandthemeanwas

calculated.Ingeneral,enzymeactivitiesarenormalizedagainstthe

totalproteincontentinsampleextracts.However,asnatural

vari-ationofproteincontents relatedtophysiologicalchanges could

constituteasourceofvariability,severalstudiesrecommendedto

expressenzymeactivityin␮molh−1(Owenetal.,2002;Radenac

etal.,2008;Xuerebetal.,2009).Therefore,thechitobiaseactivity

wasexpressedherein␮molofMUFformedperhour−1.

2.6. Statisticalanalysis

Afteralog-transformationoftheCLDconcentrationsin

mus-cle tissue, alldatamet normalityand homogeneityof variance

assumptions(ShapiroandBartletttests,p>0.05).Foreach

mea-suredparameter(i.eCLDbioaccumulation,20-HEconcentration

andchitobiaseactivity),comparisonswereperformedbytwo-way

ANOVAfollowedbyTukeyHSDpost-hoctests.Aprobabilityvalue

oflessthan0.05wasregardedassignificant.

Thecorrelationsbetweenmeasuredparameterswereanalyzed

usingthePearsoncorrelationcoefficient.Alltestswereperformed

withSTATISTICA10Software(StatSoft,2012,Belgium).

3. Results

3.1. ChlordeconeconcentrationsinmuscletissueofM.rosenbergii

TheCLDconcentrationsinthemuscletissueofM.rosenbergii

weresignificantlyinfluencedbytheCLDconcentrationsof

expo-sure,durationofexposureandtheirinteraction(p<0.001).Results

shownthattheCLDconcentrationswerebelowthelimitof

quan-tificationinprawnsfromcontrolandsolventcontrolconditions.

Moreover,theCLDbioconcentrationinprawnswas

concentration-dependent,sinceprawnsexposedtohigherconcentrationsofCLD

accumulatedgreateramounts ofCLD(Table2).The

bioaccumu-lationofCLDinM.rosenbergiiwasalsotime-dependent.Indeed,

Fig.1.PositivecorrelationbetweenCLDbioconcentrationsmeasuredinthemuscle tissueofMacrobrachiumrosenbergiiandCLDconcentrationsinwaterofexposure (p<0.001,r=0.49,n=100),takingintoaccountalldurationofexposure.

thelongertheprawnswereexposed,thehigherwastheCLD

bio-concentration.These observations wereunderlined by a strong

significantpositivecorrelationbetweenconcentrationsofCLDin

waterandtheCLDbioconcentrationinmuscletissueofM.

rosen-bergii(p<0.001,r=0.49,n=100;Fig.1).

Generally,whatevertheCLDconcentrationofexposure,results

showedthata bioconcentrationof CLDwasmeasuredfromthe

first day of exposure (Table 2), following a trend towards a

concentration-responserelationship.However,nosignificant

dif-ferenceswereobservedintheCLDbioconcentrationsafter1and

4daysofexposure,exceptforexposureto0.02␮gL−1.Inaddition,

foreachconditionofexposure,thehighestCLDbioconcentration

measuredwasobservedafter30daysofexposure;exceptfor

expo-sure to20␮gL−1 where the highest CLDbioconcentration was

measuredafter15daysofexposure(Table2).

Thebioconcentrationfactor(BCF)wascalculatedforthefour

CLDconcentrationsandresultsshowedthatBCFincreasedwith

the duration of exposure. Indeed, BCF were higher in prawns

exposedfor30daysthatthoseexposedfor1or4day.Moreover,

BCFappearedhigherinM.rosenbergiiexposedtolowestCLD

con-centration(i.e.0.02␮gL−1)thantotheotherCLDconcentrations.

3.2. 20-Hydroxyecdysoneconcentration

Resultshighlightedanaturalvariationofthe20-HE

concentra-tionincontrolprawnsaccordingtothetime.Indeed,the20-HE

concentrationdecreasedbetweenthe1standthe4thdayof

expo-sure,andincreasedbetweenthe4thandthe15thday(Fig.2).In

addition,nosignificantdifferenceswereobservedbetween20-HE

concentrationsmeasuredinwatercontrolandinsolventcontrol

(p>0.05)regardlessofthedurationoftheexposure.

Results revealed that 20-HE concentration was significantly

influencedbytheCLDconcentration,thedurationofexposureand

theirinteraction.Generally,lower20-HEconcentrationswereseen

inexposedprawnscomparedtotherespectivecontrol,regardless

ofthedurationofexposure,exceptafter4daysofexposure.Results

alsoshowedthat20-HEconcentrationsseemedgenerallylower

after4daysofexposurecomparedtoexposureslastingfor1,15or

30days.Foreachdurationofexposure,thelargestdecreaseof

20-HEconcentrationwasmeasuredinprawnsexposedto0.2␮gL−1

(exceptafter30daysofexposurewhereitwasthesecondlowest).

Indeed,the20-HEconcentrationwasonaveragetwicelowerinthis

CLDconcentrationthanintherespectivecontrolsforeachduration

(6)

Fig.2.20-HEconcentrations(pgg−1;mean±S.D.)inthemuscletissueofMacrobrachiumrosenbergiiexposedatfourconcentrationsofCLDandsampledatfourtimesof

exposure.Differentlettersabovethebarsindicatesignificantlydifferentvaluesforeachsamplingtime(Tukey’sHSDtest,p-values<0.05).

Fig.3.Chitobiaseactivity(␮molMUFhydrolysedh−1;mean±S.D.)inthemuscletissueofMacrobrachiumrosenbergiiexposedatfourconcentrationsofCLDandsampledat

fourtimesofexposure.Differentlettersabovethebarsindicatesignificantlydifferentvaluesforeachsamplingtime(Tukey’sHSDtest,p-values<0.05).

After1dayofexposure,the20-HEconcentrationwas

signifi-cantlyfrom1.5-foldto1.8-foldlowerinM.rosenbergiiexposedto

0.2,2and20␮gL−1ofCLDcomparedtothecontrol.After4daysof

exposure,althoughthe20-HEconcentrationsseemedtobelower

inexposed prawns compared tothecontrol,nosignificant

dif-ferenceswereobserved.However,asignificantreductionofthe

20-HEconcentration(onaverage1.8-foldlower)wasmeasured

after15daysofexposureinallexposureconditionscomparedto

thecontrol,exceptfor20␮gL−1.Finally,after30daysofexposure,

prawnsexposedto0.2and20␮gL−1CLDhadtwicesmaller20-HE

concentrationthanthecontrol.

Moreover, a significant negative correlation between20-HE

concentration and the log-transformed CLD bioconcentrations

wasobservedregardlessofthedurationoftheexposure(1day:

p<0.001, r=−0.87, n=19; 4days: p<0.001, r=−0.83, n=20;

15days: p<0.001,r=−0.76, n=24; 30days: p<0.001, r=−0.72,

n=21)(Fig.4).

3.3. Chitobiaseactivity

TheactivityofchitobiaseinmuscletissueofM.rosenbergiiwas

significantlyinfluencedbytheCLDconcentration,thedurationof

(7)

Fig.4. Logarithmiccorrelationbetweenlog-transformedCLDbioconcentrationsandthe20-HEconcentrationrepresentedbycircles,aswellasthecorrelationbetweenthe log-transformedCLDbioconcentrationsandchitobiaseactivityrepresentedbytrianglesinthemuscletissueofMacrobrachiumrosenbergiisampledafter1day(A),4days(B), 15days(C)and30days(D)ofexposure.

activitymeasuredinwatercontrolandsolventcontrolwerenot

significantlydifferent(p>0.05)regardlessoftheduration ofthe

exposure(Fig.3).Moreover,nosignificantdifferencewasobserved

inthechitobiaseactivitymeasuredinprawnsexposedtoCLDfor

1and4days,regardlessoftheCLDconcentrationcomparedtothe

respectivecontrols(Fig.3).After15daysofCLDexposure,a

sig-nificantincrease inthechitobiase activitywasonlyobservedin

prawnsexposedto0.2␮gL−1comparedtothecontrol.The

chito-biaseactivitywas1.5-foldhigherthaninthecontrolprawns.On

thecontrary,asignificantinhibitionofthechitobiaseactivitywas

observedafter30daysofexposure,whatevertheCLD

concentra-tion.Indeed,thechitobiaseactivitywasinaverage1.8-foldlower

inexposedprawnsthatinthecontrol.Nocorrelationwasobserved

betweenthechitobiaseactivityandthelog-transformedCLD

bio-concentrationinprawns,expectforinprawnsexposedtoCLDfor

30days(1day:p=0.38;4day:p=0.85;15days:p=0.65;30days:

p<0.001,r=−0.74,n=25)(Fig.4).

4. Discussion

ThisworkaimedtostudytheimpactsofCLDinthecrustacean

M.rosenbergiibymeasuringCLDeffectsonthe20-HEhormone

con-centrationandthechitobiaseactivity,bothinvolvedinthemolting

processandthusinthegrowthandthedevelopment,aswellasthe

CLDbioaccumulationinthemuscletissueofprawns.

4.1. Chlordeconebioaccumulation

Thisstudyhighlightedthat chlordeconewasaccumulatedin

tissuesofM.rosenbergiifollowingatrendtowardsa

concentration-response relationship. The prawn survival was not affected by

theCLDexposure,indicatingthatexposureconcentrationswere

belowlethalconcentrations.Indeed,SchimmelandWilson(1977)

reportedthatthe96-hLC50ofCLDwas121␮gL−1forgrassshrimp

Palaemonetespugioandnosignificantmortalityinbluecrabs

Call-inectessapidusatmeasuredconcentrationsashighas210␮gL−1

CLDwasobserved.

Thebioaccumulationobserved inM.rosenbergiiis consistent

withthefactthatCLDhasahighpotentialofbioaccumulationin

aquaticorganisms,basedonitsphysicochemicalproperties(ATSDR

etal.,1995).Thisresultisinagreementwithpreviousstudies

high-lightingtheCLDconcentrationindifferentorganisms.Indeed,Van

Veldetal.(1984)demonstratedthatCLDcouldbeaccumulatedin

thechannelcatfishwhenexposedfor30days,andCoatetal.(2011)

observedtheCLDbioaccumulationintropicalfoodwebincluding

variousspeciesofmussels,shrimpsandfishes.TheCLD

concentra-tionsmeasuredinmuscletissueofM.rosenbergiiweresomewhat

lowerthanthosemeasuredinotherdecapodsexposedtosimilar

CLDconcentrations(Bahneretal.,1977;Gaumeetal.,2014).This

observationcouldbeexplainedbythedistributionofCLDintissues

ofprawns.Indeed,becauseofitsstructureandbindingproperties,

CLDbindspreferentiallytoserumproteinssuchaslipoproteinsor

albuminandtherefore,itsdistributioninthewholeorganismis

quitedifferentcomparedtootherorganochlorines(ATSDRetal.,

1995;Newhouseetal.,2009).For example,theaccumulationof

CLDis highestin theliver(Newhouseetal.,2009)while other

organochlorinepesticidessuchasHCBorp,p-DDEare

preferen-tiallydistributedintheadiposetissue(Gomez-Catalanetal.,1991;

Soineetal.,1982).Inaddition,Roberts(1981)observedhigherCLD

residualsinreproductivetissuesthaninthehepatopancreasofthe

bluecrabsC.sapidus.

OurresultssuggestthatanaccumulationofCLDwasobserved

fromthe1stdayofexposureand thatthis increaseofCLD

con-centrationsinprawnswastime-dependent fromthe4th dayof

exposure,whatevertheCLDconcentrationofexposure.However,

inthehighestCLDcondition(i.e.20␮gL−1),theaccumulationof

CLDdecreasedbetweenthe15thand30thdayofexposure.This

(8)

whichtheaccumulationisnolongerexponentialatthis

concen-trationofexposure.Severalstudieshavehighlightedtheabilityof

crustaceanstodepurateCLDslowly(Bahneretal.,1977;Roberts,

1981;Schimmeletal.,1979).ThisdepurationofCLDcouldexplain

thedifferenceofCLDconcentrationsinM.rosenbergiibetween15

and30daysofexposure.Thisdecreasecouldalsobeexplainedbya

toxicityofCLDontheorganismphysiology,resultinginlowerCLD

concentrationinprawns(e.g.gilldestructionreducingexchange

betweentheorganismand itsenvironment Hebel etal., 1997).

Indeed,onceintheorganism,asmostpesticides,chlordeconecan

exertadversetoxiceffects(Sandersetal.,1981).Severalstudies

havedemonstratedthatCLDcouldimpactthecrustacean

devel-opmentandgrowththroughdisturbanceofthemoltingprocess.

Indeed,Schimmeletal.(1979)showedthatCLDinterfereswith

themoltingof C. sapidus.Similarly, Bookhout etal. (1980) and

OberdörsterandCheek(2001)haveshownthatCLDimpactedthe

moltingandthemetamorphosisofP.pugioandRhithropanopeus

harrisii,respectively.Inaddition,Nimmoetal.(1977)andSanders

etal.(1981)reportedthatthegrowthofMysidopisbahiaand

Gam-maruspseudolimnaeus,respectively,closelylinkedtothemolting

process,wasreduced byexposuretoCLD.CLDcouldalsoaffect

thereproductionprocess(e.g.durationofembryonicdevelopment,

thejuvenileperiod,thereproductiveandpost-reproductive

peri-ods,etc.)oftherotifersofBrachionuscalyciflorusasobservedby

Zhaetal.(2007).AlltheseresultssuggestthatCLDaccumulatedin

organismscoulddisturbcriticalphysiologicalprocessescontrolled

bythehormonalsystem.

BCFresultsshowedthatthebioconcentrationofCLDwasmore

efficientwithlowestconcentrationinwater.Prawnsexposedto

0.02␮gL−1hadhigherBCFthanprawnsexposedtootherCLD

con-centrations.Here,wecanhypothesizethatthehigherBCFobserved

inthelowestCLDconcentrationcouldbeexplainedbythe

poten-tialEDC effectof CLD.Indeed, it is wellknown that endocrine

disruptionoccurswithlow EDCconcentrationsbytheirbinding

tohormonalreceptors(Vandenbergetal.,2012).Atanexposure

concentrationof0.02␮gL−1,CLDcouldbesequesteredintissues

asmanypollutantsbutinadditionCLDcouldbesequesteredby

receptors, resulting in higher CLD concentration in organisms.

Moreover,BCFresultsindicatedthatnoplateaulevelwasreached

after 30days of exposure, especially when M. rosenbergii were

exposedto0.02␮gL−1,suggestingastrongaccumulationofCLDin

organismsexposedonthelongterm,whichcouldhavedeleterious

effects.

4.2. Chlordeconeeffectsonthe20-HEconcentration

Incontrolconditions (i.e.unexposedprawns), resultsshown

lower20-HEconcentrationafter4daysofexposurecomparedto

theothercontrols(i.e.1,15and30days).Thisdifferencemaybe

explainedbythepremoltstageofprawnsatthebeginningofthe

experimentandthemoltcycleoccurringduringtheexperiment.

Indeed,it wasestablished that themoltcycle of M.rosenbergii

lastsanaverageof15days(Ross,2001).Moreover,severalstudies

havehighlightedthevariationofthe20-HEconcentrationduring

thedifferentstagesofthemoltcycleofcrustaceans(Hyne,2011;

OkumuraandAida,2000;ZouandBonvillain,2004;Zou, 2005).

Thevariationof20-HEconcentrationobservedherecouldbedue

tovariationsofecdysteroidsynthesisaccordingtothe

developmen-talstageofprawns.Incrustaceans,theendocrinesystemregulates

manyprocessesthatdifferentiatesmalesfromfemales,larvaefrom

juveniles,andreproductivelyactivefromreproductivelysenescent

organisms(LeBlanc,2007).ChangandBruce(1980)attestedthat

ecdysteroidcompositionisaffectedbythedevelopmentalstageas

wellasthephysiologicalandreproductivestatusoftheorganism.

Indeed,theauthorsshowedthatthetotalecdysteroid

concentra-tioninhemolymphof Homarusamericanuscanfluctuateduring

themoltcyclefromlessthan10pg␮L−1inpostmolttomorethan

350pg␮L−1inpremolt.Generally,ecdysteroidconcentrationislow

duringintermoltandpostmolt,risingduringpremoltand

reach-ingapeakshortlybeforemolting(Mykles,2011).Thisincreasein

ecdysteroidconcentrationisnotonlyrelatedtoecdysteroid

synthe-sisbutcouldalsobeexplainedbyincreasedconversionofecdysone

orinactiveecdysteroidstotheactiveformofecdysteroids(i.e.

20-HE)(Mykles,2011).

Afterexposure toCLD, resultsrevealed an effect of CLD on

the20-HEconcentration.Indeed,adecreaseof20-HEinM.

rosen-bergiiexposedtoCLDwasseenregardlessoftheconcentrationand

thedurationofexposure(exceptforprawnsexposedto20␮gL−1

ofCLDfor15days).Thisobservationwassupportedbythefact

thatthe20-HEconcentrationandtheCLDbioconcentrationwere

significantly negatively correlated regardless ofthe duration of

theexposure.The20-HEdisruptioncorroboratesthehypothesis

thatCLDcouldbeendocrinedisruptorininvertebratesasalready

observed in vertebrates. Indeed, several previous studies have

demonstratedthat CLDcouldbeanendocrine disruptorin

ver-tebratessuchas fish (Ankley etal., 1998; Donohoeand Curtis,

1996;NimrodandBenson,1997;SumpterandJobling,1995),birds

andmammals(Eroschenko,1981),byhavingestrogenicproperties

throughinteractionwiththeestrogen-receptorsystem(Donohoe

andCurtis,1996;Hammondetal.,1979;Rodríguezetal.,2007).In

crustaceans,variousestrogeniccompoundsandestrogenreceptor

agonists(e.g.bisphenolA;nonylphenol)havebeenshowntoact

asecdysteroidsynthesisinhibitorsorecdysteroidreceptor(EcR)

antagonists(LeBlanc,2007),leadingtoapossibledecreaseof

ecdys-teroid concentrations (Forget-Lerayet al., 2005; LeBlanc,2007;

Rodríguezetal.,2007).Thus,itcouldbehypothesizedthat CLD

decreasedthe20-HEconcentrationbybindingdirectlyto

ecdys-teroidreceptor,asaconsequenceofitsanti-ecdysteroidalactivity

(ZouandFingerman,1999d;Zou,2005).However,asotherEDCs,

CLDcanalsointerferetheendocrinesystemindirectlybyseveral

mechanisms,atanystepofthetransductionpathwayofthe

hor-mones(Hyne,2011;Rodríguezetal.,2007).The20-HEdecrease

observedherecouldalsobeexplainedbya modificationofthe

excretionrateofthehormoneoraninactivationoftheenzyme

involvedintheecdysteroidbiotransformation.Becauseofthefact

thatCLDimpactsthe20-HEconcentration,itcouldthereforeinthe

long-termdisturbthemoltingoforganismswhichisinducedby

thishormone(Hyne,2011;Rodríguezetal.,2007).Thishypothesis

issupportedbythestudiesofHiranoetal.(2009)whichhaveshown

thatlow 20-HEconcentrationintheshrimpAmericamysisbahia

exposedtononylphenol(alsoknowntobeaninhibitorof

ecdys-teroidactivity)affectedthegrowthoforganisms.Insimilarway,a

decreaseofthe20-HEconcentrationsinjuvenilesofDaphniamagna

exposedtothefungicidefenarimolwasassociatedwithabnormal

development(LeBlanc,2007;MuandLeblanc,2002).Snyderand

Mulder(2001)havealsosuggestedthatthedelayinthebeginning

ofmoltingoflarvaeinthelobsterH.americanuswhenexposedto

heptachlor,probablycorrelatedtoadropintheconcentrationsof

circulatingecdysteroids.Moreover,knowingthatcrustacean

repro-ductionislinkedtothemoltcycle(Hyne,2011),disruptioninthe

moltingprocesscouldalsocausedisturbancesinreproductionas

hypothesizedbyGismondiandThomé(2014)intheamphipod,G.

pulex.Indeed,itwasobservedthattheanti-ecdysteroidalactivity

ofnonylphenolcaused areductioninfecundityofmany insects

(LeBlancetal.,2000).

Results also highlighted stronger decrease (or tendency to

strongerdecrease)ofthe20-HEconcentrationinprawnsexposed

to0.2␮gL−1ofCLDwithtime(exceptafter30daysofexposure),

whilethisdecreasewaslessobviousinprawnsexposedtohigh

CLDconcentrations(i.e.2and20␮gL−1).Thisobservationcould

(9)

mayexertitseffects,werealreadyoccupiedbyCLDmoleculesat

theexposureconcentrationof0.2␮gL−1.WithhigherCLD

concen-trationsrequiredtoincreasetheresponse,noadditionalbinding

canoccur,andthus,themaximaleffectwasobservedinprawns

exposedto0.2␮gL−1(Welshonsetal.,2003).Moreover,itisnow

wellestablishedthatEDCsact atlow levels(Vandenberg etal.,

2012).Therefore,itcanalsobehypothesizedthat0.02␮gL−1ofCLD

istooweaktocausesignificantdisturbances,whilethe0.2␮gL−1

seemsto be thelowest sufficient CLDconcentration to induce

effectsonendocrinehormones.

4.3. Chlordeconeeffectsonchitobiaseactivity

Withregardtochitobiaseactivity,resultshighlightedno

signifi-canteffectsofCLDinprawnsexposedfor1or4days.However,after

15daysofexposure,asignificantincreaseofthechitobiaseactivity

wasobserved,butonlyforprawnsexposedto0.2␮gL−1ofCLD,

whileasignificantinhibitionwasobservedinallCLDconditions

after30daysofexposure.Inaddition,unlike20-HEresults,

chito-biaseactivitywasnotstronglycorrelatedwiththeCLDexposure.

Thisresultissurprisingduetothefactthatchitinolyticenzymes

areregulatedbyecdysteroidsincrustaceans(ZouandFingerman,

1999d). Indeed, Zou and Fingerman (1999b) underlined that a

decreaseinthechitobiaseactivityinthefiddlercrab,U.pugilator,

wascorrelatedtoareduction ofecdysteroidconcentration

dur-ingthe moltingcycle, suggesting thatthe chitobiase activityis

regulatedatleastinpartby20-HE.Inthepresentstudy,based

onthedecreaseofthe20-HEconcentration,aninhibitionofthe

chitobiaseactivitywasthereforeexpected.However,theprecise

mechanismslinkingthe20-HEconcentrationandthechitobiase

activityarenotwellestablishedyet.CLDmayaffectthechitobiase

activitynotthroughtheeffecton20-HEconcentrationbutmaybe

bydisruptingseveralpathwaysandinteractionswitha fewkey

receptors.ThisresultisinlinewiththoseofSnyderandMulder

(2001).Indeed,althoughSnyder(1998)reported,inthelobsterH.

americanus,thatalthoughanincreasein20-HEconcentrationcan

inducetheexpressionofcytochromeP450-dependentdetoxifying

enzymes(CYP45),anupregulationoftheexpressionofthisenzyme

inlarvaeofH.americanusexposedtoheptachlor(organochlorine

pesticide)occurredtogetherwithadecreaseofthe20-HE

concen-tration.Inthepresentstudy,themajorabsenceofmodification

ofthechitobiaseactivity,whileadecreaseofthe20-HE

concen-trationwasobserved,couldbeexplainedbyadirecteffectofCLD

onchitobiaseactivitythroughotherreceptorsashypothesizedby

Rodríguezetal.(2007).Indeed,itcouldbehypothesizedthatthe

inhibitionofthechitobiaseactivityduetothedecreaseofthe

20-HEconcentrationcouldbeoffsetbyaninductionofthechitobiase

activitythroughadirecteffectofCLD.Thus,thesetwoopposite

effectscouldresultinalackofthechitobiaseactivitydisruption.

However,resultsshowedadecreaseofthechitobiaseactivityafter

30daysof exposure.Thisobservationcouldbeunderstoodbya

differenceinthetimeofresponse.Indeed,asexplainedabove,a

decreaseofthe20-HEconcentrationwasobservedafter15daysof

exposure.20-HEisknowntoinducethemoltcycle,whichinvolves

thechitobiaseenzymetobreakdowntheoldcuticle(Hyne,2011).

Nevertheless,noinformation isavailableonthedurationofthe

moltcycleandthedifferentpathwaycascadesinM.rosenbergii(i.e.

from20-HEsynthesistochitobiaseactivityinduction).Therefore,it

couldbehypothesizedthattheconsequenceofthe20-HEdecrease

canappearlateronthechitobiaseactivity(here,after30daysof

exposure).

Thedisturbanceofthechitobiaseactivityobservedhere

sug-gestsadisruptionofthemoltcycleofM.rosenbergiiwhichcould

have seriousconsequences ontheindividual development,due

tothe fact that thedecapod growthis strongly linked tomolt

(LeBlanc,2007).Itcouldbehypothesizedthatchlordeconecould

affecttheembryonicandjuveniledevelopmentofM.rosenbergii,as

hasbeenobservedbyZhaetal.(2007)intherotiferiaB.calyciflorus

whereCLDcouldaffectthereproductionprocess(e.g.durationof

embryonicdevelopment,thejuvenileperiod,thereproductiveand

post-reproductiveperiods).

5. Conclusion

ThisstudyisthefirsttohighlighttheimpactsofaCLDexposure

onthehormonalsystemofthecommercialprawn,M.rosenbergii,

bymeasuringthe20-HEconcentrationandthechitobiase

activ-ity. The resultsunderscored that CLD is bioaccumulated in M.

rosenbergii causing thedecreaseof the 20-HEconcentration.In

addition, aninhibition ofthe chitobiase activitywas measured

after30daysofexposure.Althoughithasbeendocumentedafew

timesthatCLDcandisruptthemoltingprocessofinvertebrates,the

mechanismsinvolvedinthis effectremainunknown.Thiswork

suggeststhatCLDcoulddisruptthemoltingprocessthroughthe

disturbanceof the20-HEconcentration,as wellasthe

chitobi-aseactivity.ResultsallowedustoconcludethatCLDcouldhave

ananti-ecdysteroidalactivity,assuggestedfor other

estrogeno-mimeticEDCs.Nevertheless,furtherstudiesareneededtobetter

understandthemechanisminvolvedinthisendocrinedisruption

and todescribethechlordecone effectsonM.rosenbergii

popu-lation.Itcouldbeespeciallyinterestingtofocusresearchonthe

synthesisofthe20-HEandtheecdysteroidmetabolismpathways,

aswellastheeffectsofCLDonecdysteroidreceptorstoconfirm

theanti-ecdysteroidalactivityofCLD,andthedesignationofCLD

asanEDCininvertebrates.Finally,thelackofinformationonthe

endocrinesystemofinvertebratesmakesitdifficulttoexplainthe

resultsandtheirexpectedconsequences.Therefore,future

inves-tigations shouldfocus ontheinvertebrate endocrine systemto

refineitsunderstanding,andtoimprovetheassessmentofeffectsof

endocrinedisruptors.Moreover,futurestudiesmightalsoinclude

anassessmentoftheinfluenceofmoltstageontheresponseof

organismstoxenobioticexposure.

Acknowledgments

The presentstudy wasfinanciallysupportedby grants from

the NationalResearch Agency (MACHLOMA, ANR-10-CESA-014,

France) and a FNRS-F.R.I.A. grant (Fonds pour la Formation à

la Recherche dans l’Industrie et dans l’Agriculture, FC 89232,

Belgium).TheauthorsthankPatrickBoucherandFranc¸oisHerman

(OCEAN-SA)fortheirhelpintheestablishmentoftheexperiment

andCatherineAdamforhertechnicalassistance.Theauthorsare

gratefultothereviewerswhohelpedtoimprovethemanuscript.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in

theonlineversion,athttp://dx.doi.org/10.1016/j.aquatox.2016.04.

006.

References

ATSDR,Faroon,O.,Kueberuwa,S.,Smith,L.,Derosa,C.,U.S.DepartmentofHealth andHumanServices,P.H.S,1995.Toxicologicalprofileformirexand chlordecone.Toxicol.Ind.Health11,1–195,http://dx.doi.org/10.1177/ 074823379501100601.

Ankley,G.,Mihaich,E.,Stahl,R.,Tillitt,D.,Colborn,T.,McMaster,S.,Miller,R., Bantle,J.,Campbell,P.,Denslow,N.,Dickerson,R.,Folmar,L.,Fry,M.,Giesy,J., Gray,L.E.,Guiney,P.,Hutchinson,T.,Kennedy,S.,Kramer,V.,LeBlanc,G., Mayes,M.,Nimrod,A.,Patino,R.,Peterson,R.,Purdy,R.,Ringer,R.,Thomas,P., Touart,L.,VanDerKraak,G.,Zacharewski,T.,1998.Overviewofaworkshopon screeningmethodsfordetectingpotential(anti-)estrogenic/androgenic chemicalsinwildlife.Environ.Toxicol.Chem.17,68–87,http://dx.doi.org/10. 1002/etc.5620170110.

(10)

Anon,2008.Arrêtédu30juin2008relatifauxlimitesmaximalesapplicablesaux résidusdechlordéconequenedoiventpasdépassercertainesdenrées alimentairesd’originevégétaleetanimalepourêtrereconnuespropresàla consommationhumaine.JORF,4juillet.

Bahner,L.H.,Wilson,A.J.,Sheppard,J.M.,Patrick,J.M.,Goodman,L.R.,Walsh,G.E., 1977.Keponeregisteredbioconcentration,accumulation,loss,andtransfer throughestuarinefoodchains.Chesap.Sci.18,299,http://dx.doi.org/10.2307/ 1350804.

Bocquené,G.,Franco,A.,2005.Pesticidecontaminationofthecoastlineof Martinique.Mar.Pollut.Bull.51,612–619,http://dx.doi.org/10.1016/j. marpolbul.2005.06.026.

Bookhout,C.G.,Costlow,J.D.,Monroe,R.,1980.Keponeeffectsonlarval developmentofmud-crabandblue-crab.WaterAirSoilPollut.13,57–77,

http://dx.doi.org/10.1007/BF02262525.

Cabidoche,Y.M.,Lesueur-Jannoyer,M.,2012.Contaminationofharvestedorgans inrootcropsgrownonchlordecone-pollutedsoils.Pedosphere22,562–571,

http://dx.doi.org/10.1016/S1002-0160(12)60041-1.

Cabidoche,Y.-M.,Lesueur-Jannoyer,M.,Vannière,H.,2006.Conclusionsdugroupe d’étudeetdeprospective«PollutionparlesorganochlorésauxAntilles:aspects agronomiques».Contrib.CIRADINRA.

Cabidoche,Y.M.,Achard,R.,Cattan,P.,Clermont-Dauphin,C.,Massat,F.,Sansoulet, J.,2009.Long-termpollutionbychlordeconeoftropicalvolcanicsoilsinthe FrenchWestIndies:asimpleleachingmodelaccountsforcurrentresidue. Environ.Pollut.157,1697–1705,http://dx.doi.org/10.1016/j.envpol.2008.12. 015.

Cailleaud,K.,Budzinski,H.,LeMenach,K.,Souissi,S.,Forget-Leray,J.,2009.Uptake andeliminationofhydrophobicorganiccontaminantsinestuarinecopepods: anexperimentalstudy.Environ.Toxicol.Chem.28,239–246,http://dx.doi.org/ 10.1897/07-664.1.

Cavelier,N.,1980.ContaminationdelaFauneparlespesticidesorganochlorés.In: Kermarrec,A.(Ed.),Niveauactueldelacontaminationdeschaînesbiologiques enGuadeloupe:pesticidesetmétauxlourds.INRA,contratn◦7883.Ministère

del’EnvironnementetduCadredeVie,Paris.

Chang,E.S.,Bruce,M.J.,1980.Ecdysteroidtitersofjuvenilelobstersfollowingmolt induction.J.Exp.Zool.214,157–160,http://dx.doi.org/10.1002/jez.

1402140205.

Clostre,F.,Woignier,T.,Rangon,L.,Fernandes,P.,Soler,A.,Lesueur-Jannoyer,M., 2013.Fieldvalidationofchlordeconesoilsequestrationbyorganicmatter addition.J.SoilsSediments14,23–33, http://dx.doi.org/10.1007/s11368-013-0790-3.

Coat,S.,Bocquené,G.,Godard,E.,2006.Contaminationofsomeaquaticspecies withtheorganochlorinepesticidechlordeconeinMartinique.Aquat.Living Resour.19,181–187,http://dx.doi.org/10.1051/alr:2006016.

Coat,S.,Monti,D.,Legendre,P.,Bouchon,C.,Massat,F.,Lepoint,G.,2011. Organochlorinepollutionintropicalrivers(Guadeloupe):roleofecological factorsinfoodwebbioaccumulation.Environ.Pollut.159,1692–1701,http:// dx.doi.org/10.1016/j.envpol.2011.02.036.

Craig,Z.R.,Wang,W.,Flaws,J.A.,2011.Endocrine-disruptingchemicalsinovarian function:effectsonsteroidogenesis,metabolismandnuclearreceptor signaling.Reproduction142,633–646,http://dx.doi.org/10.1530/REP-11-0136. DeFur,P.L.,Crane,M.,Ingersoll,C.,Tattersfield,L.,1999.EndocrineDisruptionin

Invertebrates:Endocrinology,Testing,andAssessment.SETACTechnical Publication,Pensacola,FL.

Debier,C.,Pomeroy,P.P.,Dupont,C.,Joiris,C.,Comblin,V.,LeBoulengé,E., Larondelle,Y.,Thomé,J.P.,2003.QuantitativedynamicsofPCBtransferfrom mothertopupduringlactationinUKgreysealsHalichoerusgrypus.Mar.Ecol. Prog.Ser.247,237–248,http://dx.doi.org/10.3354/meps247249.

DocumentNoSANCO/12495/2011EuropeanUnion,2011.Methodvalidationand qualitycontrolproceduresforpesticidesresiduesanalysisinfoodandfeed. Dolfing,J.,Novak,I.,Archelas,A.,MacArie,H.,2012.Gibbsfreeenergyofformation

ofchlordeconeandpotentialdegradationproducts:implicationsfor remediationstrategiesandenvironmentalfate.Environ.Sci.Technol.46, 8131–8139,http://dx.doi.org/10.1021/es301165p.

Donohoe,R.M.,Curtis,L.R.,1996.Estrogenicactivityofchlordecone,o,p-DDTand

o,p-DDEinjuvenilerainbowtrout:inductionofvitellogenesisandinteraction

withhepaticestrogenbindingsites.Aquat.Toxicol.36,31–52,http://dx.doi. org/10.1016/S0166-445X(96)00799-0.

Dubuisson,C.,Héraud,F.,Leblanc,J.-C.,Gallotti,S.,Flamand,C.,Blateau,A.,Quenel, P.,Volatier,J.-L.,2007.Impactofsubsistenceproductiononthemanagement optionstoreducethefoodexposureoftheMartinicanpopulationto Chlordecone.Regul.Toxicol.Pharmacol.49,5–16,http://dx.doi.org/10.1016/j. yrtph.2007.04.008.

Duchet,C.,MitieInafuku,M.,Caquet,T.,Larroque,M.,Franquet,E.,Lagneau,C., Lagadic,L.,2011.Chitobiaseactivityasanindicatorofalteredsurvival,growth andreproductioninDaphniapulexandDaphniamagna(Crustacea:Cladocera) exposedtospinosadanddiflubenzuron.Ecotoxicol.Environ.Saf.74,800–810,

http://dx.doi.org/10.1016/j.ecoenv.2010.11.001.

Duquesne,S.,Riddle,M.,Schulz,R.,Liess,M.,2000.Effectsofcontaminantsinthe Antarcticenvironment—potentialofthegammaridamphipodcrustacean ParamoreawalkeriasabiologicalindicatorforAntarcticecosystemsbasedon toxicityandbioacccumulationofcopperandcadmium.Aquat.Toxicol.49, 131–143,http://dx.doi.org/10.1016/S0166-445X(99)00067-3.

Eroschenko,V.P.,1981.Estrogenicactivityoftheinsecticidechlordeconeinthe reproductivetractofbirdsandmammals.J.Toxicol.Environ.Health8, 731–742,http://dx.doi.org/10.1080/15287398109530109.

Espie,P.J.,Roff,J.C.,1996.Abiochemicalindexofdurationofthemoltcyclefor planktonicCrustaceabasedonthechitin-degradingenzyme,chitobiase. Oceanogr.Lit.43,694.

Fernández-Bayo,J.D.,Saison,C.,Voltz,M.,Disko,U.,Hofmann,D.,Berns,A.E.,2013. Chlordeconefateandmineralisationinatropicalsoil(andosol)microcosm underaerobicconditions.Sci.TotalEnviron.463–464,395–403,http://dx.doi. org/10.1016/j.scitotenv.2013.06.044.

Forget-Leray,J.,Landriau,I.,Minier,C.,Leboulenger,F.,2005.Impactofendocrine toxicantsonsurvival,development,andreproductionoftheestuarinecopepod Eurytemoraaffinis(Poppe).Ecotoxicol.Environ.Saf.60,288–294,http://dx.doi. org/10.1016/j.ecoenv.2004.06.008.

Gaume,B.,Dodet,N.,Thomé,J.P.,Lemoine,S.,2014.Expressionof

biotransformationandoxidativestressgenesinthegiantfreshwaterprawn Macrobrachiumrosenbergiiexposedtochlordecone.Environ.Sci.Pollut.Res.,

http://dx.doi.org/10.1007/s11356-014-3134-y.

Gismondi,E.,Thomé,J.P.,2014.EffectsoftwoPBDEcongenersonthemoulting enzymesofthefreshwateramphipodGammaruspulex.Environ.Pollut.191, 119–125,http://dx.doi.org/10.1016/j.envpol.2014.04.017.

Giusti,A.,Leprince,P.,Mazzucchelli,G.,Thomé,J.P.,Lagadic,L.,Ducrot,V., Joaquim-Justo,C.,2013.Proteomicanalysisofthereproductiveorgansofthe hermaphroditicgastropodLymnaeastagnalisexposedtodifferentendocrine disruptingchemicals.PLoSOne8,http://dx.doi.org/10.1371/journal.pone. 0081086.

Gomez-Catalan,J.,To-Figueras,J.,Rodamilans,M.,Corbella,J.,1991.Transportof organochlorineresiduesintheratandhumanblood.Arch.Environ.Contam. Toxicol.20,61–66,http://dx.doi.org/10.1007/BF01065329.

GREPP,2004.Rapportd’activités2001–2004.Programmed’actions2005. Guldner,L.,Multigner,L.,Héraud,F.,Monfort,C.,PierreThomé,J.,Giusti,A.,Kadhel,

P.,Cordier,S.,2010.PesticideexposureofpregnantwomeninGuadeloupe: abilityofafoodfrequencyquestionnairetoestimatebloodconcentrationof chlordecone.Environ.Res.110,146–151,http://dx.doi.org/10.1016/j.envres. 2009.10.015.

Hammond,B.,Katzenellenbogen,B.S.,Krauthammer,N.,McConnell,J.,1979. Estrogenicactivityoftheinsecticidechlordecone(Kepone)andinteraction withuterineestrogenreceptors.Proc.Natl.Acad.Sci.U.S.A.76,6641–6645,

http://dx.doi.org/10.1073/pnas.76.12.6641.

Hebel,D.K.,Jones,M.B.,Depledge,M.H.,1997.Responsesofcrustaceansto contaminantexposure:aholisticapproach.Estuar.Coast.ShelfSci.44, 177–184,http://dx.doi.org/10.1006/ecss.1996.0209.

Hirano,M.,Ishibashi,H.,Kim,J.W.,Matsumura,N.,Arizono,K.,2009.Effectsof environmentallyrelevantconcentrationsofnonylphenolongrowthand 20-hydroxyecdysonelevelsinmysidcrustacean,Americamysisbahia.Comp. Biochem.Physiol.CToxicol.Pharmacol.149,368–373,http://dx.doi.org/10. 1016/j.cbpc.2008.09.005.

Hyne,R.V.,2011.Reviewofthereproductivebiologyofamphipodsandtheir endocrineregulation:identificationofmechanisticpathwaysforreproductive toxicants.Environ.Toxicol.Chem.30,2647–2657,http://dx.doi.org/10.1002/ etc.673.

InVS-Inserm,2009.Impactsanitairedel’utilisationduchlordéconeauxAntilles franc¸aises—Recommandationspourlesrecherchesetlesactionsdesanté publique-Octobre2009.Institutdeveillesanitaire,mars,Saint-Maurice(Fra), pp.96(Availableon:www.invs.sante.fr).

Jobling,S.,Sumpter,J.P.,1993.Detergentcomponentsinsewageeffluentare weaklyoestrogenictofish:aninvitrostudyusingrainbowtrout

(Oncorhynchusmykiss)hepatocytes.Aquat.Toxicol.27,361–372,http://dx.doi. org/10.1016/0166-445X(93)90064-8.

Kloas,W.,Urbatzka,R.,Opitz,R.,Würtz,S.,Behrends,T.,Hermelink,B.,Hofmann, F.,Jagnytsch,O.,Kroupova,H.,Lorenz,C.,Neumann,N.,Pietsch,C.,Trubiroha, A.,VanBallegooy,C.,Wiedemann,C.,Lutz,I.,2009.Endocrinedisruptionin aquaticvertebrates.Ann.N.Y.Acad.Sci.1163,187–200,http://dx.doi.org/10. 1111/j.1749-6632.2009.04453.x.

Kortenkamp,A.,Martin,O.,Faust,M.,Evans,R.,Mckinlay,R.,Orton,F.,Rosivatz,E., 2011.StateoftheArtAssessmentofEndocrineDisrupters.European Commission,Brussels,Belgium.

Lagarrigue,M.,Lavigne,R.,Tabet,E.,Genet,V.,Thomé,J.-P.,Rondel,K.,Guével,B., Multigner,L.,Samson,M.,Pineau,C.,2014.Localizationandinsituabsolute quantificationofchlordeconeinthemouseliverbyMALDIimaging.Anal. Chem.86,5775–5783,http://dx.doi.org/10.1021/ac500313s.

LeBlanc,G.A.,Mu,X.,Rider,C.V.,2000.Embryotoxicityofthealkylphenol degradationproduct4-nonylphenoltothecrustaceanDaphniamagna.Environ. HealthPerspect.108,1133–1138,http://dx.doi.org/10.1289/ehp.001081133. LeBlanc,G.A.,2007.Crustaceanendocrinetoxicology:areview.Ecotoxicology16,

61–81,http://dx.doi.org/10.1007/s10646-006-0115-z.

Levillain,J.,Cattan,P.,Colin,F.,Voltz,M.,Cabidoche,Y.M.,2012.Analysisof environmentalandfarmingfactorsofsoilcontaminationbyapersistent organicpollutant,chlordecone,inabananaproductionareaofFrenchWest Indies.Agric.Ecosyst.Environ.159,123–132,http://dx.doi.org/10.1016/j.agee. 2012.07.005.

Matsumura,F.,1975.ToxicologyofInsecticides.PlenumPress,NewYork.

Meyer-Reil,L.-A.,Köster,M.,2000.Eutrophicationofmarinewaters:effectson benthicmicrobialcommunities.Mar.Pollut.Bull.41,255–263,http://dx.doi. org/10.1016/S0025-326X(00)00114-4.

Mu,X.,Leblanc,G.A.,2002.Environmentalantiecdysteroidsalterembryo developmentinthecrustaceanDaphniamagna.J.Exp.Zool.292,287–292,

(11)

Multigner,L.,Ndong,J.R.,Giusti,A.,Romana,M.,Delacroix-Maillard,H.,Cordier,S., Jégou,B.,Thome,J.P.,Blanchet,P.,2010.Chlordeconeexposureandriskof prostatecancer.J.Clin.Oncol.28,3457–3462,http://dx.doi.org/10.1200/JCO. 2009.27.2153.

Mykles,D.L.,2011.Ecdysteroidmetabolismincrustaceans.J.SteroidBiochem.Mol. Biol.127,196–203,http://dx.doi.org/10.1016/j.jsbmb.2010.09.001.

New,M.B.,2002.FarmingFreshwaterPrawns:AManualfortheCultureofthe GiantRiverPrawn(Macrobrachiumrosenbergii).FoodandAgriculture OrganizationoftheUnitedNations.

Newhouse,K.,Berner,T.,Mukerjee,D.,Rooney,A.,2009.IRISToxicologicalReview ofChlordecone(Kepone),U.S.EnvironmentalProtectionAgency.U.S. EnvironmentalProtectionAgency,WashingtonDC.

Nimmo,D.R.,Bahner,L.H.,Rigby,R.A.,Sheppard,J.M.,Wilson,A.J.,1977.Mysidopsis bahia:anestuarinespeciessuitableforlifecycletoxicityteststodeterminethe effectsofapollutant.Aquat.Toxicol.HazardEval.,305.

Nimrod,A.C.,Benson,W.H.,1997.Xenobioticinteractionwithandalterationof channelcatfishestrogenreceptor.Toxicol.Appl.Pharmacol.147,381–390,

http://dx.doi.org/10.1006/taap.1997.8296.

Oberdörster,E.,Cheek,A.O.,2001.Genderbendersatthebeach:endocrine disruptioninmarineandestuarineorganisms.Environ.Toxicol.Chem.20, 23–36,http://dx.doi.org/10.1002/etc.5620200103.

Oberdörster,E.,Cottam,D.M.,Wilmot,F.A.,Milner,M.J.,McLachlan,J.A.,1999. InteractionofPAHsandPCBswithecdysone-dependentgeneexpressionand cellproliferation.Toxicol.Appl.Pharmacol.160,101–108,http://dx.doi.org/10. 1006/taap.1999.8745.

Okumura,T.,Aida,K.,2000.Fluctuationsinhemolymphecdysteroidlevelsduring thereproductiveandnon-reproductivemoltcyclesinthegiantfreshwater prawnMacrobrachiumrosenbergii.Fish.Sci.66,876–883,http://dx.doi.org/10. 1046/j.1444-2906.2000.00142.x.

Owen,R.,Buxton,L.,Sarkis,S.,Toaspern,M.,Knap,A.,Depledge,M.,2002.An evaluationofhemolymphcholinesteraseactivitiesinthetropicalscallop Euvola(Pecten)ziczac,fortherapidassessmentofpesticideexposure.Mar. Pollut.Bull.44,1010–1017, http://dx.doi.org/10.1016/S0025-326X(02)00139-X.

Palma,P.,Palma,V.L.,Matos,C.,Fernandes,R.M.,Bohn,A.,Soares,A.M.V.M., Barbosa,I.R.,2009.Effectsofatrazineandendosulfansulphateonthe ecdysteroidsystemofDaphniamagna.Chemosphere74,676–681,http://dx. doi.org/10.1016/j.chemosphere.2008.10.021.

Radenac,G.,Bocquene,G.,Fichet,D.,Miramand,P.,2008.Contaminationofa dredgedmaterialdisposalsiteLaRochelleBay,France.Theuseofthe acetylcholinesteraseactivityofMytilusedulisL.asabiomarkerofpesticides: theneedforacriticalapproach.Biomarkers3,305–315.

Revathi,P.,Munuswamy,N.,2010.Effectoftributyltinontheearlyembryonic developmentinthefreshwaterprawnMacrobrachiumrosenbergii(DeMan). Chemosphere79,922–927,http://dx.doi.org/10.1016/j.chemosphere.2010.03. 023.

Roberts,M.H.,1981.Keponedistributioninselectedtissuesofbluecrabs, Callinectessapidus,collectedfromtheJamesRiverandLowerChesapeakeBay. Estuaries4,313,http://dx.doi.org/10.2307/1352155.

Rodríguez,E.M.,Medesani,D.A.,Fingerman,M.,2007.Endocrinedisruptionin crustaceansduetopollutants:areview.Comp.Biochem.Physiol.AMol.Integr. Physiol.146,661–671,http://dx.doi.org/10.1016/j.cbpa.2006.04.030. Ross,L.G.,2001.PrawnsofJapanandtheWorld.CRCPress.

Sanders,H.O.,Huckins,J.,Johnson,B.T.,Skaar,D.,1981.BiologicaleffectsofKepone andmirexinfreshwaterinvertebrates.Arch.Environ.Contam.Toxicol.10, 531–539,http://dx.doi.org/10.1007/BF01054877.

Satapornvanit,K.,Baird,D.J.,Little,D.C.,2009.Laboratorytoxicitytestand post-exposurefeedinginhibitionusingthegiantfreshwaterprawn

Macrobrachiumrosenbergii.Chemosphere74,1209–1215,http://dx.doi.org/10. 1016/j.chemosphere.2008.11.033.

Schimmel,S.C.,Patrick,J.M.,Faas,L.F.,Oglesby,J.L.,Wilson,A.J.,1979.Kepone: toxicityandbioaccumulationinbluecrabs.Estuar.Coasts2,9–15,http://dx. doi.org/10.1007/BF02823701.

Schimmel,S.C.,Wilson,A.J.,1977.AcutetoxicityofKeponeregisteredtofour estuarineanimals.Chesap.Sci.18,224,http://dx.doi.org/10.2307/1350864. Snegaroff,J.,1977.Lesrésidusd’insecticidesorganochlorésdanslessolsetles

rivièresdelarégionbananièredeGuadeloupe.Phytiatr.Phytopharm.26, 251–268.

Snyder,M.J.,1998.IdentificationofanewcytochromeP450family,CYP45,from thelobster,Homarusamericanus,andexpressionfollowinghormoneand xenobioticexposures.Arch.Biochem.Biophys.358,271–276,http://dx.doi. org/10.1006/abbi.1998.0878.

Snyder,M.J.,Mulder,E.P.,2001.Environmentalendocrinedisruptionindecapod crustaceanlarvae:hormonetiters,cytochromeP450,andstressprotein responsestoheptachlorexposure.Aquat.Toxicol.55,177–190,http://dx.doi. org/10.1016/s0166-445x(01)00173-4.

Soetaert,A.,vanderVen,K.,Moens,L.N.,Vandenbrouck,T.,vanRemortel,P.,De Coen,W.M.,2007.Daphniamagnaandecotoxicogenomics:geneexpression profilesoftheanti-ecdysteroidalfungicidefenarimolusingenergy-, molting-andlifestage-relatedcDNAlibraries.Chemosphere67,60–71,http://dx.doi. org/10.1016/j.chemosphere.2006.09.076.

Soine,P.J.,Blanke,R.V.,Guzelian,P.S.,Schwartz,C.C.,1982.Preferentialbindingof chlordeconetotheproteinandhighdensitylipoproteinfractionsofplasma fromhumansandotherspecies.J.Toxicol.Environ.Health9,107–118.

Sterrett,F.S.,Boss,C.A.,1977.CarelessKepone.Environ.Sci.PolicySustain.Dev.19, 30–37,http://dx.doi.org/10.1080/00139157.1977.9928594.

Sumpter,J.P.,Jobling,S.,1995.Vitellogenesisasabiomarkerforestrogenic contaminationoftheaquaticenvironment.Environ.HealthPerspect.103, 173–178,http://dx.doi.org/10.1289/ehp.95103s7173.

Tabb,M.M.,Blumberg,B.,2006.Newmodesofactionforendocrine-disrupting chemicals.Mol.Endocrinol.20,475–482, http://dx.doi.org/10.1210/me.2004-0513.

Taylor,D.,1983.Thesignificanceoftheaccumulationofcadmiumbyaquatic organisms.Ecotoxicol.Environ.Saf.7,33–42, http://dx.doi.org/10.1016/0147-6513(83)90046-5.

Tillmann,M.,Schulte-Oehlmann,U.,Duft,M.,Markert,B.,Oehlmann,J.,2001. Effectsofendocrinedisruptorsonprosobranchsnails(Mollusca:Gastropoda) inthelaboratory.PartIII:cyproteroneacetateandvinclozolinas

antiandrogens.Ecotoxicology10,373–388,http://dx.doi.org/10.1023/ A:1012279231373.

UNEP,2005.ProposalforListingChlordeconeinAnnexAoftheStockholm ConventiononPersistentOrganicPollutants[WWWDocument]. (UNEP/POPS/POPRC.1/INF/6).UnitedNationsEnviron.Program,Geneva, UNEP/POPS/POPRC.1/INF/6.26july2005.URLhttp://www.pops.int/ documents/meetings/cop1/chemlisting/chlordeconef.pdf.

US-EPA,2008.EPISuite,v.4.0,EPA’sofficeofpollutionpreventiontoxicsand SyracuseResearchCorporation(SRC).

VanVeld,P.A.,Bender,M.E.,Roberts,M.H.,1984.Uptake,distribution,metabolism andclearanceofchlordeconebychannelcatfish(Ictaluruspunctatus).Aquat. Toxicol.5,33–49,http://dx.doi.org/10.1016/0166-445X(84)90030-4. Vandenberg,L.N.,Colborn,T.,Hayes,T.B.,Heindel,J.J.,Jacobs,D.R.,Lee,D.H.,Shioda,

T.,Soto,A.M.,vomSaal,F.S.,Welshons,W.V.,Zoeller,R.T.,Myers,J.P.,2012. Hormonesandendocrine-disruptingchemicals:low-doseeffectsand nonmonotonicdoseresponses.Endocr.Rev.33,378–455,http://dx.doi.org/10. 1210/er.2011-1050.

Welshons,W.V.,Thayer,K.A.,Judy,B.M.,Taylor,J.A.,Curran,E.M.,vomSaal,F.S., 2003.Largeeffectsfromsmallexposures.I.Mechanismsfor

endocrine-disruptingchemicalswithestrogenicactivity.Environ.Health Perspect.111,994–1006.

Xuereb,B.,Chaumot,A.,Mons,R.,Garric,J.,Geffard,O.,2009.Acetylcholinesterase activityinGammarusfossarum(CrustaceaAmphipoda)Intrinsicvariability, referencelevels,andareliabletoolforfieldsurveys.Aquat.Toxicol.93, 225–233,http://dx.doi.org/10.1016/j.aquatox.2009.05.006.

Xuereb,B.,Bezin,L.,Chaumot,A.,Budzinski,H.,Augagneur,S.,Tutundjian,R., Garric,J.,Geffard,O.,2011.Vitellogenin-likegeneexpressioninfreshwater amphipodGammarusfossarum(Koch,1835):functionalcharacterizationin femalesandpotentialforuseasanendocrinedisruptionbiomarkerinmales. Ecotoxicology20,1286–1299,http://dx.doi.org/10.1007/s10646-011-0685-2. Zaldívar,J.M.,Baraibar,J.,2011.Abiology-baseddynamicapproachforthe

reconciliationofacuteandchronictoxicitytests:applicationtoDaphnia magna.Chemosphere82,1547–1555,http://dx.doi.org/10.1016/j. chemosphere.2010.11.062.

Zha,C.W.,Xi,Y.L.,Huang,L.,Zhao,L.L.,2007.Effectofsublethalexposureto chlordeconeonlifehistorycharacteristicsoffreshwaterrotiferBrachionus calycifloruspallas.Bull.Environ.Contam.Toxicol.78,79–83,http://dx.doi.org/ 10.1007/s00128-007-9003-3.

Zou,E.,2005.Impactsofxenobioticsoncrustaceanmolting:theinvisibleendocrine disruption.Integr.Comp.Biol.45,33–38,http://dx.doi.org/10.1093/icb/45.1.33. Zou,E.,Bonvillain,R.,2004.Chitinaseactivityintheepidermisofthefiddlercrab

Ucapugilator,asaninvivoscreenformolt-interferingxenobiotics.Comp. Biochem.Physiol.CToxicol.Pharmacol.139,225–230,http://dx.doi.org/10. 1016/j.cca.2004.11.003.

Zou,E.,Fingerman,M.,1999a.Chitobiaseactivityintheepidermisand

hepatopancreasofthefiddlercrabUcapugilatorduringthemoltingcycle.Mar. Biol.133,97–101,http://dx.doi.org/10.1007/s002270050447.

Zou,E.,Fingerman,M.,1999b.PatternsofN-acetyl-beta-glucosaminidase isoenzymesintheepidermisandhepatopancreasandinductionof N-acetyl-beta-glucosaminidaseactivityby20-hydroxyecdysoneinthefiddler crab,Ucapugilator.Comp.Biochem.Physiol.C.Pharmacol.Toxicol.Endocrinol. 124,345–349.

Zou,E.,Fingerman,M.,1999c.Effectsofestrogenicagentsonchitobiaseactivityin theepidermisandhepatopancreasofthefiddlercrab,Ucapugilator.Ecotoxicol. Environ.Saf.42,185–190,http://dx.doi.org/10.1006/eesa.1998.1740. Zou,E.,Fingerman,M.,1999d.Effectsofexposuretodiethylphthalate,

4-(tert)-octylphenol,and2,4,5-trichlorobiphenylonactivityofchitobiasein theepidermisandhepatopancreasofthefiddlercrab,Ucapugilator.Comp. Biochem.Physiol.CPharmacol.Toxicol.Endocrinol.122,115–120.

Figure

Fig. 1. Positive correlation between CLD bioconcentrations measured in the muscle tissue of Macrobrachium rosenbergii and CLD concentrations in water of exposure (p &lt; 0.001, r = 0.49, n = 100), taking into account all duration of exposure.
Fig. 2. 20-HE concentrations (pg g −1 ; mean ± S.D.) in the muscle tissue of Macrobrachium rosenbergii exposed at four concentrations of CLD and sampled at four times of exposure
Fig. 4. Logarithmic correlation between log-transformed CLD bioconcentrations and the 20-HE concentration represented by circles, as well as the correlation between the log-transformed CLD bioconcentrations and chitobiase activity represented by triangles

Références

Documents relatifs

In the Eastern Mediterranean Region (EMR), reported rates of resistance have reached dangerous levels both in healthcare settings and the commu- nity, threatening the hard-won

Sharp convergence rates have been found for the random vortex method when applied to the Navier-Stokes equation by Goodman [8] and Long [16].. M i is the mass of the particle X t i,ε

The CCITT V.22 standard defines synchronous opera- tion at 600 and 1200 bit/so The Bell 212A standard defines synchronous operation only at 1200 bit/so Operation

Forward MIKEY modes, where the Initiator provides the key material, like public key or shared key mode when used in SIP/SDP may lead to complications in some call scenarios,

Although both definitions are technically correct, the definition of sphericity in terms of orthogonal contrasts is generally superior because it (a) generalizes to multi-factor

My government was pleased with the federal government's recent announcement designating Vancouver and Montreal as international banking centres and will intensify its efforts in

« zebro » ibérique, onagre... The aims of the present paper are four-fold. We attempt: 1) to throw light, from an essentially historical perspective, on the persistence in the

Mr Koïchiro Matsuura welcomed the Chairperson of the first session of the General Assembly, the Chairperson of the Intergovernmental Committee and