• Aucun résultat trouvé

New developments of the Extended Quadrature Method of Moments to solve Population Balance Equations

N/A
N/A
Protected

Academic year: 2021

Partager "New developments of the Extended Quadrature Method of Moments to solve Population Balance Equations"

Copied!
27
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/

Eprints ID : 22828

To link to this article :DOI:1016/j.jcp.2018.03.027

URL http://dx.doi.org/

10.1016/j.jcp.2018.03.027

To cite this version : Pigou, Maxime and Morchain, Jérôme and

Fede, Pascal and Penet , Marie-Isabelle: New developments of the

Extended Quadrature Method of Moments to solve Population Balance

Equations (2018), Journal of Computational Physics, vol. 365,

pp.243-268

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

(2)

New

developments

of

the

Extended

Quadrature

Method

of

Moments

to

solve

Population

Balance

Equations

Maxime Pigou

a

,

b

,

,

Jérôme Morchain

a

,

Pascal Fede

b

,

Marie-Isabelle Penet

c

,

Geoffrey Laronze

c

aLISBP,UniversitédeToulouse,CNRS,INRA,INSA,Toulouse,France

bInstitutdeMécaniquedesFluidesdeToulouseUniversitédeToulouse,CNRS-INPT-UPS,Toulouse,France cSanofiChimieC&BDBiochemistryVitry- 9quaiJulesGuesde,94400Vitry-sur-Seine,France

a

b

s

t

r

a

c

t

Keywords:

ExtendedQuadratureMethodofMoments (EQMOM)

QuadratureBasedMethodofMoments (QBMM)

PopulationBalance Mathematicalmodelling Gaussquadrature

Population Balance Models have a widerange ofapplications in manyindustrial fields as theyallowaccountingforheterogeneityamongpropertieswhichare crucialforsome system modelling. They actually describe the evolution of aNumber Density Function (NDF) using a Population Balance Equation (PBE). For instance, they are applied to gas–liquid columns orstirred reactors, aerosoltechnology, crystallisationprocesses, fine particles orbiologicalsystems.Thereisasignificantinterestforfast, stableandaccurate numerical methods in order to solve for PBEs, a classof such methods actually does not solvedirectlytheNDFbutresolvestheirmoments.Thesemethodsofmoments,and in particular quadrature-based methods ofmoments, have been successfully applied to a varietyof systems.Point-wise values ofthe NDF are sometimesrequired butare not directlyaccessible fromthemoments.To addresstheseissues,the ExtendedQuadrature MethodofMoments(EQMOM)hasbeendevelopedinthepastfewyearsandapproximates the NDF, fromitsmoments,as aconvexmixtureofKernel DensityFunctions (KDFs)of the same parametric family. In the present work EQMOMis further developed ontwo aspects.Themainoneisasignificantimprovementofthecoreiterativeprocedureofthat method,thecorrespondingreductionofitscomputationalcostisestimatedtorangefrom 60%upto95%.ThesecondaspectisanextensionofEQMOMtotwonewKDFsused for theapproximation,theWeibullandtheLaplacekernels.AllMATLABsourcecodesusedfor thisarticleareprovidedwiththisarticle.

1. Introduction

PopulationBalanceEquations(PBEs)are particularformalismsthatallowsdescribingtheevolutionofpropertiesamong heterogeneous populations. Theyare used to trackthesize distribution of fineparticles [1]; thebubble size distribution ingas–liquidstirred-tankreactorsorbubblecolumns[2,3];thecrystal-sizedistributionincrystallizers; thedistributionof biologicalcellpropertiesinbioreactors[4,5];thevolumeand/orsurfacedistributionofsootparticlesinflames[6,7] orthe formationofnano-particles[8],amongotherexamples.

*

Correspondingauthorat:LISBP-INSAToulouse,135AvenuedeRangueil,31077Toulouse,France.

(3)

Nomenclature Greek symbols

ε

relativetolerance

λ

j j-thnestedquadraturenode

µ

positivemeasure

ω

j j-thnestedquadratureweight

Ä

ξ NDFsupport

π

k k orderorthogonalpolynomial

σ

shapeparameter

ξ

randomvariable

ξ

i i-thmainquadraturenode

ζ

realisabilitycriteriaon]0

, +∞

[

Roman

a orthogonalpolynomialsrecurrencecoefficient

A transitionmatrixtodegeneratedmoments

b orthogonalpolynomialsrecurrencecoefficient

H

Hankeldeterminant Jn n orderJacobimatrix mk momentoforderk

M

realisablemomentspace

n numberdensityfunction

e

n approximationofn N orderofmomentset

N

orderofrealisability

pk canonicalmomentoforderk P numberofmainquadraturenodes

Q numberofnestedquadraturenodes

wi i-thmainquadratureweight

A PBE describes the evolution and transport of a Number Density Function (NDF), under the influence of multiple processeswhichmodifythetrackedpropertydistribution(e.g.erosion,dissolution,aggregation,breakage, coalescence, nu-cleation,adaptation,etc.).

One often requires low-cost numerical methods to solve PBEs, for instance when coupling with a flow solver (e.g. Computational Fluid Dynamics software). Monte-Carlo methods constitute a stochastic resolution of the popula-tion balance and can be applied to such PBE–CFD simulations [9]. Similarly, sectional methods allow direct numeri-cal resolutions of the PBE through the discretisation of the property space [10,11]. They respectively require a high number of parcels or sections in order to reach high accuracy and are thus often discarded for large-scale simula-tions.

Aninterestingalternative approachliesinthefield ofmethodsofmoments.APBE,whichdescribestheevolutionofa NDF,istransformedinasetofequationswhichdescribestheevolutionofthemomentsofthatdistribution.Momentsare integralpropertiesofNDFs,thefirstloworderintegermomentsarerelatedtothemean,variance,skewnessandflatnessof thestatisticaldistributionsdescribedbyNDFs.Thisapproachthenreducesthenumberofresolvedvariablestoafinitesetof NDFmoments.Italsocomeswithsomedifficultieswhenonemustcomputenon-momentintegralproperties,orpoint-wise evaluations,ofthedistribution[12].

Totackletheseissues,onecantrytorecoveraNDFfromafinitesetofitsmoments.Inmostcases,thisreverseproblem hasaninfinitenumberofsolutionsanddifferentapproachesexisttoidentifyoneoranotherout ofthem.Thesimplestis probablytoassume thattheNDFisastandarddistribution(Gaussian,Log-normal,. . . ) whoseparameters willbededuced fromits firstfew moments.Othermethods thatleadto continuousapproximations, andwhich preserveahighernumber ofmoments,aretheSplinemethod[13],theMaximum-Entropyapproach[12,14,15] ortheKernelDensityElementMethod (KDEM)[16].

Morerecently,theExtendedQuadratureMethodofMoments(EQMOM)wasproposedasanewapproachwhichismore stablethanthepreviousones,andyieldseithercontinuousordiscreteNDFsdependingonthemoments[1,17,18].EQMOM has been implemented in OpenFOAM [19] for the purpose of PBE–CFD coupling. The core of this method relies on an iterativeprocedurethatisacomputationalbottleneck.

The current work focuses on EQMOM and develops a new core procedure whose computational cost is significantly lowerthan previousimplementationsby reducingboth (i)thecost ofeachiterationand(ii)thetotalnumberofrequired iterations.

The previous core procedure [1] will be recalled before describing how it can be shifted toward the new– cheaper – approach. Both implementations will be compared in terms of computational cost (number of required floating-point operations)andrun-time.

Multiplevariations ofEQMOMexist,theGauss EQMOM[17,20], Log-normalEQMOM[21] as wellasGammaandBeta EQMOM[18].Twonewvariations,namelyLaplaceEQMOMandWeibullEQMOM,areproposedalongwithaunified formal-ismamongallsixvariations.

Thewholesourcecodeusedtowritethisarticle(figuresanddatageneration)isprovidedassupplementarydata,aswell asourimplementationsofEQMOMintheformofaMATLABfunctionslibrary[22].

(4)

2. QuadratureBasedMethodsofMoments:QMOMandEQMOM 2.1. Definitions

Letd

µ

(ξ )

beapositivemeasure,inducedbyanon-decreasingfunction

µ

(ξ )

definedonasupport

Ä

ξ.Thismeasureis associated toaNumber DensityFunctionn

(ξ )

such that d

µ

(ξ )

=

n

(ξ )

d

ξ

.LetmN bethevector ofthefirst N

+

1 integer

momentsofthismeasure:

mN

=

m0 m1

..

.

mN

,

mk

=

Z

Äξ

ξ

kn

(ξ )

d

ξ

(1)

Threeactualsupportswillbeconsidered:(i)

Ä

ξ

=

]

−∞, +∞

[,(ii)

Ä

ξ

=

]0

, +∞

[ and(iii)

Ä

ξ

=

]0

,

1[.Foreachsupport, one candefine theassociatedrealisablemomentspace,

M

N

ξ

)

,asthesetofallvectorsoffinitemoments mN induced

byallpossiblepositivemeasuresdefinedon

Ä

ξ.

A moment set is said to be “weakly realisable” if located on the boundary of the realisable moment space (mN

∂M

N

ξ

)

).Otherwise,iflocatedwithintherealisablemomentspace,mN issaidtobe“strictlyrealisable”. 2.2. Quadraturemethodofmoments

EQMOMisbasedontheQuadratureMethodofMoments(QMOM)thatwasfirstintroducedbyMcGraw[23].Itisusedto approximateintegralpropertiesofadistributionwhereonlyafinitenumberofitsmomentsisknown.Bymakinguseofan evennumberofmoments 2P ,one cancomputeaGaussquadraturerulecharacterisedbyitsweights wP

= [

w1

,

. . . ,

wP

]

T

andnodes

ξ

P

= [ξ

1

,

. . . ,

ξ

P

]

Tsuchthat:

Z

Äξ f

(ξ )

d

µ

(ξ ) =

P

X

i=1 wif

i

)

(2)

holdstrueif f

(ξ )

= ξ

k

,

k

∈ {

0

,

. . . ,

2P

1

}

.Otherwise,thisquadraturerulewillproducean approximationoftheintegral property. Thecomputationofthequadraturerule(i.e.thevectors wP and

ξ

P) isofspecialinterestforfollowing

develop-ments,whichiswhyitstwomainstepswillbedetailed.

Any positivemeasured

µ

(ξ )

isassociatedwithasequenceofmonicpolynomials(i.e.polynomialwhoseleading coeffi-cientequals1)denoted

π

k –withk theorderofthepolynomial–suchthat:

Z

Äξ

π

i

(ξ )

π

j

(ξ )

d

µ

(ξ ) =

0

,

for i

6=

j (3)

Thesepolynomialsaresaidorthogonalwithrespecttothemeasured

µ

(ξ )

andaredefinedby:

π

k

(ξ ) =

1 ck

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

m0 m1

· · ·

mk1 mk m1 m2

· · ·

mk mk+1

..

.

..

.

. .

.

..

.

..

.

mk−1 mk

· · ·

m2k−2 m2k−1 1

ξ

· · ·

ξ

k−1

ξ

k

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

(4)

withckaconstantchosensothattheleadingcoefficient(oforderk)of

π

k equals1,hencemaking

π

kamonicpolynomial.

Itisknownthatmonicorthogonalpolynomialssatisfyathree-termrecurrencerelation[24]:

π

k+1

(ξ ) = (ξ −

ak

)

π

k

(ξ ) −

bk

π

k1

(ξ )

(5)

withakandbk beingtherecurrencecoefficientsspecifictothemeasured

µ

(ξ )

,

π

1

(ξ )

=

0 and

π

0

(ξ )

=

1.

Let Jn

(

d

µ

)

bethen

×

n Jacobimatrixassociatedtothemeasured

µ

.Thisisatridiagonalsymmetricmatrixdefinedas:

Jn

(

d

µ

) =

a0

b1 0

b1 a1

. .

.

. .

.

. .

.

p

b n1 0

p

bn1 an1

(6)

(5)

TheweightsandnodesofthequadraturerulefromEq.(2) aregivenbyspectralpropertiesof JP

(

d

µ

)

.Thenodes

ξ

P of

therulearetheeigenvaluesof JP

(

d

µ

)

.Theweightsoftherulearegivenby:

wi

=

m0v21,i (7)

where v1,i isthe first componentofthe normalised eigenvector belongingto theeigenvalue

ξ

i. Thecomputation ofthe

quadraturerule(Eq.(2))thenreliesontwosteps:

1. ThecomputationoftherecurrencecoefficientsaP1

= [

a0

,

. . . ,

aP1

]

TandbP1

= [

b1

,

. . . ,

bP1

]

T. 2. Thecomputationoftheeigenvaluesandthenormalisedeigenvectorsof JP

(

d

µ

)

.

Multiplealgorithmsareavailableintheliteraturetocomputetherecurrencecoefficients:

TheQuotient-Differencealgorithm[25,26]

TheProduct-Differencealgorithm[27]

TheChebyshevalgorithm[28]

TheChebyshevalgorithmwasfoundtobethestablestoneofthethree[1,28],itsdescriptionisgiveninAppendixA.

2.3.ExtendedQuadratureMethodofMoments

TheQMOM methodiswell suited forthe approximationofintegral propertiesofthe NDF,whichisactually themain purposeofGaussquadratures.However,inmanyapplicationssuchasevaporation[12] ordissolution[29] processes, point-wise values of the NDF n

(ξ )

are required but not directly accessible fromthe moments. For that purpose, a method is neededtoproduceanapproximation

e

n

(ξ )

oftheoriginaldistributionn

(ξ )

,byknowingonlyafinitesetofitsmoments.

Inasense,onecanconsiderthattheGaussianquadraturecomputedwithQMOM approximatesn

(ξ )

asaweightedsum ofDiracdistributions:

e

n

(ξ ) =

P

X

i=1 wi

δ(ξ, ξ

i

)

(8)

withtheDirac

δ

distributiondefinedbyitssiftingproperty +∞

Z

−∞

f

(ξ ) δ(ξ, ξ

m

)

d

ξ =

f

m

)

(9)

Formostapplications,n

(ξ )

isexpectedto bea continuous distribution whilstQMOM yields monodisperse ordiscrete polydispersereconstructionsofn

(ξ )

,with

e

n

(ξ )

=

0 forallvaluesof

ξ

exceptsomefinitenumberofthesevalues.

Manymethods were suggestedto tackle thisproblemand to propose a continuous reconstruction

e

n

(ξ )

froma finite number ofmoments mN. Some of them are the Spline method [13], the Maximum-Entropy approach [14,15,12] or the

KernelDensityElement Method[16]. Theirpropertieswill notbe discussed herebutone onlyunderlinesthat they tend tobe unstable,ill-conditioned, or havea highsensitivitytonumerical parameters[13,29,30].In particular,noneof them can handlethe caseof a weakly realisablemoment set.Such a momentset is associatedto a discrete (or degenerated) distributionand,inthisspecificcase,thedistributionprovidedbyQMOMistheonlypossiblereconstruction(seeEq.(8)).

Notethat afailure –orinstabilities– inanumerical methodcancompromise theintegrity oflarge-scale simulations. Forthisreason,Chalonset al.[17],Yuanetal.[18] andNguyenetal.[1] proposedarobustandstablemethodtotacklethis reconstructionproblemby handlingboth continuous approximationsanddiscrete solutions.Theirapproach,theExtended QuadratureMethodofMoments, approximatesn

(ξ )

asa convexmixtureofKernelDensity Functions (KDFs)ofthesame parametricfamily:

e

n

(

µ

) =

P

X

i=1 wi

δ

σ

(ξ, ξ

i

)

(10) with

wi:theweightofthei-thnode, wi

0

,

i

∈ {

1

,

. . . ,

P

}

• ξ

i:thelocationparameterofthei-thnode,

ξ

i

∈ Ä

ξ

,

i

∈ {

1

,

. . . ,

P

}

• δ

σ :aKDFchosentoperformtheapproximation,referredlatertoasthereconstructionkernel.

σ

istheshapeparameter oftheapproximation.

(6)

Thecomputationoftheweights wP

= [

w1

,

. . . ,

wP

]

T,thenodes

ξ

P

= [ξ

1

,

. . . ,

ξ

P

]

Tandtheshapeparameter

σ

fromthe

momentsetm2P isperformedbytheEQMOMmoment-inversionprocedure.Theimprovementofthisprocedureconstitutes

thecoreofthisarticleandisdetailedinsection3.

Multiple standard normalized distribution functions can be used as the reconstruction kernel

δ

σ (e.g. Gaussian, Log-normal,etc.). A listofthemis giveninAppendix B.All ofthesekernels degenerateinto Diracdistributioniftheir shape parametersaresufficientlysmall:

lim

σ0

δ

σ

(ξ, ξ

m

) = δ(ξ, ξ

m

)

(11)

This allows EQMOM tobe numerically stableinthe caseof a momentset m2P beingon theboundary ofthe realisable

moment space

∂M

2P

ξ

)

. Indeed,in such cases,the EQMOM approximation simply degenerates in a weighted sum of DiracdistributionandthedefinitiongiveninEq.(10) stillholdstrue,with

σ

=

0.

EQMOMcanalsobeusedtocomputeintegralpropertiesoftheNDFwithhighaccuracy.Thiscomeswiththeintroduction ofnestedquadratures.Themainquadratureproposesthefollowingapproximationofintegralterms:

Z

Äξ f

(ξ )

n

(ξ )

d

ξ ≈

P

X

i=1 wi

Z

Äξ f

(ξ )δ

σ

(ξ, ξ

i

)

d

ξ

(12)

Moreover,aquadraturerulecanbeusedtoapproximatethebracketedintegralinEq.(12).Thiswillbethenested quadra-turethat actually dependsonthe kernel

δ

σ

(ξ,

ξ

m

)

. Forinstance,Gauss–Hermitequadraturescan be usedto approximate

integralsoveraGaussiankernel(seeAppendixB.1).Nestedquadraturesthengivethefollowingapproximation:

Z

Äξ f

(ξ )

n

(ξ )

d

ξ ≈

P

X

i=1 wi Q

X

j=1

ω

jf

¡

g

(

σ

, ξ

i

, λ

j

)

¢

(13)

with Q theorder,

ω

Q

= [

ω

1

,

. . . ,

ω

Q

]

Ttheweightsand

λ

Q

= [λ

1

,

. . . ,

λ

Q

]

Tthenodesofthesub-quadrature. g definesthe

nodesofthe nestedquadraturefrom

σ

,

ξ

i and

λ

j.Thesenestedquadraturesare detailedforallKDFsinAppendix Band

AppendixC.

3. Momentinversionprocedure

The EQMOM moment-inversion procedure comes with analytical solutions forsome kernels in the caseof low-order quadratures.The one-nodeanalyticalsolutions aredetailedforall kernelsinAppendixB.Whenthey exist,thetwo-nodes analytical solutions are implemented in MATLABcode (see supplementary data) butare not detailed inthis article.The current sectionis focusing onthe numericalprocedure used tocompute the reconstruction parameters inabsence ofan analyticalsolution.

Theprocedure proposedbyYuanetal.[18] andNguyenetal.[1] isfirstrecalledinsection 3.1.Thesection 3.2details howtheirapproachcanbeshiftedtowardanewconvergencecriteriathatwillbeappliedtothespecificcasesof

theHamburger momentproblem(section3.3):NDFdefinedonthewholephasespace

Ä

ξ

=

]

−∞, +∞

[

theStieltjes momentproblem(section3.4):NDFdefinedonthepositivephasespace

Ä

ξ

=

]0

, +∞

[

theHausdorff momentproblem(section3.5):NDFdefinedontheclosedsupport

Ä

ξ

=

]0

,

1[

Some momentsetsleadto ill-conditionedsituationsthat needtobe specificallyhandledbyEQMOMimplementations. Theseareaddressedinsection3.6.

3.1. Standardprocedure

LetmN bethevectorofthefirstN

+

1 integermomentsofthemeasured

µ

(ξ )

=

n

(ξ )

d

ξ

,withN

=

2P aneveninteger:

mN

=

m0 m1

..

.

mN

,

mk

=

Z

Äξ

ξ

kn

(ξ )

d

ξ

(14)

TheEQMOMmoment-inversionprocedureaimstoidentifytheparameters

σ

,wP

= [

w1

,

. . . ,

wP

]

Tand

ξ

P

= [ξ

1

,

. . . ,

ξ

P

]

T

(7)

e

mN

=

e

m0

e

m1

..

.

e

mN

,

m

e

k

=

Z

Äξ

ξ

k

e

n

(ξ )

d

ξ,

e

n

(ξ ) =

P

X

i=1 wi

δ

σ

(ξ, ξ

i

)

(15)

Foranyvalueof

σ

,Yuanetal.[18] identifiedaprocedurewhichleadstotheparameterswP and

ξ

P suchthatmN−1

=

e

mN1.The EQMOMmoment-inversionproblemhasthenbeenreducedtosolving ascalarnon-linear equationby looking

forarootofthefunction DN

(

σ

)

=

mN

− e

mN

(

σ

)

.

Theapproach developedbyYuanetal.[18] and thenimprovedby Nguyenetal.[1] isbased onthefact that,forthe KDFsusedinEQMOM,itispossibletowritethefollowinglinearsystem:

e

mn

=

An

(

σ

) ·

mn∗ (16)

where An

(

σ

)

isa lower-triangular

(

n

+

1

)

× (

n

+

1

)

matrix whoseelements dependonly onthe chosen KDF andonthe

value

σ

,whereasmn isdefinedas: mn

=

m∗ 0 m∗ 1

..

.

mn

,

mk

=

P

X

i=1 wi

ξ

ik (17)

Bytheirdefinition,themomentsmn correspondtothemomentsofadegenerateddistribution(i.e.afinitesumofDirac

distributions),hencethesemomentswillbereferredasthedegeneratedmomentsoftheapproximation.Degeneratedmoments aredefinedinsuchawaythatthevectorswP and

ξ

P canbecomputedfromm2P−1usingaGaussQuadrature(see2.2).

Atthispoint,one hasthebasisrequiredtocomputetheobjectivefunction DN

(

σ

)

andtosearchforitsroot.The

com-putationofDN

(

σ

)

fromavectormN isasfollow(seealsoFig.1a):

1. Computem

N1

(

σ

)

=

AN11

(

σ

)

·

mN1.

2. ComputetherecurrencecoefficientsaP1

(

σ

)

andbP1

(

σ

)

byapplyingtheChebyshevalgorithmtomN1

(

σ

)

.

3. UsetherecurrencecoefficientstocomputetheGaussianquadraturerulewP

(

σ

)

and

ξ

P

(

σ

)

.

4. Knowingtheparameters

σ

,wP

(

σ

)

and

ξ

P

(

σ

)

ofthereconstruction,computemN

e

(

σ

)

,thiscanbedoneeasilyby:

ComputingtheN-thorderdegeneratedmomentoftheapproximatedNDF:mN

(

σ

)

=

P

iP=1wi

(

σ

i

(

σ

)

N.

Multiplying the last line of AN

(

σ

)

and the vector of degenerated moments: mN

e

(

σ

)

= [

0

,

0

,

. . . ,

1

]

·

AN

(

σ

)

·

£

m

0

(

σ

), . . . ,

mN−1

(

σ

),

mN

(

σ

)

¤

T.

5. ComputeDN

(

σ

)

=

mN

− e

mN

(

σ

)

.

ForeachcompatibleKDF,itispossibletouselowordermomentstocomputeanupperbound

σ

max sothatthesearchof

arootofDN isrestrictedtotheinterval

σ

[0

,

σ

max].Thenaboundednon-linearequationsolversuchasRidder’smethod

canbeappliedtoactuallyfindtherootofthefunction.

Twospecificcaseswerediscardedinthepreviousdescriptionofthemethod.First,ithappensthatthefunctionDN does

notadmit anyroot, insuchacasetheprocedureisswitched towardthe minimisationofthisfunctioninordertoreduce theerroronthelastmomentoftheapproximation.

Second,duringthecomputationofDN

(

σ

)

,onemustcomputedegeneratedmomentsfromwhichweightsandnodesare

extracted. Ifdegeneratedmoments m

N−1

(

σ

)

turn outnot tobe realisableon thesupport

Ä

ξ oftheNDF,thequadrature performedonthisvectorwillleadtonodesoutside

Ä

ξ,oreventonegative/complexweights.Nguyenetal.[1] thensuggest to checkfor therealisability ofdegenerated moments, andiftheseare not realisable, to setmN

e

(

σ

)

to aarbitrarily high value such as10100. Thiswill force thenon-linear equation solverto test alower value of

σ

in orderto bringback the

vectorm

N−1

(

σ

)

within therealisablemomentspace.However notethatthisisonlyanumericaltricktoconvergetoward

theactualroot,butDN

(

σ

)

isactuallyundefinedassoonasm

N1

(

σ

)

isnotrealisable.

3.2.Anewprocedurebasedonmomentrealisability

The reversiblelinear systemlinking raw moments ofthe approximation m

e

N to its degenerated moments mN is such

thatanewobjectivefunction D

N

(

σ

)

–whoserootisthesameasthatofDN

(

σ

)

–canbeformulated.Itscomputationisas

follow(seealsoFig.1b): 1. Computem

N

(

σ

)

=

AN1

(

σ

)

·

mN.

2. ComputeaquadratureonthevectormN1

(

σ

)

toobtainthevectorswP

(

σ

)

and

ξ

P

(

σ

)

.

3. ComputemN

(

σ

)

=

P

iP=1wi

(

σ

i

(

σ

)

N.

4. ComputeD

(8)

Fig. 1. Comparisonofthecomputationofconvergencecriteriabasedon(a)DN(σ),(b)D

N(σ)and(c)therealisabilitycriteriaofthesupportÄξ.CA:

Chebyshev Algorithm. QC: Quadrature Computation. The convergence criteria are highlighted in light blue. Inspired by Fig. 1 from Nguyen et al. [1]. (For interpretationofthecoloursinthefigure(s),thereaderisreferredtothewebversionofthisarticle.)

Notethat DN

(

σ

)

=

D

N

(

σ

)

×

AN,N

(

σ

)

.As showninAppendixBforallkernels,diagonal elementsof An

(

σ

)

arealways

strictlypositive,thereforethetwoobjectivefunctionsdosharethesameroots.

Thebenefitofthisnewobjectivefunctionisthatitonlyrequiresthematrix AN1

(

σ

)

insteadofboththematrixAN11

(

σ

)

andthelastlineofAN

(

σ

)

.Thisonlyincreasestheclarityofthemethod,buthashardlynoeffectonitsnumericalcost.

Thepoint ofthisalternativeapproachishowevertounderlineacrucialelementforthenewEQMOM implementation: we actually look fora value of

σ

for whichm

2P

(

σ

)

=

m2P

(

σ

)

.This impliesthat, forthisspecific searched

σ

value, the

vectorm2P

(

σ

)

reads m2P

(

σ

) =

P

P i=1wi

ξ

i0

P

P i=1wi

ξ

i1

..

.

P

P i=1wi

ξ

i2P

(18)

whichis,byconstruction,thevectorofthefirst2P

+

1 momentsofthesumof P Diracdistributions.

Under thecondition that a P -node EQMOM reconstruction exists forthemoment setm2P with

σ

>

0

,

wi

>

0

, ξ

i

6=

0

,

i

∈ {

1

,

. . . ,

P

}

,thevectorm

2P

(

σ

)

willhavethefollowingspecificproperties:

1. Thevectorm2P1

(

σ

)

mustbestrictlywithintherealisablemomentspace

M

N1

ξ

)

. 2. Thevectorm

2P

(

σ

)

mustbeontheboundaryoftherealisablemomentspace

M

N

ξ

)

.

EQMOM procedurewillthen relyontherealisabilityofthevector m2P

(

σ

)

insteadofthecomputation oftheerroron thelastmoment,thiswillbeacheaperapproach.

Situations were the EQMOM reconstruction exist but with

σ

=

0, or

i

∈ {

1

,

. . . ,

P

},

wi

=

0 or

ξ

i

=

0 are tackled in

section3.6butarealwaysbasedoncheckingtherealisabilityofm

2P

(

σ

)

.

The actual definition of the realisable moment space of order n,

M

n, depends on the support

Ä

ξ of the NDF.The three classical supports, corresponding to the Hamburger,Stieltjes and Hausdorff momentproblems, comewith different constraints on a moment set to ensure its realisability.The realisabilitycriteria foreach ofthese supports will then be detailed.

Fig. 1sums up the“standard approach” based on DN

(

σ

)

,the shifted approach,based on DN

(

σ

)

, aswell asthe new

approachbasedontherealisabilitycriteriaofm2P

(

σ

)

forallthreesupports.

3.3. Applicationtothe Hamburgerproblem

As stated in 2.2, it is known that monic polynomials which are orthogonal to a measure d

µ

(ξ )

=

n

(ξ )

d

ξ

satisfy a three-termrecurrencerelation(Eq.(5))withakandbk

,

k

∈ N

,therecurrencecoefficientsspecifictothemeasured

µ

(ξ )

.The

Favard’stheorem[31] andits converse[32] implythatthemeasure d

µ

(ξ )

isrealisableon

Ä

ξ

=

]

−∞, +∞

[ ifandonlyif

(9)

Fig. 2. EvolutionofthedifferentconvergencecriteriaforbothGaussian(aandb)andLaplace(candd)kernelsdependingonσ value.Thetwoinitial momentsetsarem(1)6 = [1 1 2 5 12 42 133]Tandm(2)

6 = [1 2 7 17 58 149 493]T.

Onelooksforavalueof

σ

suchthattheassociateddegeneratedmomentsm

2P−1

(

σ

)

arestrictlyrealisable(i.e.withinthe

momentspace),andthemomentsm

2P

(

σ

)

areweaklyrealisable(i.e.onthefrontierofrealisability).Then,iftheChebyshev

algorithmisusedtocomputetherecurrencecoefficientsa

P1

(

σ

)

= [

a∗0

(

σ

),

. . . ,

aP1

(

σ

)]

TandbP

(

σ

)

= [

b∗1

(

σ

),

. . . ,

bP

(

σ

)]

T

fromthevectorm2P

(

σ

)

,theconditionofrealisabilitycanbewrittenintermsofvaluesofbP

(

σ

)

:lookingfortheEQMOM

reconstructionparameterswiththeGaussianandLaplacekernelsisequivalenttolookingforavalueof

σ

suchas:

b

k

(

σ

)

>

0,

k

∈ {

1

,

. . . ,

P

1

}

b

P

(

σ

)

=

0

Fig.2 makes use of the developmentsfrom AppendixB.1 and Appendix B.2,about theGaussian andLaplace kernels respectively,toshowtheevolutionofD6

(

σ

)

,D∗6

(

σ

)

andbk

(

σ

),

k

∈ {

1

,

2

,

3

}

fortwosetsof7 moments(P

=

3).Thisfigure

illustratesthe factthat indeedthe approachesbasedon DN

(

σ

)

, DN

(

σ

)

andbP

(

σ

)

areequivalent asthey sharethesame

circledroot.

Letdenote

σ

k therootofbk

(

σ

)

.Onecannoticethattheroot

σ

klieswithintheinterval [0

,

σ

k1].Weactuallyobserved

theexistence ofall roots

σ

k

,

k

∈ {

1

,

. . . ,

P

}

onnumerous(about106) randomlyselected momentsetsof N

+

1

=

13

mo-ments,andneverobservedan undefinedroot.Thegenerality ofthisobservationhasnot beenmathematicallyproved,but itseemsthatindeed

σ

kisalwaysdefinedandalwaysliesin

σ

k

[0

,

σ

k−1]

,

k

∈ {

2

,

. . . ,

P

}

.

σ

1isdefinedanalytically.

Thepreviousobservationswereusedtodesignasimplealgorithmwhichallowsidentifyingtheroot

σ

P.Thisalgorithm

isbasedonthefactthatitispossibletocheckwhetheravalue

σ

t ishigherorlowerthan

σ

P atlowcostandwithnoprior

knowledgeof

σ

P value:

Ifb

k

(

σ

t

)

>

0

, ∀

k

∈ {

1

,

. . . ,

P

}

,then

σ

t

<

σ

P.

Otherwise,thatisif

k

∈ {

1

,

. . . ,

P

},

b

k

(

σ

t

)

<

0,then

σ

t

>

σ

P.

Onecanthenuseaniterativeapproachthatwill

1. Check the realisability of the raw moments m2P

=

m2P

(

0

)

by computing bP

(

0

)

and checking the positivity of all

elements.

2. Initialiseaninterval

h

σ

l(0)

,

σ

r(0)

i

suchthat

σ

l(0)

<

σ

P and

σ

r(0)

>

σ

P,andthenupdatetheseboundstoshrinkthesearch

interval.Theseinitialvalueswillbe

σ

(0)

l

=

0 and

σ

(0)

r

=

σ

1with

σ

1 theanalyticalsolutionofb∗1

(

σ

)

=

0.

3. Iterateoverk (a) Choose

σ

t

h

σ

l(k−1)

,

σ

r(k−1)

i

. (b) ComputebP

(

σ

t

)

.

(c) IfallelementsofbP

(

σ

t

)

arepositive,set

σ

l(k)

=

σ

t and

σ

r(k)

=

σ

r(k−1).

(d) Otherwise,set

σ

(k) l

=

σ

(k1) l and

σ

(k) r

=

σ

t.

Thechoiceof

σ

t atstep3awillbemadeby tryingtolocatetheroot

σ

jofbj

(

σ

)

with j theindexofthefirstnegative

elementof bP

³

σ

r(k)

´

.Following Nguyenetal.[1] developments,the useofRidder’smethod isadvised toselect

σ

t.This

(10)

3. Iterateoverk

(a) Identify j theindexofthefirstnegativeelementofbP

³

σ

r(k−1)

´

. (b) Compute

σ

t1

=

1 2

³

σ

l(k−1)

+

σ

r(k−1)

´

andbP

(

σ

t1

)

. (c) Compute

σ

t2

=

σ

t1

+

³

σ

t1

σ

(k1) l

´

bj ¡ σt1¢ r bj ¡ σt1¢2−bj ³ σl(k−1) ´ ∗bj ³ σr(k−1) ´ andbP

(

σ

t2

)

.

(d) Set

σ

l(k) asthe highest value between

σ

l(k−1),

σ

t1 and

σ

t2 such that the corresponding vector bP contains only

positivevalues. (e) Set

σ

(k)

r asthelowestvalue between

σ

r(k−1),

σ

t1 and

σ

t2 suchthat thecorresponding vector bP contains atleast

onenegativevalue.

Stop the computation if

σ

r(k)

σ

l(k)

<

ε σ

1 or ifbP

³

σ

l(k)

´

<

ε

b

P

(

0

)

, with

ε

a relative tolerance (e.g.

ε

=

10−10). Then

compute the weights wP andnodes

ξ

P of the EQMOM reconstruction by computing a Gauss quadrature based on the

recurrencecoefficientsa

P1

³

σ

l(k)

´

andbP1

³

σ

l(k)

´

.

Actualimplementationsofthisalgorithmforbothkernelsareprovidedassupplementarydata.

3.4. Applicationtothe Stieltjesproblem

It iswell known that therealisabilityofa momentset mN on thesupport

Ä

ξ

=

]0

, +∞

[ isstrictly equivalent to the positivityoftheHankeldeterminants

H

2n

+d[33] definedas:

H

2n +d

=

¯

¯

¯

¯

¯

¯

¯

md

· · ·

mn+d

..

.

. .

.

..

.

mn+d

· · ·

m2n+d

¯

¯

¯

¯

¯

¯

¯

(19) withd

∈ {

0

,

1

}

andn

∈ N,

2n

+

d

N.

This condition on the positivity of Hankel determinants can be translated into a condition on the positivity of the numbers

ζ

k [32] definedby:

ζ

k

=

H

k−3

H

k

H

k −2

H

k1

,

H

j

=

1 if j

<

0 (20)

ThesenumberscanbedirectlycomputedfromtherecurrencecoefficientsaP andbP definedin2.2throughthefollowing

relations:

ζ

2k

=

bk

ζ

2k−1

,

ζ

2k+1

=

ak

− ζ

2k (21) with

ζ

1

=

a0

=

m1

/

m0.

The goal here is to usethese realisabilitycriteria to compute the parameters ofEQMOM quadraturewith either the Log-normal, theGamma orthe Weibullkernel (seeAppendix B.3,Appendix B.4 andAppendixB.5 respectively). Inthese cases,onemust

1. Compute mN

(

σ

)

=

AN−1

(

σ

)

·

mN with AN

(

σ

)

the matrix associated to the chosen kernel (see Appendix B.3,

Ap-pendixB.4,AppendixB.5).

2. ApplytheChebyshevalgorithmtom

N

(

σ

)

toaccesstherecurrencecoefficientsaP

(

σ

)

andbP

(

σ

)

.

3. Compute

ζ

N

(

σ

)

= [ζ

1∗

(

σ

),

. . . ,

ζ

N

(

σ

)]

TusingrelationsinEq.(21).

Oneactuallylooksfor

σ

suchthat

• ζ

k

(

σ

)

>

0,

k

∈ {

1

,

. . . ,

N

1

}

• ζ

N

(

σ

)

=

0

Let

σ

kbetherootof

ζ

k

(

σ

)

.Inallcases,theroot

σ

2isdefined,analyticallyfortheLog-normalandGammakernels,and

numericallyfortheWeibullkernel.Fig.3showstheevolutionof D6

(

σ

)

,D∗6

(

σ

)

and

ζ

∗6

(

σ

)

forthreemomentsetswhenthe

developmentsrelativetotheWeibull(seeAppendixB.5)kernelareused.Threesituationscanbeobservedonthatfigure: 1. Allroots

σ

k,k

∈ {

2

,

. . . ,

N

}

aredefined(Fig.3a).

2. Someintermediaryroots

σ

k,k

∈ {

3

,

. . . ,

N

1

}

,arenotdefinedbuttheroot

σ

N stillexists(Fig.3b).

(11)

252

Fig. 3. Evolution of the different convergence criteria for the Weibull kernel depending on σ value. The initial moment sets are m(6a)= [1 1.5 12 131 15200 18033 2.16e5]T,m(b)

6 = [1 5.5 78 1285 22225 4.05e5 7.88e6]Tandm (c)

6 = [1 1 2 5 14 42 133]T.

ThesethreecasescanbeobservedfortheGammaandLog-normalkernelstoo.

Inthefirsttwocases,when

σ

N exists,theEQMOMapproximationiswelldefined.Thelast case–where

ζ

N

(

σ

)

admits

norootin[0

,

σ

N1] –actuallycorrespondstothecasedescribedbyNguyenetal.[1] whereDN

(

σ

)

didnotadmitanyroot

either.Inthiscase,itwassuggestedtominimiseDN

(

σ

)

inordertoreducethedifferencebetweenmN andmN

e

(

σ

)

asmuch aspossible.

DN

(

σ

)

tendstobeadecreasingfunction,butisundefinedassoonasanyelementof

ζ

N−1

(

σ

)

isnegative.Theminimum

ofDN

(

σ

)

isthenusuallylocatedatthehighestorderdefinedroot.Forinstance,inthecaseshowninFig.3c,theminimum

ofD6

(

σ

)

islocatedattheroot

σ

5 of

ζ

5∗

(

σ

)

.

Themoment-inversionprocedureforreconstructionkernelsdefinedon

Ä

ξ

=

]0

, +∞

[ isthenreducedtothe identifica-tionofthedefinedroot

σ

k

,

k

∈ {

2

,

. . . ,

N

}

,ofhighestindex.Thealgorithmproposedinsection3.3alreadyconvergestoward

thisrootandonlyrequireslittleadjustments:

1. Check the realisability of the raw moments m2P

=

m2P

(

0

)

by computing

ζ

N

(

0

)

and checking the positivity of all

elements.

2. Initialiseaninterval

h

σ

l(0)

,

σ

r(0)

i

with

σ

l(0)

=

0 and

σ

r(0)

=

σ

2with

σ

2 thesolutionof

ζ

2∗

(

σ

)

=

0.

3. Iterateoverk

(a) Identify j theindexofthefirstnegativeelementof

ζ

N

³

σ

r(k−1)

´

. (b) Compute

σ

t1

=

1 2

³

σ

l(k−1)

+

σ

r(k−1)

´

and

ζ

N

(

σ

t1

)

. (c) Compute

σ

t2

=

σ

t1

+

³

σ

t1

σ

(k1) l

´

ζ∗ j ¡ σt1¢ r ζ∗ j ¡ σt1¢2−ζ∗ j ³ σl(k−1)´∗ζ∗ j ³ σr(k−1) ´ and

ζ

N

(

σ

t2

)

. (d) Set

σ

(k)

l as the highestvalue between

σ

(k1)

l ,

σ

t1 and

σ

t2 such that the corresponding vector

ζ

N contains only

positivevalues.

(e) Set

σ

r(k) asthelowestvalue between

σ

r(k−1),

σ

t1 and

σ

t2 suchthat thecorresponding vector

ζ

N containsatleast

onenegativevalue. Stopthecomputationif

σ

r(k)

σ

(

k)

l

<

εσ

1orif

ζ

N

³

σ

l(k)

´

<

ε

ζ

N

(

0

)

,with

ε

arelativetolerance(e.g.

ε

=

10−10).Thencompute

the weights wP and nodes

ξ

P of the EQMOM reconstruction by computing a Gaussian-quadrature based on recurrence

coefficientsaP−1

³

σ

l(k)

´

andbP1

³

σ

l(k)

´

.

3.5.Applicationtothe Hausdorffproblem

Momentsof adistribution definedon theclosed support

Ä

ξ

=

]0

,

1[ mustobey two setsof conditionsinorderto be withintherealisablemomentspace[15,26].ThemomentsetmN isinteriortotherealisablemomentspaceassociatedto

thesupport

Ä

ξ

=

]0

,

1[ ifandonlyif:

• H

k

>

0,

k

∈ {

0

,

. . . ,

N

}

(12)

Fig. 4. EvolutionofthedifferentconvergencecriteriafortheBetareconstructionkernelandfourinitialmomentsets.Thesesetscanbefoundinthefigure sourcecodeprovidedassupplementarydata.

with

H

kdefinedinEq.(19) and

H

kdefinedby

H

2n +d

=

¯

¯

¯

¯

¯

¯

¯

md−1

md

· · ·

mn+d−1

mn+d

..

.

. .

.

..

.

mn+d−1

mn+d

· · ·

m2n+d−1

m2n+d

¯

¯

¯

¯

¯

¯

¯

(22)

Leavingasidetheobviouscondition

H

0

=

m0

>

0,theconditions

H

k

>

0 and

H

k

>

0 inducealowerboundmk andan

upperboundm+k forthevaluesofmk,k

∈ {

1

,

. . . ,

N

}

.Consequently,onecandefinethecanonicalmomentsofthedistribution

pN

= [

p1

,

. . . ,

pN

]

Tas

pk

=

mk

mk

m+k

mk (23)

AmomentsetmN isstrictlyrealisableifandonlyiftheassociatedcanonicalmomentset pN liesinthehypercube]0

,

1[N.

Canonicalmomentscanbecomputedthroughtherecurrencerelation[34]:

pk

=

ζ

k

1

pk1

(24)

with

ζ

kdefinedinEq.(20) andp1

=

m1.

Inthe caseoftheBetakernel(see B.6),one islookingfora value of

σ

such thatthe vector p

N

(

σ

)

hasthe following

properties:

p

k

(

σ

)

]0

,

1[

,

k

∈ {

1

,

. . . ,

N

1

}

p

N

(

σ

)

=

0

pN

(

σ

)

iscomputedfromthevector

ζ

N

(

σ

)

whichisdeducedfromtherecurrencecoefficientsaP1

(

σ

)

andbP

(

σ

)

.These

arecomputed–likepreviously– throughtheChebyshevalgorithmappliedtothevectorm

N

(

σ

)

=

A

1

N

(

σ

)

·

mN.

Fig.4showstheevolutionofthecanonical momentsandtheconvergencecriteriaD6

(

σ

)

andD∗6

(

σ

)

forfourdifferent

setsof7momentswiththedevelopmentsrelativetotheBetakernel(seeAppendixB.6).Eachofthesesetscorrespondsto oneofthefoursituationsencounteredwhendealingwithBetaEQMOM:

Fig.4a: theroot

σ

N of DN

(

σ

)

, DN

(

σ

)

andpN

(

σ

)

existsandcan beidentified througha similarprocedure thanthat

describedinsections3.3and3.4.

Fig.4b:theroot

σ

N isnotdefinedbuttheminimumofDN

(

σ

)

islocatedatthe

σ

valueforwhich pN1

(

σ

)

isonthe

boundaryofthehypercube]0

,

1[N−1.

Fig.4c: DN

(

σ

)

,DN

(

σ

)

andpN

(

σ

)

admitmultipleroots.

Fig.4d: theroot

σ

N isdefined,butthereis arange

]

σ

v1

,

σ

v2

[

with

σ

v2

<

σ

N,highlighted inlightgrey, suchthat in

(13)

Thealgorithm proposed insections 3.3and3.4can still be applied hereby replacingthe convergencecriteriaby the canonical moments, and by checking that the values of p

N

(

σ

)

all lie inthe interval ]0

,

1[ instead of checkingonly for

positivity:

1. Checktherealisabilityoftherawmoments m2P

=

m2P

(

0

)

bycomputing pN

(

0

)

andcheckingthat allelements liein

]0

,

1[. 2. Initialiseaninterval

h

σ

l(0)

,

σ

r(0)

i

with

σ

(0) l

=

0 and

σ

(0)

r

=

σ

2with

σ

2 theanalyticalsolutionof p∗2

(

σ

)

=

0.

3. Iterateoverk

(a) Identify j theindexofthefirstelementof p

N

³

σ

r(k−1)

´

thatiseithernegativeorhigherthan1. (b) Compute

σ

t1

=

1 2

³

σ

l(k−1)

+

σ

r(k−1)

´

and pN

(

σ

t1

)

. (c) If j

<

N and pj

³

σ

r(k−1)

´

>

1

Compute

σ

t2

=

σ

t1

+

³

σ

t1

σ

(k1) l

´

qj ¡ σt1¢ r qj ¡ σt1¢2−qj ³ σl(k−1) ´ ∗qj ³ σr(k−1) ´ andpN

(

σ

t2

)

,withqj

(

σ

)

=

1

pj

(

σ

)

. (d) Else,thatisif j

=

N orpj

³

σ

r(k−1)

´

<

0

Compute

σ

t2

=

σ

t1

+

³

σ

t1

σ

(k1) l

´

pj ¡ σt1¢ r pj ¡ σt1¢2−pj ³ σl(k−1) ´ ∗pj ³ σr(k−1) ´ and pN

(

σ

t2

)

.

(e) Set

σ

l(k) asthehighestvaluebetween

σ

l(k−1),

σ

t1 and

σ

t2 suchthatthecorrespondingvector pN liesin]0

,

1[ N.

(f) Set

σ

r(k) asthe lowest value between

σ

r(k−1),

σ

t1 and

σ

t2 such that the corresponding vector pN doesnot lie in

]0

,

1[N.

Stopthecomputation if

σ

r(k)

σ

l(k)

<

εσ

2 orif pN

³

σ

l(k)

´

<

ε

p

N

(

0

)

,with

ε

arelative tolerance(e.g.

ε

=

10−10). As

previ-ously,onceconvergenceisachieved,theweights wP andnodes

ξ

P ofthereconstructioncanbeobtainedbycomputinga

Gaussianquadraturerulebasedontherecurrencecoefficientsa

P1

³

σ

l(k)

´

andbP1

³

σ

l(k)

´

.

Thisalgorithm willconvergetotheroot

σ

N forcasessimilar toFig.4a; totheminimumofDN

(

σ

)

forcasessimilarto

Fig.4b;tooneofthemultiplerootsforcasessimilartoFig.4c.InthecaseillustratedinFig.4d,thealgorithmmayormay notidentifytheexistingroot,dependingonwhetheroneoftheintermediatetested

σ

valuesliesinthegreyedarea.

Onecouldtrytodevelopamorerobustalgorithm,thatwillalwaysfindtherootifitisdefined,eveninthecaseshownin Fig.4d.Anotherimprovementwouldbetoensureaconsistentresultwhenmultiplerootsexist,forinstancebyconverging towardthelowestroot,sothatasmallperturbationintherawmomentswillonlycauseasmallchangeontheresulting

σ

value.Nothingpreventsthecurrentalgorithmfromconvergingtowardonerootforamomentsetandtowardanotherone afterasmallperturbationofthissetwhichcouldinduceinstabilitiesinlarge-scalesimulations.Notethattheselimitations alreadyexistedinpreviousEQMOMimplementationsanddonotresultfromthenewapproachdevelopedinthisarticle.

3.6.Handlingweaklyrealisableandill-conditionedmomentsets

TheEQMOMmoment-inversionprocedureattemptstoidentifyaNDFdefinedby

e

n

(ξ ) =

P

X

i=1

wi

δ

σ

(ξ, ξ

i

)

(25)

whosefirst2P

+

1 integermomentsaregivenbym2P.

Thisapproximationisnotalwayspossibleasshowninsections3.4and3.5.WhentheEQMOMapproximationexists,it maybeill-conditionedifatleastoneofthefollowingsholdstrue:

σ

=

0

• ∃

i

,

wi

=

0

• ∃

i

, ξ

i

=

0

Thefirst situationis that ofm2P beingweakly realisable. The second situationoccursif m2P is the momentset ofa

convexmixture ofthe reconstructionkernelwithlessthan P nodes.Thesesituationsarenot mutuallyexclusive,a vector m6couldbethevectorofthe7firstmomentsofabi-Diracdistribution,oneofwhichcouldbelocatedin

ξ =

0.

Accountingfor thesesituations requiresintroducing the orderofrealisability ofa momentset,

N (

mN

)

.This notation

wasintroducedbyNguyenetal.[1] butwasonlydefinedon

Ä

ξ

=]

0

,

+∞[

intermsofHankeldeterminants.Thefollowing definitionisbroaderasit encompassestheirsbutextendsitto othersupports.

N (

mN

)

isthenumberofmomentsinthe

largeststrictly realisablesubset ofmN.Foreach support,the orderof realisabilityisdefinedinterms ofthe realisability

(14)

For

Ä

ξ

=

]

−∞, +∞

[,computebP fromm2P;

– ifallelementsarepositive,

N (

m2P

)

=

2P

+

1; – else,ifthereisn suchthatbn

=

0,

N (

m2P

)

=

2n;

– else,ifthereisn suchthatbn

<

0,

N (

m2P

)

=

2n

1.

For

Ä

ξ

=

]0

, +∞

[,compute

ζ

2P fromm2P;

– ifallelementsarepositive,

N (

m2P

)

=

2P

+

1;

– elseidentifyn suchthat

ζ

n

0,

N (

m2P

)

=

n.

For

Ä

ξ

=

]0

,

1[,compute p2P fromm2P;

– ifallelementsareincludedon

]

0

,

1

[

,

N (

m2P

)

=

2P

+

1;

– elseidentifyn suchthat pn

∈ ]

/

0

,

1

[

,

N (

m2P

)

=

n.

Detecting situationswhere

σ

=

0 requires tocheck the orderofrealisability ofrawmoments. If

N (

m2P

)

iseven, set

σ

=

0;otherwiseapplytheiterativeproceduretom2P′ with

N (

m2P

)

=

2P

1 toidentify

σ

[1].

The actual numberof nodesrequired by the EQMOM approximation, i.e. the numberof non-zero weights P′′, is de-termined from

N (

m2P

(

σ

))

.Ifit is even, P′′

= N (

m

2P

(

σ

))/

2; otherwise, P′′

= (N (

m2P

(

σ

))

+

1

)/

2 but one node willbe

locatedin

ξ =

0 whichmightbeanissueforKDFsdefinedon

Ä

ξ

=

]0

, +∞

[ or

Ä

ξ

=

]0

,

1[.Theweightsandnodeswillbe computedfromtherecurrencecoefficientsa

P′′1

(

σ

)

andbP′′1

(

σ

)

.If P′′

<

P ,let wk

=

0

,

ξ

k

=

1

/

2

, ∀

k

∈ {

P′′

+

1

,

. . . ,

P

}

.

Theseadjustments ofthe firstandlaststeps ofalgorithmsdescribed insections3.3,3.4and3.5give greatstability to themoment-inversionprocedureatlowcost.

Inthesituationwhere

N (

m

2P

(

σ

))

=

2P ,theEQMOMapproximationis guaranteedtopreservethe wholemomentset m2P.However, if

N (

m2P

(

σ

))

<

2P ,theapproximationmay,ormaynot,preserveall momentswithnosimplemethodto

checkforthis.OneshouldcomputethemomentsoftheEQMOMapproximationandmeasuretherelativeerrorfromoriginal moments.

4. ComparisonofEQMOMapproaches 4.1. Method

The new EQMOM moment-inversionprocedure only requirescomputation ofthe realisabilitycriteriaof the vector of degeneratedmomentsm

2P

(

σ

)

inordertoidentify

σ

.Thesecomputationswerealreadyperformedintheoriginalapproach

[1] toensuretherealisabilityofthevectorm2P1

(

σ

)

priortothequadraturecomputationandulteriorsteps.

Itisthereforeobviousthatthenewapproachwillalwaysrequirealowernumberoffloatingpointoperations(FLOP).In orderto quantifythisreductiononFLOP number,andtheactual performancegain, differentimplementationsofEQMOM arecompared,theyarebasedeitherontherealizabilitycriteria,oronaquadrature-basedobjectivefunction.

4.1.1. TestedEQMOMimplementations

Comparisonareperformedforkernelsdefinedon

Ä

ξ

=

]

−∞, +∞

[ (i.e.GaussandLaplacekernels),andon

Ä

ξ

=

]0

, +∞

[ (i.e.Log-Normal,GammaandWeibullkernels),usingMATLAB[22] implementations.

Implementationsthat arebasedontherealizabilitycriteriaofm

2P

(

σ

)

usealgorithms thatwerefullydescribedin

sec-tions3.3and3.4andadjustmentsfromsection3.6.

For quadrature-based moment-inversion implementations, we optimized codes fromMarchisio and Fox [20] and the OpenQBMM project[19] byimplementingoptimizationssuggestedbyNguyen etal.[1] andadjustmentsfromsection3.6. InsteadofsearchingfortherootofD2P

(

σ

)

(seeFig.1a),theseimplementationsdirectlysearchtherootofD2P

(

σ

)

(Fig.1b).

Doingso,allcomparedimplementationsonlyrequirethematrix A2P−1

(

σ

)

andcanbenefitfromthesamecodeoptimization whencomputingm2P

(

σ

)

=

A2P−1

(

σ

)

·

m2P.

For kernels definedon

Ä

ξ

=

]0

, +∞

[, ifRidder’s methodfails to identifya root of D2P

(

σ

)

, the golden-ratio method

is usedtominimize D2P

(

σ

)

2

=

¡

D2P

(

σ

) ·

A2P,2P

(

σ

)

¢

2.Thegolden-ratiominimization methodwas alreadyusedin

Open-QBMM [19].

4.1.2. Performancemeasurements

The mainelement ofcomparisonis thenumberoffloating-pointoperationsrequiredforthewhole moment-inversion procedure. The MATLAB implementations embed a simple FLOP counter that distinguishes each operation (

+

,

,

,

/

, exp,

·

,

Ŵ(·)

,. . . )andcountsthemforeachstepofthemoment-inversionprocedure(linearsystem, Chebyshevalgorithm, quadraturecomputationandothers).

InordertoevaluatethenumberofoperationsusedinthecomputationoftheeigenvaluesandeigenvectorsoftheJacobi matrix(Eq.(6)),theJacobiandtheFrancisalgorithmswhicharesuitedforsymmetricmatrices[35] areusedinplaceofthe MATLABbuilt-in“eig”function[22].TheJacobialgorithmisusedformatricesofsizeupto3

×

3 andtheFrancisalgorithm forlargermatricesinordertoalwaysusethefastestmethod.

Twoothersmetricsaremeasuredforeachcalltothemoment-inversionprocedure:thenumberoftested

σ

valuesand thewall-timeoffunctioncalls.

(15)

Table 1

ComparisonofGaussEQMOMimplementationscorrespondingtoFig.1band1c formomentsetsfarfromthefrontierofrealisability.ThecountofFLOP detailstheoperationsrelatedto(i)thematrix–vectorproductA−1

2P(σ)·m2P,(ii)theChebyshevAlgorithm(CA),(iii)theQuadratureComputation(QC)and

(iv) amiscellaneouscategory.Resultsaregivenasmean±standard-deviationamong104momentsets.

P=2 P=3 P=4 P=5 New approach FLOP A2P1(σ) 237±59 767±141 1709±253 3201±476 CA 177±40 477±83 979±139 1751±251 QC 52±0 474±42 995±120 1746±188 Misc. 54±12 65±11 75±11 86±12 Total 519±112 1783±242 3759±441 6784±830 Evaluations 12±3 14±2 17±2 19±3 Run-time (ms) 1±0 2±0 3±0 4±1 Former approach FLOP A2P1(σ) 295±161 1433±423 4060±869 8516±1870 CA 202±102 853±241 2246±467 4509±967 QC 742±377 9171±2910 24997±9966 52312±14096 Misc. 191±99 430±129 804±156 1298±251 Total 1429±739 11887±3603 32108±10645 66635±16085 Evaluations 14±7 26±7 39±8 50±11 Run-time (ms) 1±1 9±3 17±5 31±7 Gain in FLOP 59.1%±12.3% 84.2%±3.5% 87.9%±2.5% 88.0%±13.1% Evaluations 8.6%±27.7% 40.9%±17.7% 54.2%±12.8% 53.0%±55.2% Run-time 53.2%±13.2% 81.9%±4.2% 84.0%±3.6% 83.3%±18.0%

4.1.3. Testedmomentsets

Eachcomparisonwasperformedon104 randomlygeneratedmomentsets.Thesehavevaryingsize2P

+

1

∈ {

5

,

7

,

9

,

11

}

andwereeitherfarfrom,orcloseto,theboundaryoftherealisablemomentspace.

Momentssets forkernels definedon

Ä

ξ

=

]

−∞, +∞

[ were computedfromrandomvectorsaP1 andbP using a

re-versedChebyshevalgorithm.Distributionlawsfortheelementsofthesevectorsare

ak

∼ N (

0

,

25

),

k

∈ {

0

,

. . . ,

P

1

}

.

bk

1

+

Exp

(

4

),

k

∈ {

1

,

. . . ,

P

}

.

bP

Exp

(

0

.

5

)

formomentsetsclosefromthefrontierofrealisability.

Similarly,momentssetsforkernelsdefinedon

Ä

ξ

=

]0

, +∞

[ werecomputedfromrandomvectors

ζ

2P usingareversed

ζ

-Chebyshevalgorithm[1].Elementsofthesevectorsaregeneratedusingfollowingdistributionlaws:

• ζ

k

1

+

Exp

(

4

),

k

∈ {

1

,

. . . ,

2P

}

.

• ζ

2P

Exp

(

0

.

5

)

formomentsetsclosefromthefrontierofrealisability.

4.1.4. Reproducibility

Toallowreproducibilityofresultsdescribedhereafter,everysourcecodespreviouslydescribed,andrandomlygenerated data,areavailableassupplementarydata.

4.2.Results

ResultsofthecomparisonperformedonGauss-EQMOMformomentsetsfarfromtheboundaryoftherealisablemoment spacearegiveninTable1.Similartablesareavailableassupplementarydataforallkernelsandmomentsets.

Table2underlinesadecreaseinthenumberoftested

σ

values,inparticularforhighorderreconstructions.Thisdecrease ismainlydueto thefactthatintheformerapproach,ifmN1

(

σ

)

turnsout nottoberealisable, theobjectivefunctionis settoa arbitrarilyhighnegative value. Theuseofsuch anarbitraryvalue slowsdownthe convergenceofthenon-linear equation solver. Meanwhile, the new approach never makes use of arbitrary values, all the elements of the vectors of realisabilitycriteria(b

P

(

σ

)

,

ζ

2P

(

σ

)

or p2P

(

σ

)

)areusedoneaftertheotherwhichyieldsabetterchoiceofthenexttested

σ

value.

Moreover,forkernelsdefinedon

Ä

ξ

=

]0

, +∞

[ andinsituationsillustratedinFig.3c,theformerapproachmayswitch froma rootsearch toa minimization processif norootis found.Thisinduces numerous supplementary tested

σ

values beforeconvergenceisreachedwhilethissituationneveroccursinthenewapproach.

Asignificant dropin thetotal numberofFLOP can be observedin Table3.This was expectedandismainly justified bythefactthat thequadraturecomputation isonlycalledonce inthenewapproachwhilstitiscalledformosttested

σ

valuesintheformermoment-inversion procedure.Thisquadrature,whichconsistsinthe computationofthe eigenvalues

Figure

Fig. 1. Comparison of the computation of convergence criteria based on (a) D N (σ ) , (b) D ∗
Fig. 2. Evolution of the different convergence criteria for both Gaussian (a and b) and Laplace (c and d) kernels depending on σ value
Fig. 3. Evolution of the different convergence criteria for the Weibull kernel depending on σ value
Fig. 4. Evolution of the different convergence criteria for the Beta reconstruction kernel and four initial moment sets
+2

Références

Documents relatifs

We here develop two generalized methods of moments (Hansen, 1982), based either on the moments or on the Laplace transform of an extended gamma process.. Asymptotic properties

last model used for the vacancy included moments up to the third one and in this approximation only the population of the v, tx, ty, tz orbitals is affected. -

Abstract.- The lowest six momenta of the spectral function of the electronic Green function in the s-d model are expressed using spin-spin correlation functions in the

Les ré- sultats obtenus avec la méthode de Monte Carlo dans Si, Ge, CdTe sont interprétés par référence aux collisions des porteurs avec le réseau et à la structure des bandes

We find this part of his paper is very hard to read, and the purpose of our work is to use Talagrand’s generic chaining instead, this simplifies significantly Lata la’s proof..

In addition, even if p is not realized by a PRFA or is empirically estimated, our algorithm returns a PFA that realizes a proper distribution closed to the true distribution..

Traditionally, Hidden Markov Models (HMMs) would be used to address this problem, involving a first step of hand- crafting to build a dialogue model (e.g. defining potential hid-

A second one where we imposed Y and the mass of the core but allowed the size of the core to vary (we have verified that impos- ing the mass or the size leads to the same results).